当前位置:文档之家› 基于全局视角的点云特征提取方法与设计方案

基于全局视角的点云特征提取方法与设计方案

基于全局视角的点云特征提取方法与设计方案
基于全局视角的点云特征提取方法与设计方案

本技术公开了一种基于全局视角的点云特征提取方法,该方法先获取点云模型中原始三维点云坐标点,并结合主成分分析法,获得三个特征向量;将每个原始三维点云坐标点投影到三个特征向量,获得三个投影值,并结合刚体变换方法,获得每个原始三维点云坐标点对应的投影坐标;将全部投影坐标划分成三个二维平面,并将每个二维平面划分成N个网格区域;根据每个网格区域内的深度因子、面积因子、坐标面积因子,获得每个网格区域的特征数值,并结合N个网格区域,获得每个二维平面的特征数值;根据每个二维平面的特征数值,提取点云模型的总特征。采用本技术技术方案不用时刻受到不同扫描视角的影响而导致点云特征提取的精确度低,同时降低了时间复杂度。

权利要求书

1.一种基于全局视角的点云特征提取方法,其特征在于,包括:

获取点云模型中原始三维点云数据,其中,所述原始三维点云数据包括D个原始三维点云坐标点,D为大于1的整数;

根据所述D个原始三维点云坐标点,结合主成分分析法,获得三个特征向量,其中,所述三个特征向量相互正交;

将每个所述原始三维点云坐标点分别一一投影到所述三个特征向量,获得三个投影值,并结合预设的刚体变换方法对所述三个投影值进行处理,依次获得每个所述原始三维点云坐标点对应的投影坐标;

将全部所述投影坐标划分成三个二维平面,并分别将每个所述二维平面划分成N*N个网格区域,其中,N为大于1的整数;

根据每个网格区域内的深度因子、面积因子、坐标面积因子,获得每个网格区域的特征数值,并结合所述N*N个网格区域,获得每个二维平面的特征数值;

根据所述每个二维平面的特征数值,提取所述点云模型的总特征。

2.如权利要求1所述的基于全局视角的点云特征提取方法,其特征在于,所述根据所述D个原始三维点云坐标点,结合主成分分析法,获得三个特征向量,具体为:

将所述D个原始三维点云坐标点的每个维度取均值,获得D*3矩阵数据;

计算所述矩阵数据的的协方差矩阵,获得D*D协方差矩阵;

根据主成分分析方法,将所述协方差矩阵的特征值按大小排序,并同时计算出与所述协方差矩阵的特征值对应的特征向量,获得第一主成分特征向量、第二主成分特征向量和第三主成分特征向量。

3.如权利要求2所述的基于全局视角的点云特征提取方法,其特征在于,所述将每个所述原始三维点云坐标点分别一一投影到所述三个特征向量,获得三个投影值,并结合预设的刚体变换方法对所述三个投影值进行处理,依次获得每个所述原始三维点云坐标点对应的投影坐标,具体为:

将每个所述原始三维点云坐标点分别一一投影到所述第一主成分特征向量、所述第二主成分特征向量和所述第三主成分特征向量,获得第一投影值、第二投影值、第三投影值;

根据刚体变换方法对所述第一投影值、所述第二投影值、所述第三投影值进行处理,依次获得每个所述原始三维点云坐标点对应的投影坐标。

4.如权利要求1所述的基于全局视角的点云特征提取方法,其特征在于,所述每个网格区域内点云的深度因子,计算方法如下:

深度因子deepOcc=(ave–MinXa)/(MaxXa–MinXa),其中ave表示每个网格区域内点云的平均深度,MinXa表示每个网格区域内的最小投影值,MaxXa表示每个网格区域内的最大投影值。

5.如权利要求1所述的基于全局视角的点云特征提取方法,其特征在于,所述每个网格区域内的面积因子,计算方法如下:

面积因子Occ=cloudArea/blockArea,其中cloudArea表示每个网格区域内点云所占的面

积,blockArea表示为网格面积。

6.如权利要求1所述的基于全局视角的点云特征提取方法,其特征在于,所述每个网格区域的坐标面积因子,计算方法如下:

计算每个网格区域对应的二维平面的面积;

计算所述每个网格区域对应的二维平面的面积占三个二维平面的面积之和的比值,获得每个网格区域的面积坐标因子。

7.如权利要求1所述的基于全局视角的点云特征提取方法,其特征在于,所述每个网格区域的特征数值,计算方法如下:

areaFea=Occ*deepOcc*axisOcc,其中Occ表示每个网格区域内的面积因子,deepOcc表示每个网格区域内点云的深度因子,axisOcc表示每个网格区域的坐标面积因子。

8.如权利要求1所述的基于全局视角的点云特征提取方法,其特征在于,所述根据所述每个网格区域的特征数值,结合所述N*N个网格区域,获得每个二维平面的特征数值,计算方法如下:

每个二维平面的特征数值=N*N*每个网格区域的特征数值。

技术说明书

一种基于全局视角的点云特征提取方法

技术领域

本技术涉及三维点云数据处理领域,尤其涉及一种基于全局视角的点云特征提取方法。

背景技术

目前主要采用激光三维扫描仪将现实世界中的物体转换成点云模型,根据点云模型中的三维点云数据实现模型重构,进而在虚拟世界中创建与现实世界物体相同的数字模型。但是,激光三维扫描仪采集到的三维点云数据相对较多,能够从大量的三维点云数据中精确的提取点云特征显得尤为重要。

现有技术中,通常采用视点特征直方图描述子(VFH)的方法进行点云模型局部特征的提取。VFH方法根据全部估计法线方向之间的相互作用,来捕获点云模型表面的变化情况,从而实现点云模型几何特征的提取。然而,目前VFH方法通常用于点云模型局部特征提取,受

点云扫描视点的影响大,相同形状的点云模型在不同扫描视角下,点云提取出来的特征存在差异,进而使得点云特征提取的精确度低。同时,VFH方法对点云特征的提取,首先需要估计每个点所在K临近点区域内的法向量,其次计算每个点与临近点之间的特征向量和与一个视点方向相关的特征分量,因此VFH方法处理点云数据的过程中时间复杂度高,若成倍增大点云的密度,其时间复杂度成倍增加。

技术内容

本技术实施例提供了一种基于全局视角的点云特征提取方法,不用时刻受到不同扫描视角的影响而导致点云特征提取的精确度低,同时降低了时间复杂度。

为了解决上述技术问题,本技术实施例提供了一种基于全局视角的点云特征提取方法,包括:

获取点云模型中原始三维点云数据,其中,所述原始三维点云数据包括D个原始三维点云坐标点,D为大于1的整数;

根据所述D个原始三维点云坐标点,结合主成分分析法,获得三个特征向量,其中,所述三个特征向量相互正交;

将每个所述原始三维点云坐标点分别一一投影到所述三个特征向量,获得三个投影值,并结合预设的刚体变换方法对所述三个投影值进行处理,依次获得每个所述原始三维点云坐标点对应的投影坐标;

将全部所述投影坐标划分成三个二维平面,并分别将每个所述二维平面划分成N*N个网格区域,其中,N为大于1的整数;

根据每个网格区域内的深度因子、面积因子、坐标面积因子,获得每个网格区域的特征数值,并结合所述N*N个网格区域,获得每个二维平面的特征数值;

根据所述每个二维平面的特征数值,提取所述点云模型的总特征。

作为优选方案,所述根据所述D个原始三维点云坐标点,结合主成分分析法,获得三个特征向量,具体为:

将所述D个原始三维点云坐标点的每个维度取均值,获得D*3矩阵数据;

计算所述矩阵数据的的协方差矩阵,获得D*D协方差矩阵;

根据主成分分析方法,将所述协方差矩阵的特征值按大小排序,并同时计算出与所述协方差矩阵的特征值对应的特征向量,获得第一主成分特征向量、第二主成分特征向量和第三主成分特征向量。

作为优选方案,所述将每个所述原始三维点云坐标点分别一一投影到所述三个特征向量,获得三个投影值,并结合预设的刚体变换方法对所述三个投影值进行处理,依次获得每个所述原始三维点云坐标点对应的投影坐标,具体为:

将每个所述原始三维点云坐标点分别一一投影到所述第一主成分特征向量、所述第二主成分特征向量和所述第三主成分特征向量,获得第一投影值、第二投影值、第三投影值;

根据刚体变换方法对所述第一投影值、所述第二投影值、所述第三投影值进行处理,依次获得每个所述原始三维点云坐标点对应的投影坐标。

作为优选方案,所述每个网格区域内点云的深度因子,计算方法如下:

深度因子deepOcc=(ave–MinXa)/(MaxXa–MinXa),其中ave表示每个网格区域内点云的平均深度,MinXa表示每个网格区域内的最小投影值,MaxXa表示每个网格区域内的最大投影值。

作为优选方案,所述每个网格区域内的面积因子,计算方法如下:

面积因子Occ=cloudArea/blockArea,其中cloudArea表示每个网格区域内点云所占的面

积,blockArea表示为网格面积。

作为优选方案,所述每个网格区域的坐标面积因子,计算方法如下:

计算每个网格区域对应的二维平面的面积;

计算所述每个网格区域对应的二维平面的面积占三个二维平面的面积之和的比值,获得每个网格区域的面积坐标因子。

作为优选方案,所述每个网格区域的特征数值,计算方法如下:

areaFea=Occ*deepOcc*axisOcc,其中Occ表示每个网格区域内的面积因子,deepOcc表示每个网格区域内点云的深度因子,axisOcc表示每个网格区域的坐标面积因子。

作为优选方案,所述根据所述每个网格区域的特征数值,结合所述N*N个网格区域,获得每个二维平面的特征数值,计算方法如下:

每个二维平面的特征数值=N*N*每个网格区域的特征数值。

实施本技术实施例,具有如下有益效果:

本技术公开了一种基于全局视角的点云特征提取方法,该方法先获取点云模型中原始三维点云坐标点,并结合主成分分析法,获得三个特征向量;将每个原始三维点云坐标点投影到三个特征向量,获得三个投影值,并结合刚体变换方法,获得每个原始三维点云坐标点对应的投影坐标;将全部投影坐标划分成三个二维平面,并将每个二维平面划分成N个网格区域;根据每个网格区域内的深度因子、面积因子、坐标面积因子,获得每个网格区域的特征数值,并结合N个网格区域,获得每个二维平面的特征数值;根据每个二维平面的特征数

值,提取点云模型的总特征。相比于现有技术采用VFH方法进行点云模型特征点的提取,本技术技术方案不用时刻受到不同扫描视角的影响而导致点云特征提取的精确度低,而是通过全局视角进行点云模型特征点的提取,进一步提高了点云特征提取的精确度,同时还能够降低时间复杂度。

进一步地,本技术在计算每个网格区域的特征数值时,加入了深度因子、深度因子和坐标面积因子,从不同角度对点云特征进行分析,能够有效的提高点云特征提取的精确度。

进一步地,本技术将全部投影坐标划分成三个二维平面,并将二维平面划分成若干个网格区域,最后通过全部网格区域的特征数值来获取全部的点云特征,能够有效提高点云特征的提取精度。

附图说明

图1是本技术提供的基于全局视角的点云特征提取方法的一种实施例的流程示意图;

图2是本技术与VFH方法的识别率的效果图。

具体实施方式

下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。

参见图1,是本技术提供的基于全局视角的点云特征提取方法的一种实施例的流程示意图。如图1所述,该构建方法包括步骤101至步骤106,各步骤具体如下:

步骤101:获取点云模型中原始三维点云数据,其中,原始三维点云数据包括D个原始三维点云坐标点,D为大于1的整数。

步骤102:根据D个原始三维点云坐标点,结合主成分分析法,获得三个特征向量,其中,三个特征向量相互正交。

在本实施例中,步骤102具体为:将D个原始三维点云坐标点的每个维度取均值,获得D*3矩阵数据;计算矩阵数据的的协方差矩阵,获得D*D协方差矩阵;根据主成分分析方法,将协方差矩阵的特征值按大小排序,并同时计算出与协方差矩阵的特征值对应的特征向量,获得第一主成分特征向量、第二主成分特征向量和第三主成分特征向量。

在本实施例中,结合主成分分析法,找出原始三维点云数据方差变化最大的三个相互正交的方向。原始三维点云数据中方差最大的方向为第一主成分特征向量;与第一主成分特征向量正交的平面中方差最大的方向为第二主成分特征向量;与第一主成分特征向量、第二主成分特征向量正交的平面中方差最大的方向为第三主成分特征向量。

在本实施例中根据主成分分析方法获得三个相互正交的特征向量,目的在于将原始三维

点云数据中方差最大的方向统一在同一个坐标轴上,实现数据的降维,从而进行原始三维点云数据的全面分析,有效提高了点云特征提取的精确性,同时能够有效减少了处理点云数据的时间。

步骤103:将每个原始三维点云坐标点分别一一投影到三个特征向量,获得三个投影值,并结合预设的刚体变换方法对三个投影值进行处理,依次获得每个原始三维点云坐标点对应的投影坐标。

在本实施例中,步骤103具体为:将每个原始三维点云数据分别一一投影到第一主成分特征向量、第二主成分特征向量和第三主成分特征向量,获得第一投影值、第二投影值、第三投影值;根据刚体变换方法对第一投影值、第二投影值、第三投影值进行处理,依次获得每个原始三维点云坐标点对应的投影坐标。

譬如,首先将每个原始三维点云数据分别一一投影到第一主成分特征向量、第二主成分特征向量和第三主成分特征向量,获得第一投影值X1、第二投影值X2、第三投影值X3,且三个投影值都是1*D的矩阵数据。其次应用刚体变换方法,将第一投影值X1、第二投影值X2、第三投影值X3组成投影坐标。

步骤104:将全部投影坐标划分成三个二维平面,并分别将每个二维平面划分成N*N个网格区域,其中,N为大于1的整数。

譬如,第一主成分特征向量方向上的二维平面由第二投影值X2、第三投影值X3组成;第二主成分特征向量方向上的二维平面由第一投影值X1、第三投影值X3组成;第三主成分特征向量方向上的二维平面由第一投影值X1、第二投影值X2组成。

在本实施例中,每个二维平面的划分个数可以不相同,每个二维平面划分N*N个网格区域,N为大于1的整数。

步骤105:根据每个网格区域内的深度因子、面积因子、坐标面积因子,获得每个网格区域的特征数值,并结合N*N个网格区域,获得每个二维平面的特征数值。

在本实施例中,每个网格区域内的深度因子计算方法如下:

深度因子deepOcc=(ave–MinXa)/(MaxXa–MinXa),其中ave表示每个网格区域内点云的平均深度,MinXa表示每个网格区域内的最小值投影值,MaxXa表示每个网格区域内的最大值投影值。

譬如,第三主成分特征向量方向上的二维平面由第一投影值X1、第二投影值X2组成,那么第三主成分特征向量方向上的二维平面的中的网格区域内的点云深度由第三投影值X3决定。获取网格区域内的所有原始三维点云坐标点,找出最大的第三投影值MaxX3和最小的第三投影值MinX3,算出该网格区域内的点云平均深度ave=MaxX3-MinX3,因此,该网格区域内点云的深度因子deepOcc=(ave–MinX3)/(MaxX3–MinX3)。

在本实施例中,获取每个网格区域的特征数值中加入了深度因子的计算,能够有效提取三视图相同而内部结构不同的点云模型的特征,进一步提高了点云特征提取的精度。

在本实施例中,每个网格区域内的面积因子计算方法如下:

面积因子Occ=cloudArea/blockArea,其中cloudArea表示每个网格区域内点云所占的面

积,blockArea表示为网格面积。

譬如,第三主成分特征向量方向上的二维平面由第一投影值X1、第二投影值X2组成,并将每个二维平面划分N*N个网格区域。采用微积分的原理计算每个网格区域内点云所占的面积,当二维平面划分的网格区域足够小,且该区域原始三维点云坐标点的密度足够大,找出每个网格区域内的最大值投影值和最小投影值,可以直接求出该区域原始三维点云坐标点的最大边界坐标(maxX1,maxX2)和最小边界坐标(minX1,minX2),则cloudArea=(maxX1–mixX1)*(maxX2-minX2)。

譬如,第三主成分特征向量方向上的二维平面由第一投影值X1、第二投影值X2组成,且第三主成分特征向量方向上的二维平面要划分N*N个网格区域,找出第三主成分特征向量方向上的二维平面中第一投影值的最大值maxx1、第一投影值的最小值minx1、第二投影值的最大值maxx2、第二投影值的最小值minx2,则该网格区域的长和宽分别是(maxx1–minx1)/N,(maxx2–minx2)/N,则blockArea=(maxx1–minx1)*(maxx2–minx2)/N2。

在本实施例中,三个二维平面划分的网格区域的个数可以不相同,例如,用户输入数据为(N1,N2,N3),则第一主成分特征向量方向上的二维平面分割成N1*N1个网格区域,第二主成分特征向量方向上的二维平面分割成N2*N2,第三主成分特征向量方向上的二维平面分割成N3*N3;此时,只需要将后续步骤中的公式进行相应的调整,也能实现本技术所述的基于全局视角的点云特征提取方法。

在本实施例中,每个网格区域内的面积因子的计算方法,具体为:计算每个网格区域对应的二维平面的面积;计算每个网格区域对应的二维平面的面积占三个二维平面的面积之和的比值,获得每个网格区域的面积坐标因子。

譬如,在第三主成分特征向量方向上由第一投影值X1和第二投影值X2组成的二维平面,找出第三主成分特征向量方向上的二维平面中第一投影值的最大值maxx1、第一投影值的最小值minx1、第二投影值的最大值maxx2、第二投影值的最小值minx2,,所以该方向上的二维平面面积axisArea=(maxx1–minx1)*(maxx2–minx2)。依次计算出三个二维平面的面积,在第三主成分特征向量方向的二维平面面积占三个二维平面面积之和的比例为第三主成分特征向

量方向的二维平面的权重,该权重为坐标面积因子axisOcc;其中,同一个二维平面上的网格区域的坐标面积因子均相同。

在本实施例中,计算每个网格区域的特征数值时加入了坐标面积因子的计算,能够有效解决二维平面分割网格区域导致的拉伸问题。

在本实施例中,每个网格区域的特征数值计算方法如下:

areaFea=Occ*deepOcc*axisOcc,其中Occ表示每个网格区域内的面积因子,deepOcc表示每个网格区域内点云的深度因子,axisOcc表示每个网格区域的坐标面积因子。

在本实施例中,根据计算获取的每个网格区域的特征数值,结合N*N个网格区域,获得每个二维平面的特征数值,每个二维平面的特征数值=N*N*每个网格区域的特征数值。

步骤106:根据每个二维平面的特征数值,提取点云模型的总特征。

在本实施例中,将三个二维平面的特征数值相加,提取点云模型的总特征。

由上可见,应用本实施例技术方案,计算每个网格区域的特征数值中加入了深度因子的计算,能够有效提取三视图相同而内部结构不同的点云模型的特征;加入了面积因子、坐标面积因子的计算,能够从不同角度进行点云特征的提取,从而提高了点云特征提取的精度。相比于现有技术通过VFH的方法进行点云模型局部特征的提取,本技术技术方案的点云特征提取不受点云扫描视点影响,从而能够准确提取点云的特征信息,进而提高了点云特征提取的精确度,同时还能够降低时间复杂度。

参见图2,图2是本技术与VFH方法的识别率效果图。如图2所示,是本技术与VFH方法提取的点云特征在支持向量机(SVM)的计算的识别率效果图,其中虚线是利用VFH方法提取

点云特征的识别率结果,实线是本技术提取点云特征的识别率结果。其中,横坐标是样本类别,纵坐标是正确率。共有9744个训练样本,其中每一类的训练样本为1392个;共有4200个测试样本,其中每一类的测试样本为600个。

VFH整体识别率为83.26%,其中1-7类别的点云样本的正确率分别是:

98.50%,53.00%,100%,63.83%,89.33%,99.83%,78.33%。

本技术整体识别率为94.31%,其中1-7类别的点云样本的正确率分别是:

95.33%,99.00%,100%,83.00%,91.83%,94.33%,96.67%。

由上可见,本技术整体的识别率比VFH方法的识别率高,因此本技术技术方案提取到点云特征的数据更加客观,更具有参考价值。

本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。

以上所述是本技术的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本技术的保护范围。

关于图像特征提取

关于图像特征提取 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 特征的定义 至今为止特征没有万能和精确的定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 有时,假如特征提取需要许多的计算时间,而可以使用的时间有限制,一个高层次算法可以用来控制特征提取阶层,这样仅图像的部分被用来寻找特征。 由于许多计算机图像算法使用特征提取作为其初级计算步骤,因此有大量特征提取算法被发展,其提取的特征各种各样,它们的计算复杂性和可重复性也非常不同。 边缘 边缘是组成两个图像区域之间边界(或边缘)的像素。一般一个边缘的形状可以是任意的,还可能包括交叉点。在实践中边缘一般被定义为图像中拥有大的梯度的点组成的子集。一些常用的算法还会把梯度高的点联系起来来构成一个更完善的边缘的描写。这些算法也可能对边缘提出一些限制。 局部地看边缘是一维结构。 角 角是图像中点似的特征,在局部它有两维结构。早期的算法首先进行边缘检测,然后分析边缘的走向来寻找边缘突然转向(角)。后来发展的算法不再需要边缘检测这个步骤,而是可以直接在图像梯度中寻找高度曲率。后来发现这样有时可以在图像中本来没有角的地方发现具有同角一样的特征的区域。 区域 与角不同的是区域描写一个图像中的一个区域性的结构,但是区域也可能仅由一个像素组成,因此许多区域检测也可以用来监测角。一个区域监测器检测图像中一个对于角监测器来说太平滑的区域。区域检测可以被想象为把一张图像缩小,然后在缩小的图像上进行角检测。 脊 长条形的物体被称为脊。在实践中脊可以被看作是代表对称轴的一维曲线,此外局部针对于每个脊像素有一个脊宽度。从灰梯度图像中提取脊要比提取边缘、角和区域困难。在空中摄影中往往使用脊检测来分辨道路,在医学图像中它被用来分辨血管。 特征抽取 特征被检测后它可以从图像中被抽取出来。这个过程可能需要许多图像处理的计算机。其结果被称为特征描述或者特征向量。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特

现代机器学习基于深度学习的图像特征提取

现代机器学习理论大作业(基于深度学习的图像特征提取)

基于深度学习的图像特征提取 摘要:大数据时代的来临,为深度学习理论的发展创造了良好的条件。本文介 绍了深度学习的发展背景,主要讨论了深度学习中的自编码的方法,对自编码方法实现仿真应用,期望在以后能应用到SAR图像上进行自动特征提取,最后阐 述该理论的目前遇到的困难。 关键词:深度学习autoencoder convolution pooling 一引言 机器学习是人工智能的一个分支,而在很多时候,几乎成为人工智能的代名词。简单来说,机器学习就是通过算法,使得机器能从大量历史数据中学习规律, 从而对新的样本做智能识别或对未来做预测。从1980年代末期以来,机器学习的发展大致经历了两次浪潮:浅层学习(Shallow Learning)和深度学习(Deep Learning)。 第一次浪潮:浅层学习 1980年代末期,用于人工神经网络的反向传播算法(也叫Back Propagation 算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机 器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习出统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显示出优越性。这个时候的人工神经网络,虽然也被称作多层感知机(Multi-layer Perceptron),但实际上是一种只含有一层隐层节点的浅层模型。 90年代,各种各样的浅层机器学习模型相继被提出,比如支撑向量机(SVM,Support Vector Machines)、Boosting、最大熵方法(例如LR,Logistic Regression)等。这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型在无论是理论分析还是应用都获得了巨大的 成功。相比较之下,由于理论分析的难度,加上训练方法需要很多经验和技巧, 所以这个时期浅层人工神经网络反而相对较为沉寂。 2000年以来互联网的高速发展,对大数据的智能化分析和预测提出了巨大需求,浅层学习模型在互联网应用上获得了巨大成功。最成功的应用包括搜索广告

语音信号特征的提取

语音信号特征的提取 摘要 随着计算机技术的发展,语音交互已经成为人机交互的必要手段,语音特征参数的精确度直接影响着语音合成的音质和语音识别的准确率。因此语音信号参数提取是语音信号处理研究中一项非常有意义的工作。 本文采用Matlab软件提取语音信号特征参数,首先对语音信号进行数字化处理,其次,进行预处理,包括预加重、加窗和分帧,本文讨论了预处理中各种参数的选择,以使信号特征提取更加准确。第三,讨论了各种时域特征参数的算法,包括短时能量、短时过零率等。 关键词:语音信号, 特征参数, 提取, Matlab 目录 第一章绪论 1.1语音信号特征提取概况 1.1.1研究意义 语音处理技术广泛应用于语音通信系统、声控电话交换、数据查询、计算机控制、工业控制等领域,带有语音功能的计算机也将很快成为大众化产品,语音将可能取代键盘和鼠标成为计算机的主要输入手段,为用户界面带来一次飞跃。 语音信号特征的提取是语音信号处理的前提和基础,只有分析出可表示语音信号本质特征的参数,才有可能利用这些参数进行高效的语音通信和准确的语音识别,才能建立语音合成的语音库。因此语音信号参数提取是语音信号处理研究中一项非常有意义的工作。 1.1.2 发展现状 语音信号处理是一门综合性的学科,包括计算机科学、语音学、语言学、声学和数学等诸多领域的内容。它的发展过程中,有过两次飞跃。第一次飞跃是1907年电子管的发明和1920年无线电广播的出现,电子管放大器使很微弱的声

音也可以放大和定量测量,从而使电声学和语言声学的一些研究成果扩展到通信和广播部门;第二次飞跃是在20世纪70年代初,电子计算机和数字信号处理的发展使声音信号特别是语音信号,可以通过模数转换器(A/D)采样和量化转换为数字信号,这样就可以用数字计算方法对语音信号进行处理和加工,提高了语音信号处理的准确性和高效性。 语音信号处理在现代信息科学中的地位举足轻重,但它仍有些基础的理论问题和技术问题有待解决,这些难题如听觉器官的物理模型和数学表示及语音增强的技术理论等,目前还有待发展。 1.2 本课题研究内容 本文主要介绍语音信号处理的理论及Matlab的相关内容,然后从Matlab仿真角度验证了录音、预处理、提取语音信号时域特征参数,主要讨论了预处理中各种参数的选择,以使信号特征提取更加准确。再次讨论了各种时域特征参数的算法,包括短时能量、短时过零率等,介绍了各环节的不同软件实现方法。最后对基于Matlab的语音信号特征参数提取进行总结。 第二章Matlab简介 MATLAB是国际上仿真领域最权威、最实用的计算机工具。它是MathWork 公司于1984年推出,它以强大的科学计算与可视化功能、简单易用、开放式可扩展环境,特别是所附带的30多种面向不同领域的工具箱支持,使得它在许多科学领域中成为计算机辅助设计和分析、算法研究和应用开发的基本工具和首选平台。 2.1 发展概况 Matlab是Matrix Laboratory(矩阵实验室的缩写),最初由美国Cleve Moler 博士在70年代末讲授矩阵理论和数据分析等课程时编写的软件包Linpack与Eispack组成,旨在使应用人员免去大量经常重复的矩阵运算和基本数学运算等繁琐的编程工作。1984年成立的Math Works公司正式把Matlab推向市场,并从事Matlab的研究和开发。1990年,该公司推出了以框图为基础的控制系统仿真工具Simulink,它方便了系统的研究与开发,使控制工程师可以直接构造系统框图进行仿真,并提供了控制系统中常用的各种环节的模块库。1993年,Math Works 公司推出的Matlab4.0版在原来的基础上又作了较大改进,并推出了Windows版,

文本特征提取方法

https://www.doczj.com/doc/c517258702.html,/u2/80678/showart_1931389.html 一、课题背景概述 文本挖掘是一门交叉性学科,涉及数据挖掘、机器学习、模式识别、人工智能、统计学、计算机语言学、计算机网络技术、信息学等多个领域。文本挖掘就是从大量的文档中发现隐含知识和模式的一种方法和工具,它从数据挖掘发展而来,但与传统的数据挖掘又有许多不同。文本挖掘的对象是海量、异构、分布的文档(web);文档内容是人类所使用的自然语言,缺乏计算机可理解的语义。传统数据挖掘所处理的数据是结构化的,而文档(web)都是半结构或无结构的。所以,文本挖掘面临的首要问题是如何在计算机中合理地表示文本,使之既要包含足够的信息以反映文本的特征,又不至于过于复杂使学习算法无法处理。在浩如烟海的网络信息中,80%的信息是以文本的形式存放的,WEB文本挖掘是WEB内容挖掘的一种重要形式。 文本的表示及其特征项的选取是文本挖掘、信息检索的一个基本问题,它把从文本中抽取出的特征词进行量化来表示文本信息。将它们从一个无结构的原始文本转化为结构化的计算机可以识别处理的信息,即对文本进行科学的抽象,建立它的数学模型,用以描述和代替文本。使计算机能够通过对这种模型的计算和操作来实现对文本的识别。由于文本是非结构化的数据,要想从大量的文本中挖掘有用的信息就必须首先将文本转化为可处理的结构化形式。目前人们通常采用向量空间模型来描述文本向量,但是如果直接用分词算法和词频统计方法得到的特征项来表示文本向量中的各个维,那么这个向量的维度将是非常的大。这种未经处理的文本矢量不仅给后续工作带来巨大的计算开销,使整个处理过程的效率非常低下,而且会损害分类、聚类算法的精确性,从而使所得到的结果很难令人满意。因此,必须对文本向量做进一步净化处理,在保证原文含义的基础上,找出对文本特征类别最具代表性的文本特征。为了解决这个问题,最有效的办法就是通过特征选择来降维。 目前有关文本表示的研究主要集中于文本表示模型的选择和特征词选择算法的选取上。用于表示文本的基本单位通常称为文本的特征或特征项。特征项必须具备一定的特性:1)特征项要能够确实标识文本内容;2)特征项具有将目标文本与其他文本相区分的能力;3)特征项的个数不能太多;4)特征项分离要比较容易实现。在中文文本中可以采用字、词或短语作为表示文本的特征项。相比较而言,词比字具有更强的表达能力,而词和短语相比,词的切分难度比短语的切分难度小得多。因此,目前大多数中文文本分类系统都采用词作为特征项,称作特征词。这些特征词作为文档的中间表示形式,用来实现文档与文档、文档与用户目标之间的相似度计算。如果把所有的词都作为特征项,那么特征向量的维数将过于巨大,从而导致计算量太大,在这样的情况下,要完成文本分类几乎是不可能的。特征抽取的主要功能是在不损伤文本核心信息的情况下尽量减少要处理的单词数,以此来降低向量空间维数,从而简化计算,提高文本处理的速度和效率。文本特征选择对文本内容的过滤和分类、聚类处理、自动摘要以及用户兴趣模式发现、知识发现等有关方面的研究都有非常重要的影响。通常根据某个特征评估函数计算各个特征的评分值,然后按评分值对这些特征进行排序,选取若干个评分值最高的作为特征词,这就是特征抽取(Feature Selection)。

图像颜色特征提取基本知识

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法

基于CNN特征提取和加权深度迁移的单目图像深度估计

2019年4月图 学 学 报 April2019第40卷第2期JOURNAL OF GRAPHICS V ol.40No.2 基于CNN特征提取和加权深度迁移的 单目图像深度估计 温静,安国艳,梁宇栋 (山西大学计算机与信息技术学院,山西太原 030006) 摘要:单目图像的深度估计可以从相似图像及其对应的深度信息中获得。然而,图像匹配歧义和估计深度的不均匀性问题制约了这类算法的性能。为此,提出了一种基于卷积神经网络(CNN)特征提取和加权深度迁移的单目图像深度估计算法。首先提取CNN特征计算输入图像在数据集中的近邻图像;然后获得各候选近邻图像和输入图像间的像素级稠密空间形变函数; 再将形变函数迁移至候选深度图像集,同时引入基于SIFT的迁移权重SSW,并通过对加权迁移后的候选深度图进行优化获得最终的深度信息。实验结果表明,该方法显著降低了估计深度图的平均误差,改善了深度估计的质量。 关键词:单目深度估计;卷积神经网络特征;加权深度迁移;深度优化 中图分类号:TP 391 DOI:10.11996/JG.j.2095-302X.2019020248 文献标识码:A 文章编号:2095-302X(2019)02-0248-08 Monocular Image Depth Estimation Based on CNN Features Extraction and Weighted Transfer Learning WEN Jing, AN Guo-yan, LIANG Yu-dong (School of Computer and Information Technology, Shanxi University, Taiyuan Shanxi 030006, China) Abstract: The depth estimation of monocular image can be obtained from the similar image and its depth information. However, the performance of such an algorithm is limited by image matching ambiguity and uneven depth mapping. This paper proposes a monocular depth estimation algorithm based on convolution neural network (CNN) features extraction and weighted transfer learning. Firstly, CNN features are extracted to collect the neighboring image gallery of the input image. Secondly, pixel-wise dense spatial wrapping functions calculated between the input image and all candidate images are transferred to the candidate depth maps. In addition, the authors have introduced the transferred weight SSW based on SIFT. The final depth image could be obtained by optimizing the integrated weighted transferred candidate depth maps. The experimental results demonstrate that the proposed method can significantly reduce the average error and improve the quality of the depth estimation. Keywords: monocular depth estimation;convolution neural network features; weighted depth transfer; depth optimization 收稿日期:2018-09-07;定稿日期:2018-09-12 基金项目:国家自然科学基金项目(61703252);山西省高等学校科技创新项目(2015108) 第一作者:温静(1982 ),女,山西晋中人,副教授,博士,硕士生导师。主要研究方向为图像处理、计算机视觉等。E-mail:wjing@https://www.doczj.com/doc/c517258702.html,

特征提取方法

4.2.2 特征提取方法 图像经过一系列的预处理之后,原来大小不同、分布不规则的各个字符变成了一个个大小相同、排列整齐的字符。下面接要从被分割归一处理完毕的字符中,提取最能体现这个字符特点的特征向量。将提取出训练样本中的特征向量代入BP网络之中就可以对网络进行训练,提取出待识别的样本中的特征向量代入到训练好的BP网络中,就可以对汉字进行识别。 特征向量的提取方法多种多样,可以分为基于结构特征的方法和基于像素分布特征的方法,下面给予简单介绍,并说明本文所用的方法。 (1)结构特征。结构特征充分利用了字符本身的特点,由于车牌字符通常都是较规范的印刷体,因此可以较容易地从字符图像上得到它的字符笔画信息,并可根据这些信息来判别字符。例如,汉字的笔画可以简化为4类:横、竖、左斜和右斜。根据长度不同又可分为长横、短横、长竖和短竖等。将汉字分块,并提取每一块的笔画特征,就可得到一个关于笔画的矩阵,以此作为特征来识别汉字。 (2)像素分布特征。像素分布特征的提取方法很多,常见的有水平、垂直投影的特征,微结构特征和周边特征等。水平、垂直投影的特征是计算字符图像在水平和垂直方向上像素值的多少,以此作为特征。微结构法将图像分为几个小块,统计每个小块的像素分布。周边特征则计算从边界到字符的距离。优点是排除了尺寸、方向变化带来的干扰,缺点是当字符出现笔划融合、断裂、部分缺失时不适用。 ①逐像素特征提取法 这是一种最简单的特征提取方法。它可以对图像进行逐行逐列的扫描,当遇到黑色像素时取其特征值为1,遇到白色像素时取其特征值为0,这样当扫描结束后就获得一个维数与图像中的像素点的个数相同的特征向量矩阵。 这种特征提取方法的特点就是算法简单,运算速度快,可以使BP网络很快的收敛,训练效果好,更重要的是对于数字图像这样特征较少的图像,这种方法提取的信息量最大,所以对于本系统来说,这种方法较为适用。但是它的缺点也很明显,就是适应性不强,所以本文没有选用这种方法。 ②骨架特征提取法

图像中角点(特征点)提取与匹配算法

角点提取与匹配算法实验报告 1 说明 本文实验的目标是对于两幅相似的图像,通过角点检测算法,进而找出这两幅图像的共同点,从而可以把这两幅图像合并成一幅图像。 下面描述该实验的基本步骤: 1.本文所采用的角点检测算法是Harris 角点检测算法,该算法的基本原理是取以目标像素点为中心的一个小窗口,计算窗口沿任何方向移动后的灰度变化,并用解析形式表达。设以像素点(x,y)为中心的小窗口在X 方向上移动u ,y 方向上移动v ,Harris 给出了灰度变化度量的解析表达式: 2 ,,|,|,,()(x y x y x u y v x y x y I I E w I I w u v o X Y ??= -=++??∑∑ (1) 其中,,x y E 为窗口内的灰度变化度量;,x y w 为窗口函数,一般定义为2 2 2 ()/,x y x y w e σ +=; I 为图像灰度函数,略去无穷小项有: 222222 ,,[()()2]2x y x y x y x y E w u I v I uvI I Au Cuv Bv = ++=++∑ (2) 将,x y E 化为二次型有: ,[]x y u E u v M v ?? =???? (3) M 为实对称矩阵: 2 ,2 x y x x y x y y I I I M w I I I ???= ???????∑ (4) 通过对角化处理得到: 11 ,200x y E R R λλ-??= ??? (5) 其中,R 为旋转因子,对角化处理后并不改变以u,v 为坐标参数的空间曲面的形状,其特征值反应了两个主轴方向的图像表面曲率。当两个特征值均较小时,表明目标点附近区域为“平坦区域”;特征值一大一小时,表明特征点位于“边缘”上;只有当两个特征值均比较大时,沿任何方向的移动均将导致灰度的剧烈变化。Harris 的角点响应函数(CRF)表达式由此而得到: 2 (,)det()(())C RF x y M k trace M =- (6)

特征提取与选择 总结

第七章特征提取与选择_总结 7.6 特征选择中的直接挑选法 特征的选择除了我们前面学习的变换法外, 也可以在原坐标系中依据某些原则直接选择特征, 即我们这节课要学的直接挑选法。 7.6.1次优搜索法 (一)单独最优的特征选择 单独选优法的基本思路是计算各特征单独使用时的判据值并以递减排序,选取前d个分类效果最好的特征。一般地讲,即使各特征是统计独立的,这种方法选出的d个特征也不一定是最优的特征组合,只有可分性判据J是可分的,即 这种方法才能选出一组最优特征。 (二)增添特征法 该方法也称为顺序前进法(SFS)这是最简单的自下而上搜索方法,每次从未选入的特征中选择一个特征,使它与已选入的特征组合在一起时J值最大,直到选入特征数目达到指定的维数d为止。 设已选入了k个特征,它们记为X k,把未选入的n-k个特征x j(j=1,2,…,n-k)逐个与已选入的特征X k组合计算J 值,若: 则x1选入,下一步的特征组合为X k+1=X k+x1。开始时,k=0,X0=F,该过程一直进行到k=d为止。 该方法比“单独最优的特征选择法”要好,但其缺点也是明显的:即某特征一旦选入,即使后边的n-k特征中的某个从组合讲比它好,也无法把它剔除。 (三)剔减特征法 该方法也称为顺序后退法(SBS)。这是一种自上而下的搜索方法,从全部特征开始每次剔除一个特征,所剔除的特征应使尚保留的特征组合的值最大。 设已剔除了k个特征,剩下的特征组记为,将中的各特征x j (j=1,2,…,n-k)分别逐个剔除,并同时计算值,若: 则在这轮中x1应该剔除。

这里初值,过程直到k=n-d为止。 (四) 增l 减r 法(l-r 法) 为了克服前面方法(二)、(三)中的一旦某特征选入或剔除就不能再剔除或选入的缺点,可在选择过程中加入局部回溯,例如在第k步可先用方法(二)。,对已选入的k个特征再一个个地加入新的特征到k+1个特征,然后用方法(三) 一个个地剔除r个特征,称这种方法为l减r法(l-r法)。 7.6.2最优搜索法 (一)分支定界法(BAB算法) 寻求全局最优的特征选择的搜索过程可用一个树结构来描述,称其为搜索树或解树。总的搜索方案是沿着树自上而下、从右至左进行,由于树的每个节点代表一种特征组合,于是所有可能的组合都可以被考虑。利用可分性判据的单调性采用分支定界策略和值左小右大的树结构,使得在实际上并不计算某些特征组合而又不影响全局寻优。这种具有上述特点的快速搜索方法,称为分支定界算法。 6选2的特征选择问题 (a)搜索树 (b)搜索回溯示意图 树的每个节点表示一种特征组合,树的每一级各节点表示从其父节点的特征 组合中再去掉一个特征后的特征组合,其标号k表示去掉的特征是。由于每一级只舍弃一个特征,因此整个搜索树除根节点的0级外,还需要n-d级,即全树有n-d级。6个特征中选2个,故整个搜索树需4级,第n-d级是叶节点,有

肺结节检测中特征提取方法研究

小型微型计算机系统JournalofChineseComputerSystems2009年10月第10期V01.30No.102009 肺结节检测中特征提取方法研究 何中市1,梁琰1,黄学全2,王健2 1(重庆大学计算机学院,重庆400044) 2(第三军医大学西南医院放射科,重庆400038) E—mail:zshe@cqu.edu.ca 摘要:计算机辅助诊断(Computer—AidedDiagnosis,CAD)系统为肺癌的早期检测和诊断提供了有力的支持.本文对孤立性肺结节特征提取问题进行研究.通过对肺结节和肺内各组织在序列CT图像上的医学征象分析和研究对比,结合专家提供的知识,提出了肺结节特征提取总体方案.该方案分别从肺部CT图像的灰度特征、肺结节形态、纹理、空间上下文特征等几个方面,对关键的医学征象进行图像分析,从而实现对ROI(RegionsofInterest)区域的特征提取和量化;提出特征提取的评价方案,实验结果表明,本文提取的特征提取方案是有效的.利用本文提取的特征,肺结节检测正确率达到93.05%,敏感率为94.53%. 关键词:孤立性;肺结节;特征提取;CT图像;特征评价 中图分类号:TP391文献标识码:A文章编号:1000—1220(2009)10—2073-05 ResearchontheFeatureExtractionApproachforSPNsDetection 腼Zhong—shil,LIANGYanl,HUANGXue—quan2,WANGJian2 1(CollegeofComputerScience,c‰增幻增Univers毋,Chongqing400044,China) 2(DepartmentofRadiology,Southwest丑却池z,ThirdMilitaryMedwalUniversityofChinesePL4,Chongqing400038,China) Abstract:Imageprocessingtechniqueshaveprovedtobeeffectiveforimprovementofradiologists7diagnosisofpubmonarynodules.Inthispaper,wepresentastrategybasedonfeatureextractiontechniqueaimedatSolitaryPulmonaryNodules(SPN)detection.Infeatureextractionscheme,36featureswereobtained,contained3greylevelfeatures,16morphologicalfeatures,10texturefeaturesand7spatialcontextfeatures.Andtheclassifier(SVM)runningwiththeextractedfeaturesachievescomparativeresults,withare-suitof93.05%innoduledetectionaccuracyand94.53%insensitivity. Keywords:isolated;solitarypulmonarynodules;featureextraction;CTimages;featureassessment 1引言 近几年,随着影像检查技术的改进,临床结果初步证明CT扫描是检测早期无症状肺癌最有效的影像学方法。1J.肺部疾病在CT影像上通常表现为孤立性肺结节(SolitaryPul—monaryNodules,SPNs),因此,对孤立性肺结节的检测和识别是对肺部疾病诊断最重要的途径.计算机辅助诊断系统一方面,大大减轻了医生的工作量,提高了工作效率;另一方面,使影像诊断更加客观化,提高诊断的效率和正确效率.因此,用计算机进行肺结节辅助诊断,提取肺结节特征,检测肺结节,是具有十分重要的意义和研究价值的. 在孤立性肺结节自动识别中,肺结节的特征提取及表示是其关键问题之一,它是进行识别的重要手段.关于肺结节检测方法有很多。2…,但对肺结节医学征象描述并不充分.目前一般常用面积、周长等形态方面进行肺结节特征提取.对肺结节的形态、全局、局部上下文特征以及病理征象的分析不足,使得特征提取描述不到位,影响识别准备率.同时也欠缺对识别结果的解释.正因为对提取的特征与肺结节医学征象问的对应关系分析不足,无法对识别结果进行医学知识上的解释, 特征提取特征评价 懂歪母 I里斗1显查鲎堑卜_倒1J躺l 帽霭瓣||描述程度l 1絮嚣卜 lJs、,M识 --|别性能 图1SPNs诊断框架图 Fig.1OverviewofSPNsdetection 而只有”是”或”否”的识别结果,无法给医生提供更多的信息.本文围绕以上几个问题,意在提供全面的、系统的量化信息,便于医学专家诊断的客观化、效率化.本文对孤立性肺结节特征提取问题进行研究.通过对肺结节和肺内各组织在序列CT图像上的医学征象分析和研究对比,提出了肺结节特征提取总体方案.该方案分别从肺部CT图像的灰度特征、形 收稿日期:2008-08-30基金项目:重庆市重大科技专项项目(CSTC,2008AB5038)资助;重庆市自然科学基金项目(CSTC,2007BB2134))资助.作者简介:何中市,男,1965年生,博士,教授,研究方向为人工智能、机器学习与数据挖掘等;梁琰,女,1982年生,博士研究生,图像处理、模式识别;黄学金,男,1966年生,博士,副教授,研究方向为影像诊断和介入放射学;王健,男,1964年生,博士,教授,研究方向为影像诊断和介入放射学.

图像特征提取总结

图像常见特征提取方法简介 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。 一、颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。 (二)常用的特征提取与匹配方法 (1)颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。 最常用的颜色空间:RGB颜色空间、HSV颜色空间。 颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。 (2)颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。颜色集是对颜色直方图的一种近似首先将图像从RGB颜色空间转化成视觉均衡的颜色空间(如HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3)颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。 (4)颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5)颜色相关图 二纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

基于全局视角的点云特征提取方法与设计方案

本技术公开了一种基于全局视角的点云特征提取方法,该方法先获取点云模型中原始三维点云坐标点,并结合主成分分析法,获得三个特征向量;将每个原始三维点云坐标点投影到三个特征向量,获得三个投影值,并结合刚体变换方法,获得每个原始三维点云坐标点对应的投影坐标;将全部投影坐标划分成三个二维平面,并将每个二维平面划分成N个网格区域;根据每个网格区域内的深度因子、面积因子、坐标面积因子,获得每个网格区域的特征数值,并结合N个网格区域,获得每个二维平面的特征数值;根据每个二维平面的特征数值,提取点云模型的总特征。采用本技术技术方案不用时刻受到不同扫描视角的影响而导致点云特征提取的精确度低,同时降低了时间复杂度。 权利要求书

1.一种基于全局视角的点云特征提取方法,其特征在于,包括: 获取点云模型中原始三维点云数据,其中,所述原始三维点云数据包括D个原始三维点云坐标点,D为大于1的整数; 根据所述D个原始三维点云坐标点,结合主成分分析法,获得三个特征向量,其中,所述三个特征向量相互正交; 将每个所述原始三维点云坐标点分别一一投影到所述三个特征向量,获得三个投影值,并结合预设的刚体变换方法对所述三个投影值进行处理,依次获得每个所述原始三维点云坐标点对应的投影坐标; 将全部所述投影坐标划分成三个二维平面,并分别将每个所述二维平面划分成N*N个网格区域,其中,N为大于1的整数; 根据每个网格区域内的深度因子、面积因子、坐标面积因子,获得每个网格区域的特征数值,并结合所述N*N个网格区域,获得每个二维平面的特征数值; 根据所述每个二维平面的特征数值,提取所述点云模型的总特征。 2.如权利要求1所述的基于全局视角的点云特征提取方法,其特征在于,所述根据所述D个原始三维点云坐标点,结合主成分分析法,获得三个特征向量,具体为: 将所述D个原始三维点云坐标点的每个维度取均值,获得D*3矩阵数据; 计算所述矩阵数据的的协方差矩阵,获得D*D协方差矩阵; 根据主成分分析方法,将所述协方差矩阵的特征值按大小排序,并同时计算出与所述协方差矩阵的特征值对应的特征向量,获得第一主成分特征向量、第二主成分特征向量和第三主成分特征向量。

图像局部特征点检测算法综述

图像局部特征点检测算法综述 研究图像特征检测已经有一段时间了,图像特征检测的方法很多,又加上各种算法的变形,所以难以在短时间内全面的了解,只是对主流的特征检测算法的原理进行了学习。总体来说,图像特征可以包括颜色特征、纹理特等、形状特征以及局部特征点等。其中局部特点具有很好的稳定性,不容易受外界环境的干扰,本篇文章也是对这方面知识的一个总结。 本篇文章现在(2015/1/30)只是以初稿的形式,列出了主体的框架,后面还有许多地方需要增加与修改,例如2013年新出现的基于非线性尺度空间的KAZE特征提取方法以及它的改进AKATE等。在应用方面,后面会增一些具有实际代码的例子,尤其是基于特征点的搜索与运动目标跟踪方面。 1. 局部特征点 图像特征提取是图像分析与图像识别的前提,它是将高维的图像数据进行简化表达最有效的方式,从一幅图像的M×N×3的数据矩阵中,我们看不出任何信息,所以我们必须根据这些数据提取出图像中的关键信息,一些基本元件以及它们的关系。 局部特征点是图像特征的局部表达,它只能反正图像上具有的局部特殊性,所以它只适合于对图像进行匹配,检索等应用。对于图像理解则不太适合。而后者更关心一些全局特征,如颜色分布,纹理特征,主要物体的形状等。全局特征容易受到环境的干扰,光照,旋转,噪声等不利因素都会影响全局特征。相比而言,局部特征点,往往对应着图像中的一些线条交叉,明暗变化的结构中,受到的干扰也少。 而斑点与角点是两类局部特征点。斑点通常是指与周围有着颜色和灰度差别的区域,如草原上的一棵树或一栋房子。它是一个区域,所以它比角点的噪能力要强,稳定性要好。而角点则是图像中一边物体的拐角或者线条之间的交叉部分。 2. 斑点检测原理与举例 2.1 LoG与DoH 斑点检测的方法主要包括利用高斯拉普拉斯算子检测的方法(LOG),以及利用像素点Hessian矩阵(二阶微分)及其行列式值的方法(DOH)。 LoG的方法已经在斑点检测这入篇文章里作了详细的描述。因为二维高斯函数的拉普拉斯核很像一个斑点,所以可以利用卷积来求出图像中的斑点状的结构。 DoH方法就是利用图像点二阶微分Hessian矩阵:

相关主题
文本预览
相关文档 最新文档