当前位置:文档之家› 软化器设计计算书

软化器设计计算书

软化器设计计算书
软化器设计计算书

目录

一、总述 (1)

1. 锅炉水处理监督管理规则 (1)

2. 离子交换树脂内部结构 (1)

3. 钠离子交换软化原理及特性: (2)

4. 水质分析测试内容 (2)

?PH值(Potential of Hydrogen) (2)

?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS) (2)

?铁含量(IRON) (2)

?锰........................................................

?硬度值(HARDNESS) (3)

?碱度 (3)

?克分子(mol) (3)

?当量 (4)

?克当量 (4)

?硬度单位 (4)

?我国江河湖泊水质组成 (6)

二、全自动软水器 (6)

三、影响软水器交换容量的因素 (8)

1. 流速(gpm/ft,m/h) (8)

2. 水与树脂的接触时间:(gpm/ft3) (8)

3. 树脂层的高度 (9)

4. 进水含盐量 (10)

5. 温度 (12)

6. 再生剂质量(NaCl) (12)

7. 再生液流量 (13)

8. 再生液浓度 (14)

9. 再生剂用量 (15)

10. 树脂 (15)

四、自动软水器设计 (15)

1. 软水器设备应遵循的标准 (15)

2. 全自动软水器主要参数计算 (16)

1) 反洗流速的计算: (16)

2) 系统压降计算 (16)

3. 软水器设计计算步骤 (16)

计算示例 (18)

一、总述

1.锅炉水处理监督管理规则

第三条锅炉及水处理设备的设计、制造、检验、修理、改造的单位,锅炉及水处理药剂、树脂的生产单位,锅炉房设计单位,锅炉水质监测

单位、锅炉水处理技术服务单位及锅炉清洗单位必须认真执行本规

则。

第九条锅炉水处理是保证锅炉安全经济运行的重要措施,不应以化学清洗代替正常的水处理工作。

第十条生产锅炉水处理设备、药剂和树脂的单位,须取得省级以上(含省级)安全监察结构注册登记后,才能生产。

第十一条未经注册登记的锅炉水处理设备、药剂和树脂,不得生产、销售、安装和使用。

第十四条锅炉水处理设备出厂时,至少应提供下列资料:

1.水处理设备图样(总图、管道系统图等);

2.设计计算书;

3.产品质量证明书;

4.设备安装、使用说明书;

5.注册登记证书复印件。

第三十六条对违反本规则的单位和个人,有下列情况之一者,安全监察机构有权给予通报批评、限期改进,暂扣直至吊销资格(对持证的单位

和个人)的处理。

2.离子交换树脂内部结构

离子交换树脂的内部结构可以分为三个部分:

1)高分子骨架由交联的高分子聚合物组成,如交联的聚苯烯、聚丙烯酸等;

2)离子交换基团它连在高分子骨架上,带有可交换的离子(称为反离子)的

离子官能团[如-SO3Na、-COOH、-N(CH3)3Cl]等,或带有极性的非离子型官能团[如-N(CH3)2、-N(CH3)H等];

3)孔它是在干态和湿态的离子交换树脂中都存在的高分子结构中的孔(凝

胶孔)和高分子结构之间的孔(毛细孔)。

离子交换树脂的内部结构如下图中的左图所示,离子交换基团的结构如下图的右图所示。

顺流再生:交换流速20-30m/h,反洗流速12~15m/h,吸盐流速4-6m/h(逆1.4-2m/h)

3.钠离子交换软化原理及特性:

钠离子交换软化处理的原理是:

原水通过钠型阳离子交换树脂,使水中的硬度成份Ca2+、Mg2+与树脂中的Na+相交换从而吸附水中的Ca2+、Mg2+使水得到软化。

如以Raa代表钠型树脂,其交换、再生过程如下:

2RNa+Ca2+=R2Ca+2Na+R 2Ca+2NaCl =2RNa+CaCl2除去水中的硬度,碱度不变,TDS变化不大,氯根有所增加

4.水质分析测试内容

主要包括: PH,TDS,总硬度和铁含量及类型

?PH值(Potential of Hydrogen)

PH是氢离子浓度的负对数,表示溶液是酸性还是碱性。PH以0到14的尺标度量,以7.0为中点或中和点。

PH值尺标

的酸性是PH7.0的1000倍;反之,PH10.0的碱性是PH7.0的1000倍。

?总溶解固体(TDS --TOTAL DISSOLVED SOLIDS)

溶解于水中的所有矿物质总体称作总溶解固体(TDS)。TDS可通过加各种阳离子或各种阴离子求得(阳离子和阴离子配对数)。

例如:

钙=21GPG(359.1mg/l) 氯=16GPG(237.6mg/l)

镁=9GPG(153.9mg/l) 硫酸根=4GPG(68.4mg/l)

钠=13GPG(222.3mg/l) 碳酸根=23GPG(393.3mg/l)

总阳离子=43GPG(735.3mg/l) 总阴离子=43GPG(735.3mg/l)

总溶解固体(TDS)=43GPG(735.3mg/l)

注意:TDS,总阳离子数和总阴离子数必须相等。

溶解固体总量的90%以上是以下六种矿物质:

阳离子:Ca2+,Mg2+,Na+阴离子:Cl-,SO42-,CO3-

注:Ca2+和Mg2+是两种硬性矿物质的主要离子。GPG---格令/ 加仑

?铁含量(IRON)

铁约占地壳的5%,也是最常见的水问题之一。

当铁暴露于空气、氯气中或受热时,从相对无害的二价状态转变到令人讨厌的三价状态:FeO+2H2CO3→Fe(HCO3)2+H2O

4Fe(HCO3)2+O2+2H2O →4Fe(OH)3+8CO2

当铁与某些嗜铁细菌一起存在时,问题变得更为严重,细菌消耗铁以维持生命,最终死亡,留下淤渣可堵塞水管和阀门。

三种主要嗜铁细菌:Gallionella (盖氏铁柄杆菌属)

Crenothrix (铁细菌属)

Leptothrix (汗毛菌属)

锰是一种稀有的金属,它的化学、物理性能均与铁非常相似。锰通过与铁类似的反应进入水中,并以类似的方式被氧化:

MnO + 2H2CO3 →Mn(HCO3)2 + H2O

Mn2++O2 + 2H2O →2MnO2 + 4H+

二氧化锰(MnO2)在低达0.05 PPM(0.05mg/L)的水平上就会引起黑色污污。情况既然如此,可以想象2PPM(2mg/L)的浓度将会怎样。

?硬度值(HARDNESS)

1) 水在大气中凝聚,溶解空气中的二氧化碳,形成弱酸

H2O+CO2→H2CO3

2)该酸随雨落地,流过土壤到达岩床,溶解石灰、中和,同时变硬

H2CO3+CaCO3→Ca(HCO3)2H2+MgCO3→Mg(HCO3)2

3) 钙,镁形成硬性水垢

CaCl2氯化钙

MgCl2氯化镁

CaSO4硫酸钙

MgSO4硫酸镁

4) 硬性物质引起的问题是多重的,最常见的是硬垢,反应水“硬化”现

象的方程式如下:

Ca(HCO3)232O+CO2

?碱度

水的碱度是指水中能够接受[H+]离子与强酸进行中和反应的物质含量。

碱度是表示水中CO32-,HCO3-,OH-及其它一些弱酸盐类的总和。

在水中碳酸氢盐与氢氧化物不能同时存在:

HCO3-+OH-=CO32-+H2O

因此,水中的碱度以五种形式存在:

1)HCO3-2)CO32-

3)OH-4)HCO3-+CO32-5)CO32-+OH-

碱度对锅炉运行影响

碱度对锅炉的腐蚀,主要是苛性脆化腐蚀,是由水中NaOH造成。苛性脆化腐蚀会使金属晶粒间发生裂纹。其后果轻者使锅炉不能使用,重者发生锅炉爆炸,造成严重后果。

NaHCO3→NaOH + CO2

Na2CO3 + H2O → 2NaOH + CO2

?克分子(mol)

定义:一定重量的物质,在数值上等于他的分子量,单位用克表示.这个量就称为一个克分子。如水的分子量为18,而18克水就是1克分子水。

1克分子的水含有的分子数为:6.02X1023

国际上规定:物质体系所包含的结构粒子(如原子、分子、离子、电子、光子等)数目与12克碳(C12)中的原子数目相等,则这体系的量为摩尔,符号mol。

定义:当量表示元素相互化合时它们之间的重量关系。各种元素相互化合时,其重量比等于他们的当量比。

元素的当量=原子量/化合价

化合物的当量=化合物的分子量/正(或负)价总数

如: 钙的当量=原子量/化合价

=40.078/2=20.039

?克当量

定义:一定量的物质在数值上等于它的当量,单位以克表示,这个量就称为该物质的1 个克当量。

如:钙的当量为20.039,而20.039克的钙就等于1克当量

?硬度单位

1升水中含有的钙、镁离子的总毫克分子数(mmol/L)。

1升水中含有的钙、镁离子的总毫克当量数(meq/L)。

1升水中含有的1/2钙、1/2镁离子的总毫克分子数。

即:以氢离子为基本单位的物质的量浓度(氢摩尔浓度)

(在数值上?钙、?镁离子的总毫克分子数等于钙、镁离子的总毫克当量数)

以CaCO3摩尔质量来表示的1升水中含有钙、镁离子的摩尔总数。表示方法为ppm(以CaCO3计)

如: CaCO3的分子量为100其可接受或提供1mol[H+]的摩尔质量为50。

硬度为2[H+]mmol/L浓度,可表示为2×50=100ppm(以CaCO3计) 例:水质分析结果为Ca2+=42.4mg/L,Mg2+=25.5mg/L

用上面4种方试表示其硬度

(1)42.4/40.07+25.5/24.3=1.058+1.049=2.107mmol/L

(2)42.4/20.03+25.5/12.15=4.22meq/L

(3)4.22mmol/L(?Ca2+ ?Mg2+)

(4)4.22×50=211ppm(以CaCO3计)

1升水中含有的钙、镁离子总量等于17.1ppm(以CaCO3计)定义为一个格令/加仑(gr/gallon)。

Cv 和 Kv是什么?

?Cv 是温度为60华氏度时, 流体通过一阀门时压力损失1 psi状态下的流量(单位为gpm ). ?Kv 是温度为20摄氏度时, 流体通过一阀门时压力损失1 Bar状态下的流量(单位为m3/hr ).

?以上系数所涵盖的系统不受气蚀的影响.

?数据来源为: 在实验室状态下, 在不同的流量情况下进行多次实验获得,同时记录下不同流量下的压力损失.

? Cv和Kv的相互转换: Cv = 1.16 Kv Kv = 0.853 Cv

? 主要用作计算阀门在不同流量状态下的压力损失.

DP = 2

??

? ??Cv gpm (单位psi)

DP =2

3m ????

?

??Kv hr (单位为Bar) ? Cv =

DP

gpm

Kv =

DP

hr m 3

? 事例 1: 一阀门 Cv = 6.5 ,压力损失为1 psi 时的流量为 6.5 gpm. 当流量为25 gpm 时,压力损失为: DP = (25/6.5)2 = 14.8 psi

? 事例2: 两软水器在流量为15 gpm 时,将产生的压力损失为 3 psi. 计算流量为25 gpm 时的压差DP 为多少?

? Syst. Cv = (gpm/√DP) = (15/√3) = (15/1.732) = 8.66 ? At 25 gpm, DP = (gpm/Cv)2 = (25/8.66)2 = 8.3 psi

工作能力的表达: 10 吨 软化器意思: 一软化器的产水量为10 m3/hr = 10 x (4.4) = 44 gpm 线性流速的表达: 10 gpm/ft2 (x) 2.33 = 23.3 m/h ,中国采用的线性流速为 20 到 30 m/h (4.3 to 8.6 gpm/ft2)

体积流速的表达: 7.481 gpm/ft3 = 1 BV/min 加盐量: 15 lbs/ft3 (x) 16 = 240 grams/liter of resin 树脂量: 1 ft3 (x) 28.3 = 28.3 liters of resin 树脂的交换能力: 30 Kgr/ft3 (x) 2.29 = 68.7 grams CaCO3/liter of resin 总硬度: 171 ppm = 171 mg/l = 171 grams/m3 = 10 grains/gallon

在中国锅炉锅炉给水应用中,可以接受的硬度泄露: 0.03 Meq/l 或 0.03 Meq/l (x) 50 = 1.5 mg/l(以CaCO 3计)

水压: 30 psig (x) 0.00689 = 0.207 Mega Pascals

事例: TH = 100 mg/l, 去除的硬度容量 = 68.7 grams = 68700 mg 软水量 = (68700 mg)/(100 mg/l) = 687 L 或 (68.7 g)/(100 g/ m3) = 0.687 m3

?NaCl ?日晒盐 48 - 50% void volume 69 lbs/cu.ft. ?矿盐 41% void volume 76 lbs/cu.ft.

?Rust Rem. Pellets 48 - 52% void volume 70 lbs/cu.ft. ?NaCl 和 KCl 数据 (At 20oC or 68oF) ?1 加仑水溶解盐量 : 3 lbs. of NaCl ?I 加仑 NaCl 饱和溶液中 : 2.6 lbs. of NaCl ?1 加仑水的溶解盐量 : 2.8 lbs. Of KCl ?1加仑KCl 饱和溶液中 :2.5 lbs. of KCl

某些淡水湖泊、水库水质组成

2+18.9

2+ 1.83

+K+17.9

某些地下水水质组成

二、全自动软水器

全自动软水器就是将软水器运行及再生的每一个步骤实现自动控制,并采用时间,流量或感应器等方式来启动再生。通常一个全自动软水器的循环过程由下列具体步骤组成。

1..运行

原水在一定的压力,流量下,流经装有离子交换树脂的容器(软水器)树脂中所含的可交换离子Na++,与水中的阳离子(Ca++,Mg++,Fe++,…等)进行离子交换,使容器出水的Ca++,Mg++含量达到我们的要求。我们把一个软水器所具有的离子交换的能力以工作交换容量表示,其单位可用(moI,eq,ppm,us grains等表示)

2..反洗

树脂失效后,在进行再生之前先用水自下而上的进行反洗,反洗的目的有两个,一是通过反洗,使运行中压紧的树脂层松动,有利于树脂肪颗粒与再生液充分接触,二是清除运行时在树脂表层积累的悬浮物及树脂表面的悬浮物同时一些碎树脂颗粒也可随着反洗水排出,这样,交换器的水流阻力不会越来越大,为了保证反洗时完整树脂不被冲走,在设计软水器时,应在树脂层上留有一定的反洗空间,反洗强度越大要求的反洗空间就越大,通常设计选用50%的树脂层高度作为反洗膨胀高度。它适应的反洗流速为12m/h(5gpm/ft2)(进水温度为10摄氏度)反洗的好坏直接影响再生效果(图-1)。

3..再生

再生液在一定浓度,流量下流经失效的树脂层,将树脂还原再生,使其恢复原有的交换能力(影响再生效果的因素,再后面会专门阐述)

4..置换

在再生液进完后,交换器膨胀空间及树脂层中还有尚未参与再生交换的盐液,为了充分利用这部分盐液,采用小于或相当与再生液流速的清水进行清洗,目的是不使清水与再生液混合。一般清洗水量为树脂体积的0.5-1倍。

5..正洗

目的是清除脂层中残留的再生废液,通常以正常运行流速清洗至出水合格为止。

6..盐箱补水

向盐箱注入溶解再生所需盐耗量的水。通常即1m3水溶解360kg盐(1加仑水溶解3磅盐,浓度为26.4%)。

为了保证盐箱中的盐液浓度能达到饱和,首先应保证溶解时间不小于6小时,其次是必须保持盐液箱中,盐平面始终高于水平面。通俗的讲,盐液箱要做到见盐不见水。

三、 影响软水器交换容量的因素

1. 流速(gpm/ft ,m/h)

通常流速越大离子交换所需要的工作层越大,树脂有效利用率会下降,但设备产水能力会提高。反之流速越小所需的工作层越少,树脂利用率增加,但设备产水能力下降。过小的流速会造成原水只与树脂表面离子进行交换,水不能进入树脂内部。树脂表面通常仅提供20%的交换容量。树脂里面能提供80%交换容量。合理的交换流速对提高设备产水能力及交换能力是非常重要的,一般建议运行流速控制在(中国20-30m/h ,美国4-10pm/ft2)小型装置可适当提高(图-2)。

2. 水与树脂的接触时间:(gpm/ft3)

水与树脂的接触时间越长,交换越充分,但相对单位树脂的产水能力下降,接触的时间越短,交换越充分,单位树脂的交换能力下降,而单位树脂的产水能力提高。因此合理的接粗时间对于软化器的经济运行非常重要。一般建议 1.0-5.0gpm/ft3树脂或8-4bv/h 。(每小时流量为树脂装载量的八至四十倍)(图-3)

3.树脂层的高度

树脂层越低,因流速对其交换能力的影响就越大,当树脂层高度达到30英尺(762mm)时,树脂层高度造成的流速对其交换能力的影响可降到比较低的程度。因此一般建议树脂层高度大于30英尺(762mm)(图-4)

4.进水含盐量

进水含盐量的高低直接影响出水的品质,而进水含盐量中K,Na的总含量对出水品质的影响非常大。

例:当原水含盐量为500PPM,其中Na+K为零,硬度为10mol/m3,如果我们再生用151b/ft3(240g/L)出水质量可达到近乎0.00。

当原水含盐量为500PPM而Na+K为250PPM,硬度为5mol/L接近0.04mmol/L(超过了国家低压蒸汽锅炉进水要求)若要出水达到0.03mmol/L以下,必须使用(181b/ft3,290g/L) ( 图-4-1)

5.温度

水温增加能同时加快内扩散,提高交换能力,无论是运行或再生,适当地提高水温对软水器是有益的。

6.再生剂质量(NaCl)

再生剂存度越高,树脂的再生度越高,出水的离子泄露量越少,因此提高再生剂纯度及运用软化水溶盐可提高再生度。(图-5)

通常再生液流量越小获得的再生效果越好。但过低的再生液流量会使再生时间过长,易使再生剂绕过树脂表面再生。因此一般要求再生液流量在0.25-0.9gpm/ft3(或顺洗流量4-6m/h,逆流再生2-3m/h)(图-6)

根据离子平衡原理,再生液浓度提高,可以使树脂的交换能力提高,但再生剂用量一定的条件下,再生液浓度过高,会缩短再生液与树脂的接触时间,饿、从而降低了再生效果.一般盐液浓度控制在10%左右为宜.

(图-7)

树脂的交换在再生理论上是按等当量进行即1mol 的再生剂可恢复 一个1mol 的交换容量,(即使用58.43的NaCl).但实际上再生剂的耗量 要比理论值大得多.实验证明再生剂用量越多,获得的树脂工作交换容量越大。出水质量越好。但随着再生剂用量的不断增加,工作交换容量的提高会越来越少。经济性会不断下降。因此再生耗盐,应根据不同的原水水质,再保证一定的交换能力及水质条件下,尽可能选用比较经济合理的耗盐量。在美国通用低压锅炉的软水器,采用240g/l 盐再生1升树脂。

10.树脂

不同的树脂所提供的交换能力是不一样的。通常锅炉用软水器要求使用的树脂其交联度不应低于7

四、 自动软水器设计

1. 软水器设备应遵循的标准

行 滤速 反洗

流速 3-6

2.全自动软水器主要参数计算

1)反洗流速的计算:

通过反洗流量控制器来实现对反洗流速的控制,有多种规格的反洗流量器可供选用,能最大限度地满足用户的设计要求.

反洗流速的计算:

反洗流量=罐体面积×单位面积反洗流量

例如:现有一台钠离子交换器直径为1000mm(39.7英寸),确定其反洗流量。

设:单位面积反洗流量为 5gpm/ft2

反洗流量=丄/4(39.37/12)2×5=42.24gpm(1英尺=12英寸) 查:反洗流量参数图表得取用:45gpm的流量孔板

校对反洗流速=13m/h

标准流量孔板规格表

2)系统压降计算

全自动软水器压力降有以下几部分组成:控制阀压降、树脂层压降,布水器压降。

控制阀压降:(运行流量度gpm/Cv)2

树脂层压降:查树脂公司提供的压降计算图表。

布水器压降:查布水器公司提供的压降计算表。

3.软水器设计计算步骤

第一步收集原始参数

水源资料:江河水、湖泊水、海水、城市自来水、地下水。

水质资料:钙、镁铁、钾、钠、碳酸根、重碳酸根、氯、氯器、氧、悬浮物、有机物等。

软水用途:锅炉、反渗透、工业用水、生活用水。

出水水质:出水硬度要求。

出水水量:每小时最大出水量、一天总出水量、一天连续运行时间。

工作环境:进水温度、进水压力、后置设备、场地面积。

第二步确定系统方案

启动再生的方式:时间型、流量型。

时间型:适用于是产水量较小(一般2t/h以下)且一天运行时间小于12时。选用时间型其软水器交换能力应按一天的总出水量来计算。

流动型:适用于各种不同的运行工况,且比时间型省盐、省水。

选用流动型其软水器交换能力应至少满足六小时的出水要求。

确定再生盐耗及树脂装载量

根据原水水质及出水要求查树脂资料来确定再生盐耗。

根据再生盐耗来确定树脂交换能力。

确定交换罐数量

电除尘器基本参数的计算

电除尘器基本参数的计算 (一九八八年六月二十五日第3期设计信息原文) 一. 为统一计算方法,我厂对有关电除尘器基本数的计算作料若干规定,现说明如下: 1. 关于收尘面积计算的规定: 1) 任意极距下单电场阳极板的实际收尘面积:)(2m A c i Z L H A c i ???=2 式中: H --电场有效高度(m ) L --电场有效长度(为板排中第一块极板前端棱至最末一块极板後端棱之间的距离,m ) Z --电场通道数 2) 任意极距下单电场辅助电极的实际收尘面积:)(2m A F i i F i f z n A ??= 式中: n --该电场中每榀阴极所配辅助电极的组数 Z --电场通道数 f i --每一组辅助电极的收尘面积(m 2) 4)2(??=f f i b h f 式中: f h --每一块辅助电极的高度(m )可按下值取: 电场高度: H(m) 8 10 12 14 电极高度: h f (m) 1.744 2.216 2.716 3.196 b f --每一块辅助电极的投影宽度(m ) 当采用压制板时:m b f 276.0= 当采用轧制板时:m b f 296.0= 2--计正反两个表面 4--每组沿电场高度共排4块 3) 任意极距下单电场的实有收尘面积:)(2m A CF i F i C i CF i A A A += 4) 将该电场核计为常规极距时的收尘面积: )(2300m A CF i K b A A CF i CF i ??=300 300 (当选配适当时K ≥1)

式中:b --该电场实际极距(mm ) K --折算系数 5) 每室的槽板收尘面积:)(2m A H N H A H ??=72.0 式中:0.72--槽板两个表面均为收尘面,每米高计0.72m 2 H --槽板高度(m ) N --每室槽板总块数 目前已完成以下规格: 通流截面F : 58.3 108 145 151 165 170 194 216 H : 7.4 10 10.8 10 10 8.8 10 11 N : 45 59 78 79 87 114 106 118 6) 每个室的实有收尘面积:)(2m A CFH i H CF i n i CFH i A A A +=∑=1 式中:n --每室电场数 7) 每个室的标称收尘面积(即将该室核计为常规极距时的收尘面积): )(2300m A CFH H CF i n i CFH A A A +=∑=3001 300 8) 据此,除计算实有的比积尘面积(f )和驱进速度(ω)外,还需计算计为常规极距 时的比积尘面积(f 300)和驱进速度(ω300): Q A f CFH = )1ln(1 ηω--= f Q A f CFH 300 300 = )1ln(1 300 300ηω--= f 式中:Q --通过单室的烟气量(m 3/s ),00 2 Q k Q = Q 0--原始参数提供的单室烟气量(m 3/s ) k 0--漏风率 η--除尘效率

蒸发器计算说明

蒸发器设计计算 已知条件:工质为R22,制冷量kW 3,蒸发温度C t ?=70,进口空气的干球温度为C t a ?=211,湿球温度为C t b ?=5.151,相对湿度为34.56=φ%;出口空气的干球温度为C t a ?=132,湿球温度为C t b ?=1.112,相对湿度为80=φ%;当地大气压力Pa P b 101325=。 (1)蒸发器结构参数选择 选用mm mm 7.010?φ紫铜管,翅片厚度mm f 2.0=δ的铝套片,肋片间距 mm s f 5.2=,管排方式采用正三角排列,垂直于气流方向管间距mm s 251=,沿 气流方向的管排数4=L n ,迎面风速取s m w f /3=。 (2)计算几何参数 翅片为平直套片,考虑套片后的管外径为 mm d d f o b 4.102.02102=?+=+=δ 沿气流方向的管间距为 mm s s 65.21866.02530cos 12=?=?= 沿气流方向套片的长度为 mm s L 6.8665.21442=?== 设计结果为 mm s L 95.892565.2132532=+?=+= 每米管长翅片表面积: f b f s d s s a 100042221? ??? ? ? -?=π ()5.21000 4.10414.36 5.212522??? ? ???-??= m m 23651.0= 每米管长翅片间管子表面积:

f f f b b s s d a ) (δπ-= ()5 .21000 2.05.24.1014.3? -??= m m 203.0= 每米管长总外表面积: m m a a a b f of 23951.003.03651.0=+=+= 每米管长管内面积: m m d a i i 2027.0)20007.001.0(14.3=?-?==π 每米管长的外表面积: m m d a b b 2003267.00104.014.3=?==π 肋化系数: 63.14027 .03951 .0== = i of a a β 每米管长平均直径的表面积: m m d a m m 2 02983.020086.00104.014.3=?? ? ??+?==π (3)计算空气侧的干表面传热系数 ①空气的物性 空气的平均温度为 C t t t a a f ?=+=+= 172 1321221 空气在下C ?17的物性参数 3215.1m kg f =ρ ()K kg kJ c pf ?=1005 704.0=rf P s m v f 61048.14-?=

过滤器选型计算

精心整理篮式粗过滤器选型计算 粗过滤器工艺计算 1.总则 本工艺计算依据石油化工管道、泵用过滤器标准计算,参考标准SH/T3411-1999《石油化 工泵用过滤器选用、检验及验收》、HG-T21637-1991《化工管道过滤器》。本计算仅适用 于过滤器内过滤面积及起始压降计算,过滤器壳体执行GB150标准,不在本计算内。 2.过滤面积计算 依据SH/T3411-1999标准,其规定的有效过滤面积定义为:过滤器内支撑结构开孔总面积 减去开孔处滤网占据面积的净面积。因此计算有效过滤面积时考虑支撑结构的有效面积以及 滤网的有效面积。根据标准要求,永久性过滤器的有效过滤面积与管道截面积之比不小于1.5。 本项目的过滤器按照临时过滤器要求,有效过滤面积与管道截面积之比取不小于3.0。 2.1管道截面积计算S1: 本项目过滤器进出口管道工程直径DN200,S1=(0.2/2)2×3.14=0.0314m2 2.2过滤器有效过滤面积计算S2: 按照标准要求面积比取3,即S2/S1=3,即S2=S1×3=0.0314×3=0.0942m2 2.3过滤器过滤网面积计算 按照项目要求,过滤网要求0.8mm,表面积0.45m2。 本过滤器选择蓝式滤芯的表面积为0.56m2,滤篮支撑结构开孔率取50%,滤网选24目(可 拦截0.785mm以上颗粒),其有效开孔率为56%。因此本项目所选过滤器滤篮的有效过滤 面积为S=0.56×0.5×0.56=0.157m2,有效过滤面大于2.2计算结果0.0942m2,因此 在过滤面积上满足要求。 3.起始压降计算 压降计算按照标准所提供的参考公式计算,其中涉及到的物理量有雷诺数、当量长度、流体 密度、黏度等。 计算公式: 符号说明:

布袋除尘器结构设计及强度计算

?布袋除尘器结构设计及强度计算 ?前言 低压脉冲布袋除尘器广泛应用于电厂脱硫除尘及一般钢厂除尘中(应用于钢厂及电厂的主要区别是除尘器外表是否需要保温、烟气对钢板的腐蚀程度及滤料的选择等),脱硫后的烟尘经过该除尘器后,其排放到大气中的浓度基本控制在20~30mg/m3,低于国家环保部门规定的50mg/m3。 低压脉冲布袋除尘器的工作原理:含尘气体由导流管进入各单元,大颗粒粉尘经分离后直接落入灰斗、其余粉尘随气流进入中箱体过滤区,过滤后的洁净气体透过滤袋经上箱体、排风管排出。随着过滤工况的进行,当滤袋表面积尘达到一定量时,由清灰控制装置(差压或定时、手动控制)按设定程序打开电磁脉冲阀喷吹,抖落滤袋上的粉尘。落入灰斗中的粉尘借助输灰系统排出。 低压脉冲除尘器的主要结构组成如下:底柱组件、滑块组件、顶柱组件、灰斗组件(含三通及风量调节阀,如果有的话)、进风装置、中箱体、上箱体、喷吹系统、离线装置、内旁路装置(外旁路,可供选择)、平台扶梯、防雨棚、气路配管及控制元件等组成。其结构简图如下: 除尘器的设计过程中,应当对除尘器的载荷(包括静载、动载、风载、雪载及地震载荷等,单位KN)、除尘器承受的设计负压(单位Pa)、板件材料的屈服极限及抗拉伸极限等(单位

MPa),要有一定程度的了解。必要时,结构设计人员可以查阅相关的机械设计手册,以加深自己对这方面的理解。 如下的设计过程仅供除尘设备制造厂家及相关设计 单位参考。 1.除尘器载荷的确定: 1.1静载的确定:G静载=∑Gi(i=1~5) 式中,G1本体钢结构部分的重量,G2滤袋总重,G3袋笼总重,G4滤袋表面积灰5mm的重量,G5灰斗允许积灰重量。按本公司多年来的设计经验,静载荷在除尘器基础上的分布,一般是,最外面一圈基础柱桩的载荷为总静载分布在所有柱桩上的平均值Gp的110%。次外圈一圈柱桩的载荷为Gp的120~200%,以此类推,直到最内圈载荷。内圈载荷高于外圈载荷,但内外圈载荷最大差别不得超过300KN。这样设计载荷的目的是保证本体结构系统的地基稳定性。关于载荷部分的详细分配及计算过程可以参考《建筑荷载设计规范》手册。 1.2动载的确定 按楼面及屋面活荷载取标准值2.5KN/m2(检修平台按4KN/m2)来计算。 除尘器总动载荷:F=KA0A1+KA1A2,KA1检修平台活荷载取标准值,A1除尘器平面投影面积,A2平台扶梯平面投影面积。 设计时,单个承载点荷载值是平均值的100~120%左右。具体分布时,可以是平台扶梯结构多的部分取偏大值,结构少的部分取较小

消声器选型计算

燃气发电机组消声器选型书 燃气发电机组配置465Q-1发动机,发动机相关参数如下: 型式:四冲程、水冷、自然吸气式 发动机排量:0.97L 额定转速:3000r/min 气缸数:4 一、消声器主要结构形式 1.抗性消声器:通常对低、中频带消声效果好,高频消声效果差。 2.阻性消声器:对中、高频消声效果好,通常与抗性消声器组合起来使用 3.阻抗性符合型消声器:对低、中、高频噪声都有很好的消声效果 二、消声器性能要求 1.插入损失 D=L1-L2 式中:D-插入损失,dB; L1-安装消声器前在某点测量的排气声压级,dB;取 111 dB; L2-安装消声器后在某点测量的排气声压级,dB;取91.5 dB; D= 19.5 Db 2.消声器功率损失 R=(P1-P2)/P1×100% 式中:R-发动机额定功率点的功率损失比,%; P1-不带消声器而带空管时的发动机功率,kW; P2-带消声器后发动机功率,kW; 我国汽车消声器行业对不同车型的功率损失要求为:重型汽车R≤3%;中型汽车R≤5%;轻型汽车R≤6%,轿车R≤8%。 功率损失<5% 三、消声器的消声量 首先要确定降低排气噪声的目标值,即由发动机排气噪声大小,频谱特性和消声器所匹配车辆的噪声标准限制来决定消声器消声量大小。根据整车噪声限制来计算消声器出口噪声限制,假设声源特性属线性声源,声衰减量L为: L=10lg(R2/R1) (dB)(A) 式中:R1-消声器出口处噪声限制点到声源点距离;取1m(按试验测试收归返要求); R2-整车噪声限制测点到声源点距离。取7m(按试验测试要求) L=8.45dB 消声量Lm按以下公式计算: Lm=L1-( La+Lb) 式中:La-整机噪声限制,取68bB; Lb-机柜降低的噪声,91.5-72=19.5,取19.5 dB; Lm=111-(68+19.5)=23.5 dB 国华配YH465Q:>25 dB ,可满足要求。 7m处噪声限定值为:

布袋除尘器的设计计算书

布袋除尘器的设计计算书 由于公司要求设计一套较小型的除尘设备,所以查了很多资料,现在把设计计算方法发下。 下面给出已知条件: 处理风量:200立方/min 滤袋尺寸:①116X3m 1.根据已知条件选择过滤风速 一般的过滤风速的选择范围是在0.8?1.5m/min 此时根据除尘设备大小和滤带选择风速,本人选择的是1m/min 2.根据过滤风速和处理风量计算过滤面积 公式为:S=Q/V V ---- 过滤风速 S ---- 过滤面积 Q ---- 处理风量 计算后得S=Q/V=200/1=200平方米 3.计算滤带数量 每条滤带的表面积S=n DL n ---- 3.14 (这个不需要说明了把) D ---- 滤带直径 L ---- 滤带长度 "1平方米 滤带数量N=S/S仁200/1=200条 (注意:这里的滤带面积计算约等于200是为了方便计算,实际计算值为1.1,除下来滤带数量小于200条,为了方便,选择(200/1 )条 > (200/1.1 )条, 其实多几条可以满足处理风量,对计算无影响) 4.其实以上的全是基础,接下来的几点才是精髓 前面计算了这么多,是为什么?接下来要做什么? 首先我们要明确,除尘器的心脏是什么?是电磁阀! 所以接下来我们选型电磁阀 一般常用的电磁阀厂家有澳大利亚高原、SMC等等 此处本人选择的是澳大利亚GOYE的电磁脉冲阀。(至于为什么选这个型号,那是领导安排的) 如果真要了解怎么选型的话,最好是多搞点电磁阀厂家的样本 本次选的GOYE的电磁阀的几个参数很重要 MM型淹没式电磁脉冲阀 1).阀门标称尺寸 有三种25/40/76 对应的口内径尺为25mm/40mm/76m换成英尺为1"/1.5"/3" 2).这个叫流动系数Cv的很重要 相对上述三种尺寸的Cv值为30/51/416 好,知道这些后,我选择的是中间那种40mm/Cv=51 3)脉冲长度0.15sec(可以理解为膜片打开到关闭的时间)

多效蒸发器设计计算

多效蒸发器设计计算 (一) 蒸发器的设计步骤 多效蒸发的计算一般采用迭代计算法 (1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝 器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。 (2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。 (3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温 差。 (4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。 (5) 根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则 应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。 (二) 蒸发器的计算方法 下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。 1.估值各效蒸发量和完成液组成 总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和 W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为 (1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即 (1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ; W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ; x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。 2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。即 (1-6) 式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ; — 第一效加热蒸汽的压强,Pa ; — 末效冷凝器中的二次蒸汽的压强,Pa 。 多效蒸发中的有效传热总温度差可用下式计算: (1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃; — 第一效加热蒸汽的温度,℃; — 冷凝器操作压强下二次蒸汽的饱和温度,℃; — 总的温度差损失,为各效温度差损失之和,℃。 p ?1p k p '∑∑? -'-=?)(1k T T t ∑?t 1T k T '∑?

大气除尘设计计算书

环境工程课程设计 《环境工程专题课程设计(气)》(除尘部分) 设计说明书 班级: 姓名: 学号: 指导教师: 环境科学与工程学院 2015年12月

工程概况 已知杭州市某厂新建2台35t/h燃煤工业锅炉(沸腾床锅炉直径4m),其除尘系统管道布置如图1。每台锅炉产生的烟气量估计为:基数61000 Nm3/h+学号序号*100Nm3/h,烟尘浓度为35.0g/Nm3,其粒径<5μm占70%,烟气经降温至120℃进入除尘器,烟窗的直径3m,高度45m,局部阻力损失60Pa。试设计该除尘净化系统。 排放烟尘浓度要求达到《锅炉大气污染物排放标准》(GB13271-2014)规定的重点地区锅炉大气污染物特别排放限值的规定。 图1 除尘系统平面布置图 二、设计说明 设计原则 (1)基础数据可靠,总体布局合理。 (2)避免二次污染,降低能耗,近期远期结合、满足安全要求。 (3)采用成熟、合理、先进的处理工艺,处理能力符合处理要求; (4)投资少、能耗和运行成本低,操作管理简单,具有适当的安全 系数; (5)在设计中采用耐腐蚀设备及材料,以延长设施的使用寿命;

(6)废气处理系统的设计考虑事故的排放、设备备用等保护措施; (7)工程设计及设备安装的验收及资料应满足国家相关专业验收技术规范。 设计范围 工程设计范围从燃煤废气的接入管开始至除尘器处理后烟囱排放为止。包括处理工艺、除尘设备、管道、控制、风机等的设计。 设计规模 (1)处理烟气流量(工况): 总的烟气量为:3 2 1 2217.5935.18/Q Q Nm s (2)处理浓度: 烟尘浓度为35.0g/Nm 3 ,其粒径<5μm 占70%。 设计参数与指标 (1)处理烟气量(标况): 3 217.59 35.18/Q Nm s ; (2)烟气温度:120℃; (3)入口含尘浓度:35.0g/Nm 3 ;

考试题

2015年压力管道设计人员考核试卷答案 姓名:成绩: 一、判断题(每题0.5分,共5分) 1. 同一建筑物内、应将人员集中的房间布置在火灾危险性较小的一端。 ----------------------------(√) 2. 空冷器不应布置在操作温度等于或高于物料自燃点和输送、储存液化烃设备的上方;否则应采用非燃烧材料的隔板隔离保护。 ---------------------------------------------------------------------------(√) 3. 布置固体物料或含有固体物料的管道时,应使管道尽可能短、少拐弯和不出现死角。--------------(√) 4. 蒸汽支管应自蒸汽主管的顶部接出,支管上的切断阀应尽量安装在靠近主管管段上,以避免存液。---( ×) 5. 放气或排液管上的切断阀宜用闸阀。对于高压、极度危害及高度危害介质的管道应设双阀,当设置单阀时,应加盲板或法兰盖。 --------------------------------------------------------------------------(√) 6. 储罐的进出料管道在罐体下部连接,由于储罐在使用过程中,基础有可能继续下沉,其进出口管道宜采用金属软管连接或其他柔性连接。 ----------------------------------------------------------------(√) 7. 弯头宜选用曲率半径等于1.5倍公称直径的长半径弯头;输送气固、液固两相流物料的管道应选用大曲率半径弯管。 ----------------------------------------------------------------------------------(√)

Y型过滤器强度计算书.

1、计算厚度t s t s :计算厚度;mm 1.733599D o :外径;mm 377[σ]t :在设计温度下材料的许用应力;MPa 130E j :焊接接头系数; 1P:设计压力;MPa 1.2Y:系数;按表6. 2.1选取。0.4 2、开孔补强计算 (1主管开孔所需补强面积 A A:主管开孔所需补强面积;m㎡1163.6187d 1:扣除厚度附加量后主管上斜开孔的长径;mm 519.1578 d:扣除厚度附加量后支管的内径;mm 367.1a:主管轴线与斜管轴线的夹角;

45°(2开孔补强有效补强范围 有效补强宽度 B=2d 11038.3156B=d 1+2(2t n -2(2C 1+2C 2 538.9578取较大值B mm 900 Y型过滤器强度计算书 [](2PY E PD t j t o s +=σ sin 2(1a d t A s -=a d d sin /1= 有限补强高度h=2.5(t n-C1-C212.375 t n:管子名义厚度;mm7 C1:厚度负偏差;mm 1.05 C2:腐蚀余量;mm1 (3补强范围内主管多余金属补强面积A1 A1=(B-d1(t n-t s-C1-C21224.9412 (4补强范围内支管多余金属补强面积A2 A2=2h(t n-t s-C1-C2/sina112.57978 (5角焊缝金属补强面积A3 A3=H236 H:角焊缝高度;mm6 3、结论 A1+A2+A3=1373.521大于A=1163.6187 计算通过 注:按GB50316-2000《工业金属管道设计规范》(2008版计算

计算:校对:审核: 日期: `

离子交换设计计算书..

混合离子交换器 详 细 设 计 计 算 书 宜兴市华电环保设备有限公司

1工艺流程的设计 由于原水水质较好,水中TDS含量较低。因此,本项目推荐选用传统的成熟工艺离子交换器作为系统的主脱盐设备;系统初期投资成本低、易于实现自动化。离子交换器采用双床浮动床工艺,它具有处理水量大、占地面积小、交换容量高等优点。 根据计算,一级阳阴离子脱盐后的产水尚未达到生产工艺用水的要求,所以,在一级除盐装置之后,设置混合离子交换器,其出水水质完全满足设备采购方出水要求。 为保证关键设备离子交换器的长期可靠稳定运行,则必须设置符合水质特点的预处理系统,满足离子交换器进水指标:SS<3mg/L。 2工艺流程总述 2.1工艺流程: 由净化水场来的原水经过水处理系统后到达超高压锅炉给水的要求后,通过管道送到除氧水站供超高压和高压锅炉使用。 原水由全厂新鲜水管网送入除盐水站后,部分去凝结水换热后进生水罐,生 -含量为水经新鲜水泵加压后,先经过滤器后进入阳离子交换器,因原水中HCO 3 器除去重碳酸20-42.1mg/L,为减少后级阴离子交换器的负荷,经过除 CO 2 根后,由中间水泵经阴离子交换器和混合离子交换器后,去除盐水罐,最后由除盐水泵加压进除盐水管网供各用户使用。主体设备为单元式运行排列,同时也考虑母管式的连接组合。为了减少设备的台数、减少再生次数和酸碱耗量,增加运行时间。 工艺如下: (原水箱)→原水泵→多介质过滤器→阳离子交换器→脱塔碳→中间水箱

→阴离子交换器→混合离子交换器→除盐水箱→除盐水泵→使用点 2.2为了保证除盐水系统供应的可靠性,选择了五个系列;正常情况下,三个系列运行,一个系列再生,一个系列备用。其中设备包括: 10台150吨/小时的纤维球过滤器(?2600mm),5套300吨/小时阳离子交换器(?3000mm),5套300吨/小时阴离子交换器(?3000mm),5套300吨/小时混合离子交换器(?2800mm)及其它辅助设备等组成。 2.3本套水处理设备的原水水质按提供的水质报告设计,而最终制出900吨/小时除盐水。 设计进水水质及出水水质 1进水水质 1.1 除盐水物流特性 本项目的原水来自于菱溪水库,其水质(供参考)为:

消音器设计计算书样本

消音器设计计算书 由于中国当前对消音器的设计, 还没有统一的标准规范能够遵照执行, 大多数厂家均根据自己的经验来设计制作, 且技术又相对保密的。因此本消音器的设计, 经查阅大量资料, 采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论, 采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为: 蒸汽排放绝对压力: 40 kg/ cm2, 排汽温度: 390℃, 蒸汽比容ρ: 0.0721 m3/ kg, 排汽流量 Q: 8t/h; 噪声达到110dB以上, 要求消音器的噪声小于85dB 的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压, 预先消耗部分声能, 再dB与小孔降噪相结合, 达到较高的消声量; 其原理是利用节流降压与小孔喷注两种消声机理, 经过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论, 从发声机理上使它的干扰噪声减少, 由于喷注噪声峰值频率与喷口直径成反比, 若喷口直径变小, 喷口辐射的噪声能量将丛低频移向高频, 于是低频噪声被降低, 高频噪声反而增高, 当孔径小到一定值

( 达到mm级) , 实验表明, 当孔径≤4mm时具有移频作用, 喷注噪声将移到人耳不敏感的频率范围( 听觉最敏感的区域250~5000赫兹) ; 根据这一机理将一个大的喷口改为许多小孔来代替, 便能达到降低可听声的目的。从实用角度考虑, 孔径不能选得过小, 因为过小的孔径不但难于加工, 同时易于堵塞, 影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小, 适当设计通流截面, 使高压气体经过节流孔板时, 压力都能最大限度地降低到临界值。这样经过多级节流孔板串联, 就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例, 因此把压力突变排空改为压力在消音器内就逐渐降下来再排空, 这样能使消音器内流速控制在临界流速下, 不致产生激波噪声, 压力在最大限度地降到临界值, 使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小, 小孔喷注层强度设计所需的壁厚也大为减薄, 这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力一般是给定的, 当排放压力较高时, 为了取得所需的消声值, 经过几次节流降压, 使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计; 一般情况下, 节流降压消音器的各级压力选择为等比级数下降, 设节流孔板级数为n, 临界压力比为q (q<1) , 可得:

升膜蒸发器设计计算说明书

《食品工程原理》课程设计 目录 一 《食品工程原理》课程设计任务书 ............................................................................. 1 (1).设计课题 ....................................................................................................................... 2 (2).设计条件 ....................................................................................................................... 2 (3).设计要求.......................................................................................................................... 2 (4).设计意义.......................................................................................................................... 2 (5).主要参考资料 .................................................................................................................. 3 二 设计方案的确定 ............................................................................................................. 3 三 设计计算 ......................................................................................................................... 4 3.1.总蒸发水量 ..................................................................................................................... 4 3.2.加热面积初算 ................................................................................................................. 4 (1)估算各效浓度 ............................................................................................................. 4 (2)沸点的初算 ................................................................................................................. 4 (3)温度差的计算 ............................................................................................................. 5 (4)计算两效蒸发水量1V ,2V 及加热蒸汽的消耗量1S ................................................. 6 (5)总传热系数K 的计算 ................................................................................................. 7 (6)分配有效温度差,计算传热面积 ............................................................................. 9 3.3.重算两效传热面积 ....................................................................................................... 10 (1)第一次重算 ............................................................................................................... 10 3.4 计算结果 ...................................................................................................................... 11 四 蒸发器主要工艺尺寸的计算 (13) 五 简图-----------------------------------------------------------------------------------------------------13 (1)工艺流程图-----------------------------------------------------------------------------------------13 (2)细节图-----------------------------------------------------------------------------------------------14

机械过滤器设计计算

机械过滤池的设计 设计参数 设计水量Qmax=3825 m 3/h =91800m 3/d 采用数据:滤速v=14m/h,冲洗强度q=15L/(s ?m 2),冲洗时间为6min 机械过滤池的设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h , 实际工作时间T=h 8.2312241.024=?- 滤池面积为,F=Q/vT=91800/14?23.8=275.5 m 2 采用4个池子,单行排列 f=F/N=275.5/4=68.9m 2 分成4个半径为5m1的圆柱形构筑物 校核强制滤速,v'=Nv/(N-1)=18.7m/h (2) 滤池高度: 支撑层高度: H1=0.45m 滤料层高度: H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.配水干管流量: qg=fq=78.5×15=1178L/s 干管长度:10m 断面尺寸:850mm ×850mm 采用管径dg= 1000 mm,始端流速1.453m/s 2.支管: 支管中心距离:采用 ,m 25.0a j =5 支管长度: 每池支管数:根480.25 62a 2n j =?=?=L nj=D/a=2×8.5/0.25=68 m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

每根支管入口流量:qj=qg/nj=805.76/68=11.85L/s,管径150mm,流速v=0.67m/s 3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k m m 6000024%25.0Kf F =?== 孔眼总面积 Fk=Kf=0.25%×50.36=125900mm 2 采用孔眼直径m m 9d k = 每格孔眼面积:22 k mm 6.634d f ==π fk=πdk 2/4=63.6mm 2 孔眼总数9446 .6360000f F N k k k === Nk=Fk/fk=125900/63.6=1979 每根支管空眼数:个2048/944n n j k k ===N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1d 21l g j =-=-=)()(B 每排孔眼中心数距:17.020 5.07.1n 21l a k j k =?=?= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k ==)(μ 5.复算配水系统: 管长度与直径之比不大于 60,则6023075 .07.1d l j j <== lmax/dj=4250/150=28.3<60 孔眼总面积与支管总横面积之比小于0.5,则

消音器设计计算书

消音器设计计算书 由于我国目前对消音器的设计,还没有统一的标准规范可以遵照执行,大多数厂家均根据自己的经验来设计制作,且技术又相对保密的。因此本消音器的设计,经查阅大量资料,采用科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,采用节流降压与小孔消音的原理结合现场实际情况来设计解决环境噪声超标的难题。 消音器的工艺参数为:蒸汽排放绝对压力:40 kg/ cm2,排汽温度:390℃,蒸汽比容ρ:0.0721 m3/ kg,排汽流量Q:8t/h; 噪声达到110dB以上,要求消音器的噪声小于85dB的环保要求。 一、设计原理。 复合式小孔喷注消音器是利用节流作用降低小孔喷注前的驻压,预先消耗部分声能,再dB与小孔降噪相结合,达到较高的消声量;其原理是利用节流降压与小孔喷注两种消声机理,通过适当结构复合而成的。 1. 小孔喷注消音器 小孔喷注消音器的设计机理是根据科学院声学研究所马大猷教授等人提出的小孔喷注噪声极其控制理论,从发声机理上使它的干扰噪声减少,由于喷注噪声峰值频率与喷口直径成反比,若喷口直径变小,喷口辐射的噪声能量将丛低频移向高频,于是低频噪声被降低,高频噪声反而增高,当孔径小到一定值(达到mm 级),实验表明,当孔径≤4mm时具有移频作用,喷注噪声将移

到人耳不敏感的频率范围(听觉最敏感的区域250~5000赫兹); 根据这一机理将一个大的喷口改为许多小孔来代替,便能达到降低可听声的目的。从实用角度考虑,孔径不能选得过小,因为过小的孔径不仅难于加工,同时易于堵塞,影响排汽。一般选用直径1~3mm的小孔为宜。 2.节流降压消音器 节流降压消音器是利用节流降压原理而制成的。根据排汽流量的大小,适当设计通流截面,使高压气体通过节流孔板时,压力都能最大限度地降低到临界值。这样通过多级节流孔板串联,就能把排空的一次压降分散到若干个小的压降。由于排汽噪声功率与压力降的高次方成正比例,所以把压力突变排空改为压力在消音器内就逐渐降下来再排空,这样能使消音器内流速控制在临界流速下,不致产生激波噪声,压力在最大限度地降到临界值,使消音器获得较好的消声效果。同时节流降压后小孔喷注层的驻压大大变小,小孔喷注层强度设计所需的壁厚也大为减薄,这样给小孔喷注层的钻孔加工减小难度。 消音器入口处的压力通常是给定的,当排放压力较高时,为了取得所需的消声值,经过几次节流降压,使汽体进入小孔喷注前的压力由消音器入口处的压力P1按比例降低设计;通常情况下,节流降压消音器的各级压力选择为等比级数下降,设节流孔板级数为n,临界压力比为q (q<1) ,可得: n g P P q (1)后前 根据气体状态方程、连续性方程和临界流速公式,由资料可

最新湿式电除尘器设计计算

博奇公司湿式电除尘器设计计算 1 2 1. 驱进速度估算(仅供参考) 3 粉尘的驱进速度与很多因素有关。即,烟气含尘浓度、燃料化学成分、粉4 尘的化学成分、粉尘的粒径分布、介电常数、粉尘颗粒的表面形状及表面积、5 粉尘的黏附力、粉尘的凝聚力、粉尘的比电阻、电场强度、收尘极的同极距离、6 施加的电压、运行的电流的大小、放电极线的线间距、放电极和收尘极的形状、7 烟气的化学成分、烟气的水露点和酸露点、气流分布均匀性、放电极和收尘级8 的清洁程度、收尘极振打周期、放电极振打周期和净化后烟气含尘浓度都对粉9 尘驱进速度有影响。而这些因素对电除尘器的影响关系,到目前为止还不能用10 数学方程式表示出来,更无法确定它们之间的相互数量关系。准确地确定驱进11 速度是电除尘器设计的基础,也是难度最大的工作。 12 参考驱进速度按下式计算: 13 0.6257.4KS ω= (1) 14 式中 ω—驱进速度,cm/s ;S —煤的含硫量,%;K —平均粒度影响系数。平15 均粒度影响系数按下表选定。 16 表1 平均粒度影响系数 17 18 2. 收尘极面积计算 19

电除尘器的实际设计方法是用Deutsch-Anderson 公式,即: 20 1f e ωη-=- (2) 21 因此,设计时收尘极面积按下式计算: 22 ln(1)Q A k ηω-=-? (3) 23 式中A —总除尘面积,m 2;Q —烟气量,m 3/s ;η—除尘效率,%;ω—驱进速24 度,m/s ;k —储备系数,1.0~1.3。 25 26 3. 内高H 1 27 28 29 4. 进气箱长度LZ 30

蒸发器尺寸设计

蒸发器工艺尺寸计算 加热管的选择和管数的初步估计 1加热管的选择和管数的初步估计 蒸发器的加热管通常选用38*2.5mm无缝钢管。 加热管的长度一般为0.6—2m,但也有选用2m以上的管子。管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。根据我们的设计任务和溶液性质,我们选用以下的管子。 可根据经验我们选取:L=2M,38*2.5mm 可以根据加热管的规格与长度初步估计所需的管子数n’, =124(根) 式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积); d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m. 2循环管的选择 循环管的截面积是根据使循环阻力尽量减小的原则考虑的。我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。加热管的总截面积可按n’计算。循环管内径以D1表示,则 所以mm 对于加热面积较小的蒸发器,应去较大的百分数。选取管子的直径为:循环管管长与加热管管长相同为2m。 按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。循环管的规格一次确定。循环管的管长与加热管相等,循环管的表面积不计入传热面积中。 3加热室直径及加热管数目的确定 加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。 加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。根据我们的数据表加以比较我们选用三角形排列式。

过滤器设计计算书

设计计算书产品/项目名称:过滤器 编制人/日期: 审核人/日期: 批准人/日期:

1. 滤芯截面尺寸的确定 为了不增加水流水阻,滤芯过水截面积应等于管子的截面 积,即滤芯的直径应等于公称通径(D DN )。如右图所示阴影部分的面积为管子公称通径的截面积。 8寸管的公称通径为 200mm ,滤芯的直径为200mm 8吋过滤机公称通径的截面积 242 21014.34 2004 mm D A DN DN ?=?= = ππ 2. 滤芯长度的确定 2.1. 根据SH/T3411-19991.6倍公称通径截面积,本项目取1.6。样机有一个圆过滤面,如右图所示: DN DN A K L D 6.1=???π 式中: K--------方孔筛网的开孔率为10% ∴80010 .020014.31014.36.16.14 ≈????=??=K D A L DN DN π 经画图,调整比例,L 取700mm 。 则mm L A D DN DN 228700 10.014.310 14.36.1πK 6.14 ≈????==' 滤芯直径圆整取230mm 。 3. 主管的确定

参考中国建筑标准设计研究所的标准图集《除污器》,刷式全自动过滤机主管与进出 3.2主管壁厚的确定 参考《压力容器与化工设备使用手册》上册,第2章:压力容器壳体与封头 ??φ σ2i PD S = (2-1-6) 式中:--计算厚度S ,mm D i ――圆筒的内直径,mm P ――设计压力,MPa ;设计压力取最大级别工作压力P=1.6 MPa φ――焊缝系数,取φ=0.85 [σ]――材料的许用应力,主管材料采用Q235-A ,[σ]=n s σ n ――安全系数,取n=1.5 出入水管:4.285 .06.12352200 6.108≈???= S mm 主管: 21.485 .023523506.1' 08≈???=S mm

相关主题
文本预览
相关文档 最新文档