当前位置:文档之家› 实验三 霍尔效应法测量半导体的载流子浓度、 电导率和迁移

实验三 霍尔效应法测量半导体的载流子浓度、 电导率和迁移

实验三霍尔效应法测量半导体的载流子浓度、

电导率和迁移率

一、实验目的

1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。

2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的VH-IS 和

VH-IM 曲线。

3.确定试样的导电类型、载流子浓度以及迁移率。

二、实验原理

霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a)所示的N 型半导体试样,若在X 方向的电极D、E 上通以电流Is,在Z 方向加磁场B,试样中载流子(电子)将受洛仑兹力:

其中e 为载流子(电子)电量,V为载流子在电流方向上的平均定向漂移速率,B 为磁感应强度。

无论载流子是正电荷还是负电荷,Fg 的方向均沿Y 方向,在此力的作用下,载流子

发生便移,则在Y 方向即试样A、A′电极两侧就开始聚积异号电荷而在试样A、A′两侧产生一个电位差VH,形成相应的附加电场E—霍尔电场,相应的电压VH 称为霍尔电压,电极A、A′称为霍尔电极。电场的指向取决于试样的导电类型。N 型半导体的多数载流子为电子,P 型半导体的多数载流子为空穴。对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向,有

显然,该电场是阻止载流子继续向侧面偏移,试样中载流子将受一个与Fg

方向相反的横向电场力:

其中EH 为霍尔电场强度。

FE 随电荷积累增多而增大,当达到稳恒状态时,两个力平衡,即载流子所受的横向电场力e EH 与洛仑兹力eVB相等,样品两侧电荷的积累就达到平衡,故有

设试样的宽度为b,厚度为d,载流子浓度为n,则电流强度V Is 与的关系为

由(3)、(4)两式可得

即霍尔电压VH(A、A′电极之间的电压)与IsB 乘积成正比与试样厚度d成反比。比例系数称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。根据霍尔效应制作的元件称为霍尔元件。由式(5)可见,只要测出VH(伏)以及知道Is(安)、B (高斯)和d(厘米)可按下式计算RH。

上式中的是由于磁感应强度B 用电磁单位(高斯)而其它各量均采用C、G、S 实用单位而引入。

注:磁感应强度B 的大小与励磁电流IM 的关系由制造厂家给定并标明在实验仪上。

霍尔元件就是利用上述霍尔效应制成的电磁转换元件,对于成品的霍尔元件,其RH 和d 已知,因此在实际应用中式(5)常以如下形式出现:

称为霍尔元件灵敏度(其值由制造厂家给出),其中比例系数它表示该器件在单位工作电流和单位磁感应强度下输出的霍尔电压。Is 称为控制电流。(7)式中的单位取Is 为mA、B 为KGS、VH 为mV,则KH 的单位为mV/(mA·KGS)。

KH 越大,霍尔电压VH 越大,霍尔效应越明显。从应用上讲,KH 愈大愈好。

KH 与载流子浓度n 成反比,半导体的载流子浓度远比金属的载流子浓度小,因此用半导体材料制成的霍尔元件,霍尔效应明显,灵敏度较高,这也是一般霍尔元件不用金属导体而用半导体制成的原因。另外,KH 还与d 成反比,因此霍尔元件一般都很薄。本实验所用的霍尔元件就是用N 型半导体硅单晶切薄片制成的。

由于霍尔效应的建立所需时间很短(约10-12—10-14s),因此使用霍尔元件时

用直流电或交流电均可。只是使用交流电时,所得的霍尔电压也是交变的,此时,式(7)中的Is 和VH 应理解为有效值。

根据RH 可进一步确定以下参数

1.由RH 的符号(或霍尔电压的正、负)判断试样的导电类型

A¢判断的方法是按图(1)所示的Is 和B 的方向,若测得的VH=VAA'<0,(即点A 的电位低于点A′的电位)则RH 为负,样品属N 型,反之则为P 型。

2.由RH 求载流子浓度n

由比例系数得=。

应该指出,这个关系式是假定所有的载流子都具有相同的漂移速率得到的,

严格一点,考虑载流子的漂移速率服从统计分布规律,需引入3π/8 的修正因子(可参阅黄昆、谢希德著半导体物理学)。但影响不大,本实验中可以忽略此因素。

3.结合电导率的测量,求载流子的迁移率μ

电导率σ与载流子浓度n 以及迁移率μ之间有如下关系:

σ=n eμ(8)

由比例系数得,μ=|RH|σ,通过实验测出σ值即可求出μ。

根据上述可知,要得到大的霍尔电压,关键是要选择霍尔系数大(即迁移率μ高、电阻率ρ亦较高)的材料。因|RH|=μρ,就金属导体而言,μ和ρ均很低,而不良导体ρ虽高,但μ极小,因而上述两种材料的霍尔系数都很小,不能用来制造霍尔器件。半导体μ高,ρ适中,是制造霍尔器件较理想的材料,由于电子的迁移率比空穴的迁移率大,所以霍尔器件都采用N 型材料,其次霍尔电压的大小与材料的厚度成反比,因此薄膜型的霍尔器件的输出电压较片状要高得多。就霍尔元件而言,其厚度是一定的,所以实用上采用来表示霍尔元件的灵敏度,KH 称为霍尔元件灵敏度,单位为mV/(mA T)或mV/(mA KGS)。

三、实验仪器

1.TH-H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、IS 和IM 换向开关、VH 和Vσ(即VAC)测量选择开关组成。

2.TH-H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。

四、实验方法

1.霍尔电压VH 的测量

应该说明,在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的A、A 两电极之间的电压并不等于真实的VH 值,而是包含着各种副效应引起的附加电压,因此必须设法消除。根据副效应产生的机理(参阅附录)可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是Is 和B(即lM)的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的Is 和B 组合的A、A′两点之间的电压V1、V2、V3、和V4 ,即

+Is +B V1

+Is -B V2

-Is -B V3

-Is +B V4

然后求上述四组数据V1、V2、V3 和V4 的代数平均值,可得:

=(V1 -V2 +V3 -V4)/4

通过对称测量法求得的,虽然还存在个别无法消除的副效应,但其引入的误差甚小,可以略而不计。

2.电导率σ的测量

σ可以通过图1 所示的A、C(或A′、C′)电极进行测量,设A、C 间的距离为l,样品的横截面积为S=b d,流经样品的电流为Is,在零磁场下,测得A、C(A′、C′)间的电位差为Vσ(),可由下式求得σ

3.载流子迁移率μ的测量

电导率σ与载流子浓度n 以及迁移率μ之间有如下关系:

σ=n eμ

由比例系数得,μ=|RH|σ。

五、实验数据记录与处理

按图(2)连接测试仪和实验仪之间相应的Is、VH 和IM 各组连线,Is 及IM 换向开关投向上方,表明Is 及IM 均为正值(即Is 沿X 方向,B 沿Z 方向),反之为负值。VH、Vσ切换开关投向上方测VH,投向下方测Vσ。

注意:图(2)中虚线所示的部分线路即样品各电极及线包引线与对应的双刀开关之间连线已由制造厂家连接好)。必须强调指出:严禁将测试仪的励磁电源“IM 输出”误接到实验仪的“Is 输入”或“VH、Vσ输出”处,否则一旦通电,霍尔元件即遭损坏!

为了准确测量,应先对测试仪进行调零,即将测试仪的“Is 调节”和“ IM 调节”旋钮均置零位,待开机数分钟后若VH 显示不为零,可通过面板左下方小孔的“调零”电位器实现调零,即“0.00”。转动霍尔元件探杆支架的旋钮X、Y,慢慢将霍尔元件移到螺线管的中心位置。

1.测绘VH-Is 曲线

将实验仪的“VH、Vσ”切换开关投向VH 侧,测试仪的“功能切换”置VH。

保持IM 值不变(取IM=0.6A),测绘VH-Is 曲线,记入表1 中,并求斜率,代入(6)式求霍尔系数RH,代入(7)式求霍尔元件灵敏度KH。

表1 IM=0.6A Is 取值:1.00-4.00 mA。

B=0.6A 4.96KGS/A=2.976GS=0.2976T

==279.08

== 5.58mV/(mA·KGS)

2.测绘VH-Is 曲线

实验仪及测试仪各开关位置同上。

保持Is 值不变,(取Is=3.00mA),测绘VH-Is 曲线,记入表2 中。

表2 Is=3.00mA IM 取值:0.300-0.800A。

3.测量Vσ值

将“VH、Vσ”切换开关投向Vσ侧,测试仪的“功能切换”置Vσ。

在零磁场下,取Is=2.00mA,测量Vσ。

Vσ=118.2mV

注意:Is 取值不要过大,以免Vσ太大,毫伏表超量程(此时首位数码显示

为1,后三位数码熄灭)。

4.确定样品的导电类型

将实验仪三组双刀开关均投向上方,即Is 沿X 方向,B 沿Z 方向,毫伏表测量电压为VAA′。

取Is=2mA,IM=0.6A,测量VH 大小及极性,判断样品导电类型。

5.求样品的RH、n、σ和μ 值。

六、思考题

1.列出计算霍尔系数RH、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。

答:或

e()

σ=ne()

()

2.如已知霍尔样品的工作电流Is 及磁感应强度B 的方向,如何判断样品的导电类型。

答:电流通过霍尔样品时,无论是正电荷导电还是电子导电,电荷所受磁场力的方向是

相同,由左手定则可判断,正、负电荷在磁场力作用下的偏转方向相同,使得正、负电荷导电时,样品的两个表面的电势高低不同。因此可以由与电压表相连的两个侧面的电势高低来判断导电类型。

以显示器为例,比如说显示器是个导体磁场垂直屏幕向里,电场和电流向左,则对于末重金属来说是电子导电,则测出的霍尔电压在显示器顶部电势高于底部,就是电子导电为N型半导体,,若测出的霍尔电压在显示器顶部电势低于底部,就是空穴导电为P型半导体。

3.在什么样的条件下会产生霍尔电压,它的方向与哪些因素有关?

答:半导体材料,放在垂直于材料的磁场当中,通以电流,就会产生霍尔电压。

方向与电流方向和磁场方向有关。

4.实验中在产生霍尔效应的同时,还会产生那些副效应,它们与磁感应强度B 和电流Is 有什么关系,如何消除副效应的影响?

答:1)厄廷好森(Etinghausen)效应引起的电势差UE。由于电子实际上并非以同一速度v沿y轴负向运动,速度大的电子回转半径大,能较快地到达接点3的侧面,从而导致3侧面较4侧面集中较多能量高的电子,结果3、4侧面出现温差,产生温差电动势UE。可以证明UE∝IB。容易理解UE的正负与I和B的方向有关。

(2)能斯特(Nernst)效应引起的电势差UN。焊点1、2间接触电阻可能不同,通电发热程度不同,故1、2两点间温度可能不同,于是引起热扩散电流。与霍耳效应类似,该热扩散电流也会在3、4点间形成电势差UN。若只考虑接触电阻的差异,则UN的方向仅与B的方向有关。

(3)里纪-勒杜克(Righi-Leduc)效应产生的电势差UR。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4点间形成温差电动势UR。

UR的正负仅与B的方向有关,而与I的方向无关。

(4)不等电势效应引起的电势差U0。由于制造上的困难及材料的不均匀性,3、4两点实际上不可能在同一条等势线上。因而只要有电流,即使没有磁场B,3、4两点间也会出现电势差U0。U0的正负只与电流I的方向有关,而与B的方向无关。

综上所述,在确定的磁场B和电流IS下,实际测出的电压是霍耳效应电压与副效应产生的附加电压的代数和。人们可以通过对称测量方法,即改变IS和磁场B的方向加以消除和减小副效应的影响。在规定了电流IS和磁场B正、反方向后,可以测量出由下列四组不同方向的IS和B组合的电压。即:

+B,+IS:U1=UH+UE+UN+UR+U0

+B,-IS:U2=-UH-UH+UN-UR-U0

-B,-IS:U3=UH+UE-UN-UR-U0

-B,+IS:U4=-UH-UE-UN+UR+U0

然后求U1,U2,U3,U4的代数平均值得:

UH=1/4(U1-U2+U3-U4)-UE

通过上述测量方法,虽然不能消除所有的副效应,但考虑到UE较小,引入的误差不大,可以忽略不计,因此霍耳效应电压UH可近似为

UH=1/4(U1-U2+U3-U4)

霍尔效应实验

霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔元件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量并绘制试样的V H -I S 和V H -I M 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 二、实验原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。对于图(1)(a )所示的N 型半导体试样,若在X 方向的电极D 、E 上通以电流Is ,在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力 (1) 其中e 为载流子(电子)电量, 为载流子在电流方向上的平均定向漂移速率,B B v e F z V

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

用霍尔效应测量螺线管磁场 物理实验报告

华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 用霍尔效应测量螺线管磁场 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 07 实验指导老师 实验评分 一、 实验目的: 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、 实验原理: 根据电磁学毕奥-萨伐尔定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁 感应强度的1/2: 2 2M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7 (T ·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 三、 实验仪器: 1.FB510型霍尔效应实验仪 2.FB510型霍尔效应组合实验仪(螺线管) 四、 实验内容和步骤: 1. 把FB510型霍尔效应实验仪与FB510型霍尔效应组合实验仪(螺线管)正确连接。把励磁电流接到螺线 管I M 输入端。把测量探头调节到螺线管轴线中心,即刻度尺读数为13.0cm 处,调节恒流源2,使I s =4.00mA ,按下(V H /V s )(即测V H ),依次调节励磁电流为I M =0~±500mA ,每次改变±50mA, 依此测量相应的霍尔电压,并通过作图证明霍尔电势差与螺线管内磁感应强度成正比。 2. 放置测量探头于螺线管轴线中心,即1 3.0cm 刻度处,固定励磁电流±500mA ,调节霍尔工作电流为:I s =0~ ±4.00mA ,每次改变±0.50mA ,测量对应的霍尔电压V H ,通过作图证明霍尔电势差与霍尔电流成正比。 3. 调节励磁电流为500mA ,调节霍尔电流为 4.00mA ,测量螺线管轴线上刻度为X =0.0cm~13.0cm ,每次移动 1cm ,测各位置对应的霍尔电势差。(注意,根据仪器设计,这时候对应的二维尺水平移动刻度读数为:13.0cm 处为螺线管轴线中心,0.0cm 处为螺线管轴线的端面,找出霍尔电势差为螺线管中央一半的数值的刻度位置。与理论值比较,计算相对误差。按给出的霍尔灵敏度作磁场分布B ~X 图。) 五、 注意事项: 图1

霍尔效应实验方法

实验: 霍尔效应与应用设计 [教学目标] 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 [实验仪器] 1.TH -H 型霍尔效应实验仪,主要由规格为>2500GS/A 电磁铁、N 型半导体硅单晶切薄片式样、样品架、I S 和I M 换向开关、V H 和V σ(即V AC )测量选择开关组成。 2.TH -H 型霍尔效应测试仪,主要由样品工作电流源、励磁电流源和直流数字毫伏表组成。 [教学重点] 1. 霍尔效应基本原理; 2. 测量半导体材料的霍尔系数的实验方法; 3. “对称测量法”消除副效应所产生的系统误差的实验方法。 [教学难点] 1. 霍尔效应基本原理及霍尔电压结论的电磁学解释与推导; 2. 各种副效应来源、性质及消除或减小的实验方法; 3. 用最小二乘法处理相关数据得出结论。 [教学过程] (一)讲授内容: (1)霍尔效应的发现: 1879,霍尔在研究关于载流导体在磁场中的受力性质时发现: “电流通过金属,在磁场作用下产生横向电动势” 。这种效应被称为霍尔效应。 结论:d B I ne V S H ?=1 (2)霍尔效应的解释: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。当载

流子所受的横电场力H e eE f =与洛仑兹力evB f m =相等时,样品两侧电荷的积累就达到平衡, B e eE H v = (1) bd ne I S v = (2) 由 (1)、(2)两式可得: d B I R d B I ne b E V S H S H H =?= ?=1 (3) 比例系数ne R H 1=称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, (3) 霍尔效应在理论研究方面的进展 1、量子霍尔效应(Quantum Hall Effect) 1980年,德国物理学家冯?克利青观察到在超强磁场(18T )和极低 温(1.5K )条件下,霍尔电压 UH 与B 之间的关系不再是线性的,出现一 系列量子化平台。 量子霍尔电阻 获1985年诺贝尔物理学奖! 2、分数量子霍尔效应 1、1982年,美国AT&T 贝尔实验室的崔琦和 斯特默发现:“极纯的半导体材料在超低温(0.5K) 和超强磁场(25T)下,一种以分数形态出现的量子电 阻平台”。 2、1983 年,同实验室的劳克林提出准粒子理 论模型,解释这一现象。 获1998年诺贝尔物理学奖 i e h I U R H H H 1 2?==3,2,1=i

霍尔效应实验数据及曲线

表1 测绘Vh-Is实验曲线数据记录表(Im=0.500A) Is(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is 0.50.64-0.370.37-0.630.5025 1 1.28-0.740.75-1.271 1.5 1.91-1.11 1.12-1.9 1.53 2 2.53-1.48 1.49-2.52 2.005 2.5 3.16-1.86 1.87-3.15 2.51 3 3.79-2.2 4 2.25-3.77 3.0125 3.5 4.42-2.61 2.62-4.39 3.51 4 5.03-2.99 3.01-5.01 4.01 Vh-Is实验曲线 表2 测绘Vh-Im实验曲线数据记录表 Im(mA)V1(Mv)V2(Mv)V3(Mv)V4(Mv) Vh=(|V1|+|V2|+|V3|+|V4|)/4 +B,+Is-B,+Is-B,-Is+B,-Is

0.1 1.380.16-0.15-1.360.7625 0.2 1.980.44-0.43-1.96 1.2025 0.3 2.59 1.04-1.03-2.57 1.8075 0.4 3.18 1.64-1.63-3.16 2.4025 0.5 3.79 2.25-2.23-3.77 3.01 表3 测绘Vh-X实验曲线数据记录表 X V1(Mv)V2(Mv)V3(Mv)V4(Mv)Vh=(|V1|+|V2|+|V3|+|V4|)/4 Vh 0 2.12-0.570.59-2.09 1.3425 1 2.92-1.37 1.39-2.89 2.1425 2 3.38-1.82 1.85-3.35 2.6 3 3.58-2.03 2.06-3.56 2.8075 4 3.68-2.12 2.06-3.6 5 2.8775 5 3.73-2.17 2.2-3.7 2.95 6 3.76-2.2 2.23-3.73 2.98 8 3.77-2.21 2.24-3.74 2.99

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

实验三半导体的霍尔效应

实验三半导体的霍尔效应 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产 生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于 1879年发现的,后被称为霍 尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段, 而且利用该效应制成的 霍尔器件已广泛用于非电量的电测量、 自动控制和信息处理等方面。 在工业生产要求自动检 测和控制的今天,作为敏感元件之一的霍尔器件, 将有更广泛的应用前景。掌握这一富有实 用性的实验,对日后的工作将有益处。 、实验目的 1?了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 .学习用“对称测量法”消除副效应的影响,测量试样的 .确定载流子浓度以及迁移率。 实验仪器 霍尔效应实验组合仪。 实验原理 图1.1霍尔效应实验原理示意图 a )载流子为电子(N 型) b )载流子为空穴(P 型) 1.霍尔效应 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中, 这种偏转就导致在垂直电流和磁场方向上产生正 若在X 方向通以电流Is ,在Z 方向加磁场B ,则在丫方向即试样A-A / 电极两侧就开始聚 集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图 1.1 (a )所 V H-I S > V H I M 曲线。 负电荷的聚积,从而形成附加的横向电场,即霍尔电场 E H 。如图1.1所示的半导体试样, b a

V H I 1°8 R H = |S B 8 上式中的1°是由于磁感应强度 B 用电磁单位(高斯)而其它各量均采用 CGS 实用单位而 引入。 率之间有如下关系: (1-5) 示的N 型试样,霍尔电场逆 丫方向,(b )的P 型试样则沿丫方向。即有 (N 型) (P 型) E H (Y) 0 E H (Y) 0 显然,霍尔电场 洛仑兹力 evB 相等, E H 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力 eE H 与 样品两侧电荷的积累就达到动态平衡,故 eE H eVB (1-1) E H 为霍尔电场, b,厚度为d ,载流子浓度为 I S nevbd 其中 设试样的宽为 v 是载流子在电流方向上的平均漂移速度。 n ,则 (1-2) 由(1-1 )、( 1-2 ) 两式可得: V H E H b 丄上B ne d (1-3) 即霍尔电压 V H (A 、A 电极之间的电压) 'S B 乘积成正比与试样厚度 d 成反比。 比例系数 R H 丄 ne 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。 只要测出 V H (伏)以及知道 I S (安)、B (高斯)和d (厘米)可按下式计算 R H (厘米2 3 /库仑): (1-4) V A 'A °,即点A 点电位高于点 A'的电位,则R H n (2)由F H 求载流子浓度n 。即 1 R H ?。应该指出,这个关系式是假定所有载流子 都具有相同的漂移速度得到的,严格一点,如果考虑载流子的速度统计分布,需引入 修正因子(可参阅黄昆、谢希德著《半导体物理学》 (3)结合电导率的测量,求载流子的迁移率 。电导率 与载流子浓度 3 8的 n 以及迁移 ne

大学物理实验报告系列之霍尔效应-大物霍尔效应实验报告Word版

【实验名称】霍尔效应 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除付效应的影响,测量试样的VH—IS;和VH—IM 曲线。 3.确定试样的导电类型、载流子浓度以及迁移率。 【实验仪器】 霍尔效应实验仪 【实验原理】霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。 对于图1(a)所示的N型半导体试样,若在X方向通以电流1s,在Z方向加磁场B,试样中载流子(电子)将受洛仑兹力 F B = e v B (1) 则在Y方向即试样A、A'电极两侧就开始聚积异号电荷而产生相应的附加电场一霍尔电场。电场的指向取决于试样的导电类型。对N型试样,霍尔电场逆Y方向,P型试样则沿Y方向,有: Is (X)、 B (Z) E H (Y) <0 (N型) E H (Y) >0 (P型) 显然,该电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H eE与 洛仑兹力eVB相等时,样品两侧电荷的积累就达到平衡,故有 H eE= B v e(2) 其中 H E为霍尔电场,v是载流子在电流方向上的平均漂移速度。 设试样的宽为b,厚度为d,载流子浓度为n,则 bd v ne Is=(3)由(2)、(3)两式可得 d B I R d B I ne b E V S H S H H = = = 1 (4) 即霍尔电压 H V(A、A'电极之间的电压)与IsB乘积成正比与试样厚度成反比。 比例系数 ne R H 1 =称为霍尔系数,它是反映材料霍尔效应强弱的重要参数, 整理为word格式

霍尔效应实验报告(DOC)

大学 本(专)科实验报告 课程名称: 姓名: 学院: 系: 专业: 年级: 学号: 指导教师: 成绩: 年月日

? (实验报告目录) 实验名称 一、实验目的和要求 二、实验原理 三、主要实验仪器 四、实验内容及实验数据记录 五、实验数据处理与分析 六、质疑、建议

霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的s H I V -,M H I V -曲线了解霍尔电势差H V 与霍尔元件控制(工作)电流s I 、励磁电流M I 之间的关系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。 如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流s I (称为控制电流或工作电流),假设载流子为电子(N型半 导体材料),它沿着与电流s I 相反的X负向运动。 由于洛伦兹力L f 的作用,电子即向图中虚线箭头所指的位于y轴负方向的B 侧偏转,并使B侧形成电子积累,而相对的A 侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力E f 的作用。随着电荷积累量的增加,E f 增大,当两力大小相等(方向相反)时,L f =-E f ,则电子积累便达到动态平衡。这时在A 、B 两端面之间建立的电场称为霍尔电场H E ,相应的电势差称为霍尔电压H V 。 设电子按均一速度V 向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为L f =-e V B 式中e 为电子电量,V 为电子漂移平均速度,B 为磁感应强度。 同时,电场作用于电子的力为 l eV eE f H H E /-=-= 式中H E 为霍尔电场强度,H V 为霍尔电压,l 为霍尔元件宽度

实验三 半导体的霍尔效应

实验三 半导体的霍尔效应 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 一、实验目的 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的V H -I S 、曲线。 3.确定载流子浓度以及迁移率。 二、实验仪器 霍尔效应实验组合仪。 三、实验原理 1.霍尔效应 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场。如图1.1所示的半导体试样, 若在X 方向通以电流 ,在Z 方向加磁场,则在Y 方向即试样 A-A / 电极两侧就开始聚 集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图 1.1(a )所 M H I V -H E S I B X Y Z

示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 显然,霍尔电场是阻止载流子继续向侧面偏移,当载流子所受的横向电场力与洛仑兹力相等,样品两侧电荷的积累就达到动态平衡,故 (1-1) 其中为霍尔电场,是载流子在电流方向上的平均漂移速度。 设试样的宽为b ,厚度为d ,载流子浓度为n ,则 (1-2) 由(1-1)、(1-2)两式可得: (1-3) 即霍尔电压(A 、A / 电极之间的电压)与乘积成正比与试样厚度成反比。 比例系数 称为霍尔系数,它是反映材料霍尔效应强弱的重要参数。只要测出(伏)以及知道 (安)、(高斯)和(厘米)可按下式计算(厘米3 /库仑): R H = (1-4) 上式中的10是由于磁感应强度用电磁单位(高斯)而其它各量均采用CGS 实用单位而 引入。 2.霍尔系数与其它参数间的关系 根据 可进一步确定以下参数: (1)由的符号(或霍尔电压的正负)判断样品的导电类型。判别的方法是按图1.1所示的I 和B 的方向,若测得的即点点电位高于点的电位,则为负,样品属N 型;反之则为P 型。 (2)由R H 求载流子浓度n 。即 。应该指出,这个关系式是假定所有载流子 都具有相同的漂移速度得到的,严格一点,如果考虑载流子的速度统计分布,需引入的 修正因子(可参阅黄昆、谢希德著《半导体物理学》)。 (3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度n 以及迁移 率 之间有如下关系: (1-5) )(P 0)() (N 0)(型型?>?

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学得迅速发展,霍尔系数与电导率得测量已成为研究半导体材料得主要方法之一。本文主要通过实验测量半导体材料得霍尔系数与电导率可以判断材料得导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中得载流体,如果电流方向与磁场垂直,则在垂直于电流与磁场得方向会产生一附加得横向电场,称为霍尔效应。 如今,霍尔效应不但就是测定半导体材料电学参数得主要手段,而且随着电子技术得发展,利用该效应制成得霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制与信息处理等方面. 【实验目得】 1.通过实验掌握霍尔效应基本原理,了解霍尔元件得基本结构; 2.学会测量半导体材料得霍尔系数、电导率、迁移率等参数得实验方法与技术; 3.学会用“对称测量法"消除副效应所产生得系统误差得实验方法。 4.学习利用霍尔效应测量磁感应强度B及磁场分布. 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲就是运动得带电粒子在磁场中受洛仑兹力作用而引起得偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流与磁场得方向上产生正负电荷得聚积,从而形成附加得横向电场。如图1所示.当载流子所受得横电场力与洛仑兹力相等时,样品两侧电荷得积累就达到平衡,故有

? 其中EH 称为霍尔电场,就是载流子在电流方向上得平均漂移速度。设试样得宽度为b,厚度为d,载流子浓度为n ,则 ? ? ? 比例系数R H=1/n e称为霍尔系数. 1. 由RH 得符号(或霍尔电压得正负)判断样品得导电类型。 2. 由R H求载流子浓度n ,即 (4) 3. 结合电导率得测量,求载流子得迁移率. 电导率σ与载流子浓度n 以及迁移率之间有如下关系 (5) 即,测出值即可求。 电导率可以通过在零磁场下,测量B 、C 电极间得电位差为VBC ,由下式求得。 (6) 二、实验中得副效应及其消除方法: 在产生霍尔效应得同时,因伴随着多种副效应,以致实验测得得霍尔电极A 、A′之间得电压为V H 与各副效应电压得叠加值,因此必须设法消除。 (1)不等势电压降V 0 图1、 霍尔效应原理示意图,a)为N 型(电子) b)为P 型(孔穴)

实验三 半导体霍尔效应测量实验

实验三半导体材料的霍尔效应测量实验 1 实验原理 1)霍尔效应 霍尔效应指的是在外加磁场的作用下,给半导体通入电流,内部的载流子受到磁场引起的洛伦兹力的影响,空穴和电子向相反的方向偏转,这种偏转导致在垂直电流和磁场方向上产生正负电荷的积累,形成附加的横向电场 ,直至电场对载流子的作用力与洛伦兹力抵消,此时的电场强度乘以半导体样品的宽度后,可以得到霍尔电压V H 。 设磁感应强度为B ,电子浓度(假设为n 型半导体)为n ,则电流表达式为I H =nevbd ,而霍尔电压产生的电场为E H =vB 霍尔电压的表达式为: V H =E H b =vBb = I H nebd Bb =1ne I H B d =R H I H B d 其中R H 称为霍尔系数: R H = 1 可以通过V H ,B,I H 的方向可以判断样品的导电类型,通过V H 和I H 的关系曲线可以提取出R H ,进一步还可以得到电子(空穴)浓度。 在实际测量中,还会伴随一些热磁副效应,使得V H 还会附带另外一些电压,给测量带来误差。为了消除误差,需要取不同的I H 和B 的方向测量四组数据求平均值得到V H ,如下表 2) 范德堡法测量电阻率 由于实验使用的霍尔元件可视为厚度均匀、无空洞的薄片,故可使用范德堡法进行电阻率的测量。在样品四周制作四个极小的欧姆接触电极1,2,3,4。如图2所示。 图1霍尔效应原理示意图

先在1、2端通电流,3、4端测电压,可以定义一个电阻 R1=V34 12 然后在2、3端通电流,1、4端测电压,求 R2=V14 23 理论上证明样品的电阻率与R1、R2的关系为 ρ=πd ln2 R1+R2 2 f 可以通过查表可知范德堡因子f与R1/R2的关系,从而求得样品的电阻率。 2实验内容 本实验所用仪器为SH500-A霍尔效应实验仪、恒流电源、高斯计。 实验步骤如下: 1)连线 掌握仪器性能,连接恒流电源与霍尔效应试验仪之间的各组连线。 2)测量霍尔系数,判断样品的导电类型 测量半导体样品的霍尔系数。需要测不同档位组合下的霍尔电压,利用换向法消除霍尔元件的副效应。在励磁电流为400mA情况下,改变霍尔电流的大小,改变档位组合,记录霍尔电压。从5mA 开始,每隔1mA 测量一次U H,一直取到I H= 15mA。 判断样品的导电类型。根据左手定则,可以判断载流子在磁场中受到的洛伦兹力的方向,进而判断出载流子积累的情况,从而得到内建霍尔电场的方向,电场方向表现为霍尔电压的正负。对于P型样品,霍尔电压大于0;反之,对于N型样品,霍尔电压小于0。 3)范德堡法测量电阻率 ①对于1、2、3、4四点,取其相邻两点通入电流,取另外两点测得其电势差。 ②并分别求出其对应的电阻 ③再查表得到其范德堡因子f。 ④求得其电阻率并求平均。 实验建议通入的电流范围为10~15mA,实际操作时,发现超过电压表量程,故在实验过程中,实际通入电流I取低于此范围的值,这并不会对实验结果产生很大的影响。 3 实验数据及分析

霍尔效应及用其理论测量半导体材料的性能

本科毕业论文 题目:霍尔效应及用其理论测量 半导体材料的性能 学院:物理与电子科学院 班级: 09级物理二班 姓名:闫文斐 指导教师:付仁栋职称:讲师完成日期: 2013 年 5 月 15 日

霍尔效应及用其理论测量 半导体材料的性能 摘要:简述了霍尔效应的基本原理,测量判定半导体材料的霍尔系数,确定半导体材料的导电类型、载流子浓度及迁移率。因此,霍尔效应时研究半导体性质的重要实验方法。分析了利用霍尔效应测量半导体特性参数中影响的重要副效应,给出了减小或消除这些副效应的方法,并在实验中,对实验仪器进行了一定得改进,使实验更有利于操作。 关键字:霍尔效应;半导体;副效应;载流子;改进

目录 引言 (1) 1. 霍尔效应 (2) 1.1霍尔效应的基本原理 (2) 1 .2 霍尔电势差和磁场测量 (3) 2. 实验内容 (5) 2.1 确定霍尔元件的导电类型 (5) 2.2 霍尔灵敏度、霍尔系数、载流子浓度的测量 (6) 2.3实验数据的处理 (6) 3. 误差分析 (8) 3.1主要误差及原因 (8) 3.2 消除误差的方法 (9) 4. 实验的改进 (10) 4.2 霍尔元件载流子迁移率μ和电导率σ的测量 (11) 5. 结束语 (11) 致谢 (11) 参考文献 (11)

引言 霍尔效应是电磁效应在实验中的应用的一中,这是美国的一位伟大的物理学家霍尔(A.H.Hall,1855—1938)发现的,于1879年在探索金属的导电原理时偶然发明的。将载流霍尔元件置于与其垂直的磁场B中,板内出现的磁场会与电流方向垂直,同样的,板的两边就会出现一个横向电压(如图1)。在霍尔发现的100年后,1985年德国克利青( K laus von K litzing,1943-)等研究极低温度和强磁场中的半导体时发现量子霍尔效应获得诺贝尔奖。1998年华裔科学家崔琦(Daniel Chee Tsui,1939-)、斯坦福大学的美国物理学家劳克林(Robert https://www.doczj.com/doc/c47782426.html,ughlin,1950-)和哥伦比亚大学的施特默(Horst L.Stormer,1949-)在更强磁场下研究量子霍尔效应,因为发现分数量子霍尔效应而荣获诺贝尔奖。 霍尔效应原本的发现是在对金属的研究中, 但在科学发展到现在,却发现该效应在半导体中的应用更加突出, 所以在半导体的研究中一直以来提供非常重要的理论依据。本文通过霍尔效应测量,不仅判别了半导体材料的导电类型,霍尔系数、载流子浓度及迁移率和电导率等主要的半导体材料的特性参数。并在分析操作中因受各种副效应的影响,带来的测量准确度的影响,如何避免这些副效应的影响也是很必要的。因此,本文还对我们的实验元件做了很好的改进,可以通过实验测量的方法直接得到我们所需要的迁移率和电导率。

霍尔效应实验报告

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b ,厚度为d ,载流子浓度为n ,则 图1. 霍尔效应原理示意图,a )为N 型(电子) b )为P 型(孔穴) f e f m v -e E H A / A B C I S V mA B a +e E H f e f m v I S B b l d b

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

霍尔效应实验报告

霍尔效应实验报告 以下是小编给大家整理收集的霍尔效应实验报告,仅供参考。 霍尔效应实验报告1 实验内容: 1. 保持不变,使Im从0.50到4.50变化测量VH. 可以通过改变IS和磁场B的方向消除负效应。在规定电流和磁场正反方向后,分别测量下列四组不同方向的IS和B组合的VH,即 +B,+I VH=V1 —B,+ VH=-V2 —B,—I VH=V3

+B,-I VH=-V4 VH = (V1+V2+V3+V4)/4 0.50 1.60 1.00 3.20 1.50 4.79 2.00 6.90 2.50 7.98 3.00 9.55 3.50

11.17 4.00 12.73 4.50 14.34 画出线形拟合直线图: Parameter Value Error ------------------------------------------------------------ A 0.11556 0.13364 B 3.16533 0.0475 ------------------------------------------------------------ R SD N P ------------------------------------------------------------ 0.99921 0.18395 9 0.0001 2.保持IS=4.5mA ,测量Im—Vh关系 VH = (V1+V2+V3+V4)/4

1.60 0.100 3.20 0.150 4.79 0.200 6.90 0.250 7.98 0.300 9.55 0.350 11.06 0.400 1 2.69

霍尔效应实验报告.doc

实验报告 姓名:学号:系别:座号: 实验题目 :通过霍尔效应测量磁场 实验目的 :通过实验测量半导体材料的霍尔系数和电导率可以判断材料的 导电类型、载流子浓度、载流子迁移率等主要参数实验内容 : 已知参数: b=4.0mm, d=0.5mm,l B 'C =3.0mm. 设 B KI M,其中K=6200GS/A; 1. 保持I M =0.450A 不变,测绘V H I S曲线 测量当 I M正(反)向时,I S正向和反向时 V H的值,如下表 调节控制电流I S/mA I S B 正向V H/mV 正 B 反向V H/mV 向 I S B 反向V H/mV 反 B 反向V H/mV 向 绝对值平均值 V H/mV 做出 V H I S曲线如下

v V m / b V 16 Linear fit of date v 14 12 10 8 6 4 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Linear Regression for Data1_V: Y=A+B*X Parameter Value Error ----------------------------- -------------- A B Is/mA 由 origin 得 V H 3.564( ) I S 由 R V H d 108 (cm 3 / C ) 和 B KI M 得 H I S B V H d 10 8 3.564 0.05 10 8 6.39 10 3 3 / C ) R H I S KI M 6200 0.450 (cm 2. 保持 I S 不变,测绘 V H I M 曲线 = 测量当 I S 正( 反) 向时, I M 正向和反向时 V H 的值 , 如下表 调节励磁电流 I M /A I S B 正向 V H /mV 正 B 反向 V H /mV I S B 反向 V H /mV 反 B 反向 V H /mV 绝对值平均值 V H /mV 做出 V H I M 曲线如下

相关主题
文本预览
相关文档 最新文档