当前位置:文档之家› 算法实验3-最大子段和问题实验报告

算法实验3-最大子段和问题实验报告

算法实验3-最大子段和问题实验报告
算法实验3-最大子段和问题实验报告

昆明理工大学信息工程与自动化学院学生实验报告

( 2011 — 2012 学年 第 1 学期 )

课程名称:算法设计与分析 开课实验室:信自楼机房444 2012 年12月 14日 年级、专业、班 学号 姓名 成绩

实验项目名称 最大子段和问题

指导教师 吴晟

教师评语

该同学是否了解实验原理: A.了解□ B.基本了解□ C.不了解□ 该同学的实验能力: A.强 □ B.中等 □ C.差 □ 该同学的实验是否达到要求: A.达到□ B.基本达到□ C.未达到□ 实验报告是否规范: A.规范□ B.基本规范□ C.不规范□ 实验过程是否详细记录:

A.详细□

B.一般 □

C.没有 □

教师签名: 年 月 日

一、上机目的及内容

1.上机内容

给定有n 个整数(可能有负整数)组成的序列(a 1,a 2,…,a n ),求改序列形如∑=j

k k a 1

的子段和的最大

值,当所有整数均为负整数时,其最大子段和为0。

2.上机目的

(1)复习数据结构课程的相关知识,实现课程间的平滑过渡; (2)掌握并应用算法的数学分析和后验分析方法;

(3)理解这样一个观点:不同的算法能够解决相同的问题,这些算法的解题思路不同,复杂程度不

同,解题效率也不同。

二、实验原理及基本技术路线图(方框原理图或程序流程图)

(1)分别用蛮力法、分治法和动态规划法设计最大子段和问题的算法; 蛮力法设计原理:

利用3个for 的嵌套(实现从第1个数开始计算子段长度为1,2,3…n 的子段和,同理计算出第2个数开始的长度为1,2,3…n-1的子段和,依次类推到第n 个数开始计算的长为1的子段和)和一个if (用来比较大小),将其所有子段的和计算出来并将最大子段和赋值给summax1。用了3个for 嵌套所以时间复杂性为○(n 3);

分治法设计原理:

1)、划分:按照平衡子问题的原则,将序列(1a ,2a ,…,

n

a )划分成长度相同的两个字序

列(1a ,…,

??

2/n a )和(

??1

2/+n a ,…,

n

a )。

2)、求解子问题:对于划分阶段的情况分别的两段可用递归求解,如果最大子段和在两端之间需要分别计算s1=??

??)2/1(max

2/n i a

n i

k k

≤≤∑=,s2=????)2/(max

1

2/n j n a

j

n k k

≤≤∑+=,则s1+s2

为最大子段和。若然只在左边或右边,那就好办了,前者视s1为summax2,后者视s2 o summax2。 3)、合并:比较在划分阶段的3种情况下的最大子段和,取三者之中的较大者为原问题的解。 4)、时间复杂性分析: f(n) = 2*f(n/2) + ○(n/2), 最后为○(nlogn)。

动态规划法设计原理:

动态规划法求解最大字段和问题的关键是要确定动态规划函数。记

)1(max )(1n j a j b i i k k j

i ≤≤?

??

???=∑=≤≤

{})(max max

max max

1111j b a a n

j j

i

k k j

i n

j j

i

k k n

j i ≤≤=≤≤≤≤=≤≤≤=???

???

=∑

由b (j )的定义,当b (j-1)>0是,b (j )=b (j-1)+a ,否则,b (j )=a 。可得如下递推式:

)1()(0)1(0

)1()1({

n j j b j b j b a j b a j j

≤≤=>-≤-+-

代码实现过程中只用了一个for, 时间复杂性为:○(n)

(2)对所设计的算法采用大O 符号进行时间复杂性分析;

蛮力法时间复杂性为○(n 3); 分治法时间复杂性为○(nlogn) 动态规划法时间复杂性为:○(n)

(3)上机实现算法,并用计数法和计时法分别测算算法的运行时间;

详情见运行结果。

(4)通过分析对比,得出自己的结论。

结论:蛮力法只可以处理小理的数据。当数据量超过10000时,由蛮力法要等很久才输出,所以数据量超过10000时,就比较分治法和动态规划法。由实验结果可知,动态规划法所用的时间要少。

实验原理图:

三、所用仪器、材料(设备名称、型号、规格等或使用软件)

1台PC及VISUAL C++6.0软件。

绘制流程图软件:Diagram Designer.

四、实验方法、步骤(或:程序代码或操作过程)

部分重要代码说明:

#include //时间的头文件

#include //数学头文件

int getMaxSum1(int iarray[], int n)/*蛮力法函数 */

int getMaxSum2(int iarray[], int startIndex, int endIndex)//分治法函数int getMaxSum3(int iarray[], int n)/*动态规划方法函数 */

int OUT_PRINTF()//输出最大字段求解的函数

int main()//主函数

源程序代码:

#include

#include //时间的头文件

#include //数学头文件

using namespace std;

/*蛮力法*/

int getMaxSum1(int iarray[], int n)

{

int maxSum = 0;//初始化maxSum

for (int i = 0; i < n; ++i)//实现从第1个数开始计算子段长度为1,2,3…n的子段和{

for (int j = i; j < n; ++j)

{

int tmp = 0;//初始化tmp(子段和)

for (int k = i; k <=j; ++k)

{

tmp += iarray[k];

}

if ( tmp > maxSum )//比较子段和,得出最大的子段和maxSum

{

maxSum = tmp;

}

}

}

return maxSum;

}

/*分治递归方法*/

int getMaxSum2(int iarray[], int startIndex, int endIndex)

{

if ( endIndex == startIndex ) //只有一个元素

{

return iarray[startIndex];

}

if ( endIndex - startIndex == 1 )//两个元素时

{

int tmp = iarray[startIndex] + iarray[endIndex];

tmp = tmp > iarray[startIndex] ? tmp : iarray[startIndex];

tmp = tmp > iarray[endIndex] ? tmp : iarray[endIndex];

return tmp;

}

//左边一半序列的最大子段和leftMaxSum

int leftMaxSum = getMaxSum2(iarray, startIndex, (startIndex + endIndex)/2);

//右边一半序列的最大子段和rightMaxSum

int rightMaxSum = getMaxSum2(iarray, (startIndex + endIndex)/2+1, endIndex); int s1 = 0;

int s2 = 0;

int tmp = 0;

for (int i = (startIndex + endIndex)/2; i >= startIndex; --i)//左子段和

{

tmp = tmp + iarray[i];

if ( tmp > s1 )

{

s1 = tmp;

}

}

tmp = 0;

for ( i = (startIndex + endIndex)/2+1; i <= endIndex; ++i)//右子段和

{

tmp = tmp + iarray[i];

if ( tmp > s2 )

{

s2 = tmp;

}

}

int middleMaxSum = s1 + s2;

int maxSum = leftMaxSum > rightMaxSum ? leftMaxSum : rightMaxSum; maxSum = maxSum > middleMaxSum ? maxSum : middleMaxSum;

return maxSum;

}

/*动态规划方法*/

int getMaxSum3(int iarray[], int n)

{

int maxSum = 0;

int b = 0;

for (int i = 0; i < n; ++i)

{

if ( b > 0 )

{

b = b + iarray[i];

}

else

{

b = iarray[i];

}

if ( b > maxSum )

{

maxSum = b;}

}

return maxSum;

}

int OUT_PRINTF()//输出最大字段求解的函数

{

int n,i,cho;

clock_t t1,t2,t3,t4,t5,t6;

cout<<"****************************************\n";

cout<<"** 求最大字段和问题**\n";

cout<<"****************************************\n";

cout<

cout<<"/*********手动输入,请按1,随机输入请按2*********/\n";

cin>>cho;

cout<<"请输入序列的长度"<

cin>>n;

int *iarray=new int[n];

if(cho==2)

{

srand( (unsigned)time( NULL ) );

// cout<<"随机序列为:"<

for(i=1;i<=n;i++)

{

iarray[i]=(rand()/13-1129);

//cout<<""<

}

else

{

cout<<"请输入序列"<

for(i=0;i

cin>>iarray[i];

}

t1=clock();//使用蛮力法求解的开始时间

int maxSum1 = getMaxSum1(iarray, n);

t2=clock();//蛮力法求解的结束时间

cout<

cout<<"--------------------------------------------------\n";

cout<<"蛮力法最大子段和为: " << maxSum1 << endl;

cout<<"时间:"<

t3=clock();//分治法求解的开始时间

int maxSum2 = getMaxSum2(iarray, 0, n-1);

t4=clock();//分治法求解的结束时间

cout<<"--------------------------------------------------\n";

cout<<"分治法最大子段和为: " << maxSum2 << endl;

cout<<"时间:"<

t5=clock();//动态规划法求解的开始时间

int maxSum3 = getMaxSum3(iarray, n);

t6=clock();//动态规划法求解的结束时间

cout<<"--------------------------------------------------\n";

cout<<"动态规划法最大子段和为: " << maxSum3 << endl;

cout<<"时间:"<

return 0;

}

int main()//主函数

{

int i;

char a,y,Y,b;

OUT_PRINTF(); //调用输出函数

for(i=1;i<10;i++)

{

cout<<"是否继续输入?Y/N"<

cin>>a;

if(a=='y'||a=='Y')

{

OUT_PRINTF();

}

if(a=='n'||a=='N')

{

return 0;

}

}

return 0;

}

五、实验过程原始记录( 测试数据、图表、计算等)

测试程序:

输入选择的方式求最大子段和问题。手动输入适合序列长度短的时候:

当要测试序列长度很大的时候,经过测试,蛮力法的输出时间太长,所以先省去蛮力法的测试。当序列长度很大是,只调用动态规划法和分治法。结果如下:

经过测试可知,动态规划法是最佳的选择。

六、实验结果、分析和结论(误差分析与数据处理、成果总结等。其中,绘制曲线图时必须用计算纸或程序运行结果、改进、收获)

此次实验主要是设计了三种方法来求解最大子段和问题。在此次实验中遇到过很多问题,如设置循环时,条件不合理,导致没有出来理想中得结果。还有,为了得出每种方法求解的时间,添加了一个时间函数的头文件,程序中用到了clock()函数,clock()函数计算出来的是硬件滴答的数目,不是毫秒。在TC2.0中硬件每18.2个滴答是一秒,在VC++6.0中硬件每1000个滴答是一秒。C/C++中的计时函数是clock(),而与其相关的数据类型是clock_t。故计算时间的公式为float(ti-ti-1)/CLK_TCK,其中clock_t是用来保存时间的数据类型,在time.h文件中,我们可以找到对它的定义。

用计算机解决复杂的问题,往往把一个大的、复杂的问题根据其功能划分为不同的模块,每一个模块完成一独立的功能.如果每一个模块用计算机语言来实现,那么当所有模块都实现时,即为对复杂问题的解决.最大子段和问题就是一具有独立功能的小模块,在很多大的问题中都涉及到此问题,用不同的算法解决此问题,并分析其优劣。

注:教师必须按照上述各项内容严格要求,认真批改和评定学生成绩。

算法设计与分析实验报告贪心算法

算法设计与分析实验报告 贪心算法 班级:2013156 学号:201315614 姓名:张春阳哈夫曼编码 代码 #include float small1,small2; int flag1,flag2,count; typedefstructHuffmanTree { float weight; intlchild,rchild,parent; }huffman; huffmanhuffmantree[100]; void CreatHuffmanTree(intn,int m) { inti; void select(); printf("请输入%d个节点的权值:",n); for(i=0;i

printf("\n"); for(i=0;i

蒙特卡罗算法的简单应用

一、蒙特卡洛算法 1、含义的理解 以概率和统计理论方法为基础的一种计算方法。也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。P 落在扇形内的充要条件是 221x y +≤ 。 已知:K= 1s s ,K ≈m n ,s=1,s1=4P i ,求Pi 。 由1 s m s n ≈,知s1≈*m s n =m n , 而s1=4P i ,则Pi=*4m n 程序: /* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include #include #include #define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() { double x,y; int num=0; int i; for(i=0;i

x=rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在中*/ y=rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1) num++; /*统计落在四分之一圆之内的点数*/ } printf("Pi值等于:%f\n",num*4.0/COUNT); printf("RAND_MAX=%d\n",RAND_MAX); 3、应用的范围 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。 4、参考书籍 [1]蒙特卡罗方法及其在粒子输运问题中的应用[2]蒙特卡罗方法引论

北京理工大学《数据结构与算法设计》实验报告实验一

《数据结构与算法设计》 实验报告 ——实验一 学院: 班级: 学号: 姓名:

一、实验目的 1.通过实验实践、巩固线性表的相关操作; 2.熟悉VC环境,加强编程、调试的练习; 3.用C语言编写函数,实现循环链表的建立、插入、删除、取数据等基本操作; 4.理论知识与实际问题相结合,利用上述基本操作实现约瑟夫环。 二、实验内容 1、采用单向环表实现约瑟夫环。 请按以下要求编程实现: ①从键盘输入整数m,通过create函数生成一个具有m个结点的单向环表。环表中的 结点编号依次为1,2,……,m。 ②从键盘输入整数s(1<=s<=m)和n,从环表的第s个结点开始计数为1,当计数到 第n个结点时,输出该第n结点对应的编号,将该结点从环表中消除,从输出结点 的下一个结点开始重新计数到n,这样,不断进行计数,不断进行输出,直到输出 了这个环表的全部结点为止。 三、程序设计 1、概要设计 为实现上述程序功能,应用单向环表寄存编号,为此需要建立一个抽象数据类型:单向环表。 (1)、单向环表的抽象数据类型定义为: ADT Joseph{ 数据对象:D={ai|ai∈ElemSet,i=1,2,3……,n,n≥0} 数据关系:R1={ |ai∈D,i=1,2,……,n} 基本操作: create(&L,n) 操作结果:构造一个有n个结点的单向环表L。 show(L) 初始条件:单向环表L已存在。 操作结果:按顺序在屏幕上输出L的数据元素。 Josephf( L,m,s,n) 初始条件:单向环表L已存在, s>0,n>0,s

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

算法分析_实验报告3

兰州交通大学 《算法设计与分析》 实验报告3 题目03-动态规划 专业计算机科学与技术 班级计算机科学与技术2016-02班学号201610333 姓名石博洋

第3章动态规划 1. 实验题目与环境 1.1实验题目及要求 (1) 用代码实现矩阵连乘问题。 给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,…,n-1。考察这n 个矩阵的连乘积A1A2…A n。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序,这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,则可以依此次序反复调用2个矩阵相乘的标准算法(有改进的方法,这里不考虑)计算出矩阵连乘积。 确定一个计算顺序,使得需要的乘的次数最少。 (2) 用代码实现最长公共子序列问题。 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X= < x1, x2,…, xm>,则另一序列Z= < z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列< i1, i2,…, ik>,使得对于所有j=1,2,…,k有Xij=Zj 。例如,序列Z=是序列X=的子序列,相应的递增下标序列为<2,3,5,7>。给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。例如,若X= < A, B, C, B, D, A, B>和Y= < B, D, C, A, B, A>,则序列是X和Y的一个公共子序列,序列也是X和Y的一个公共子序列。而且,后者是X和Y的一个最长公共子序列,因为X和Y没有长度大于4的公共子序列。 (3) 0-1背包问题。 现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W i,价值为正整数V i,背包能承受的最大载重量为正整数W,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分) 使用动态规划使得装入背包的物品价值之和最大。 1.2实验环境: CPU:Intel(R) Core(TM) i3-2120 3.3GHZ 内存:12GB 操作系统:Windows 7.1 X64 编译环境:Mircosoft Visual C++ 6 2. 问题分析 (1) 分析。

算法设计与实验报告讲解

算法设计与分析实验报告 学院:信息学院 专业:物联网1101 姓名:黄振亮 学号:20113379 2013年11月

目录 作业1 0-1背包问题的动态规划算法 (7) 1.1算法应用背景 (3) 1.2算法原理 (3) 1.3算法描述 (4) 1.4程序实现及程序截图 (4) 1.4.1程序源码 (4) 1.4.2程序截图 (5) 1.5学习或程序调试心得 (6) 作业2 0-1背包问题的回溯算法 (7) 2.1算法应用背景 (3) 2.2算法原理 (3) 2.3算法描述 (4) 2.4程序实现及程序截图 (4) 2.4.1程序源码 (4) 2.4.2程序截图 (5) 2.5学习或程序调试心得 (6) 作业3循环赛日程表的分治算法 (7) 3.1算法应用背景 (3) 3.2算法原理 (3) 3.3算法描述 (4) 3.4程序实现及程序截图 (4)

3.4.1程序源码 (4) 3.4.2程序截图 (5) 3.5学习或程序调试心得 (6) 作业4活动安排的贪心算法 (7) 4.1算法应用背景 (3) 4.2算法原理 (3) 4.3算法描述 (4) 4.4程序实现及程序截图 (4) 4.4.1程序源码 (4) 4.4.2程序截图 (5) 4.5学习或程序调试心得 (6)

作业1 0-1背包问题的动态规划算法 1.1算法应用背景 从计算复杂性来看,背包问题是一个NP难解问题。半个世纪以来,该问题一直是算法与复杂性研究的热点之一。另外,背包问题在信息加密、预算控制、项目选择、材料切割、货物装载、网络信息安全等应用中具有重要的价值。如果能够解决这个问题那么则具有很高的经济价值和决策价值,在上述领域可以获得最大的价值。本文从动态规划角度给出一种解决背包问题的算法。 1.2算法原理 1.2.1、问题描述: 给定n种物品和一背包。物品i的重量是wi,其价值为vi,背包的容量为C。问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi ∈{0,1}, ?∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题。 1.2.2、最优性原理: 设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解: 证明:使用反证法。若不然,设(z2,z3,…,zn)是上述子问题的一个最优解,而(y2,y3,…,yn)不是它的最优解。显然有 ∑vizi > ∑viyi (i=2,…,n) 且 w1y1+ ∑wizi<= c 因此 v1y1+ ∑vizi (i=2,…,n) > ∑ viyi, (i=1,…,n) 说明(y1,z2, z3,…,zn)是(3.4.1)0-1背包问题的一个更优解,导出(y1,y2,…,yn)不是背包问题的最优解,矛盾。 1.2.3、递推关系:

蒙特卡罗 算法

1、蒙特卡罗定位 足球机器人中自定位方法是由Fox提出的蒙特卡罗定位。这是一种概率方法,把足球机器人当前位置看成许多粒子的密度模型。每个粒子可以看成机器人在此位置定位的假设。在多数应用中,蒙特卡罗定位用在带有距离传感器的机器人设备上,如激光扫描声纳传感器。只有一些方法,视觉用于自定位。在足球机器人自定位有些不同,因为机器人占的面积相对比较小,但是机器人所在位置的面积必须相当准确的确定,以便允许同组不同机器人交流有关场地物体信息和遵守比赛规则。这种定位方法分为如下步骤,首先所有粒子按照一起那机器人的活动的运动模型移动。概率pi取决于在感知模型的基础上所有粒子在当前传感器上的读数。基于这些概率,就提出了所谓的重采样,将更多粒子移向很高概率的采样位置。概率平均分布的确定用来表示当前机器人的位置的最优估计。最后返回开始。 2、蒙塔卡罗 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 工作过程 蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量

算法分析实验报告--分治策略

《算法设计与分析》实验报告 分治策略 姓名:XXX 专业班级:XXX 学号:XXX 指导教师:XXX 完成日期:XXX

一、试验名称:分治策略 (1)写出源程序,并编译运行 (2)详细记录程序调试及运行结果 二、实验目的 (1)了解分治策略算法思想 (2)掌握快速排序、归并排序算法 (3)了解其他分治问题典型算法 三、实验内容 (1)编写一个简单的程序,实现归并排序。 (2)编写一段程序,实现快速排序。 (3)编写程序实现循环赛日程表。设有n=2k个运动员要进行网球循环赛。现 要设计一个满足以下要求的比赛日程表:(1)每个选手必须与其它n-1个选手各赛一次(2)每个选手一天只能赛一场(3)循环赛进行n-1天 四、算法思想分析 (1)编写一个简单的程序,实现归并排序。 将待排序元素分成大小大致相同的2个子集合,分别对2个子集合进行 排序,最终将排好序的子集合合并成为所要求的排好序的集合。 (2)编写一段程序,实现快速排序。 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有 数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数 据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据 变成有序序列。 (3)编写程序实现循环日赛表。 按分治策略,将所有的选手分为两组,n个选手的比赛日程表就可以通

过为n/2个选手设计的比赛日程表来决定。递归地用对选手进行分割, 直到只剩下2个选手时,比赛日程表的制定就变得很简单。这时只要让 这2个选手进行比赛就可以了。 五、算法源代码及用户程序 (1)编写一个简单的程序,实现归并排序。 #include #include #define MAX 10 using namespace std; void merge(int array[],int p,int q,int r) { int i,k; int begin1,end1,begin2,end2; int* temp = new int[r-p+1]; begin1 = p; end1 = q; begin2 = q+1; end2 = r; k = 0; while((begin1 <= end1)&&(begin2 <= end2)) { if(array[begin1] < array[begin2]) { temp[k] = array[begin1]; begin1++; } else { temp[k] = array[begin2]; begin2++; } k++; } while(begin1 <= end1) {

银行家算法设计实验报告

银行家算法设计实验报告

银行家算法设计实验报告 一.题目分析 1.银行家算法: 我们可以把操作系统看做是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求资源相当于客户向银行家贷款。操作系统按银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程尚需求的资源量,若是系统现存的资源可以满足它尚需求的资源量,则按当前的申请量来分配资源,否则就推迟分配。 当进程在执行中继续申请资源时,先测试该进程申请的资源量是否超过了它尚需的资源量。若超过则拒绝分配,若没有超过则再测试系统尚存的资源是否满足该进程尚需的资源量,若满足即可按当前的申请量来分配,若不满足亦推迟分配。 2.基本要求: (1)可以输入某系统的资源以及T0时刻进程对资源的占用及需求情况的表项,以及T0时刻系统的可利用资源数。 (2)对T0时刻的进行安全性检测,即检测在T0时刻该状态是否安全。

(3)进程申请资源,用银行家算法对其进行检测,分为以下三种情况: A. 所申请的资源大于其所需资源,提示分配不合理不予分配并返回 B. 所申请的资源未大于其所需资源, 但大于系统此时的可利用资源,提 示分配不合理不予分配并返回。 C. 所申请的资源未大于其所需资源, 亦未大于系统此时的可利用资源,预 分配并进行安全性检查: a. 预分配后系统是安全的,将该进 程所申请的资源予以实际分配并 打印后返回。 b. 与分配后系统进入不安全状态,提示系统不安全并返回。 (4)对输入进行检查,即若输入不符合条件,应当报错并返回重新输入。 3.目的: 根据设计题目的要求,充分地分析和理解题 目,叙述系统的要求,明确程序要求实现的功能以及限制条件。 明白自己需要用代码实现的功能,清楚编写每部分代码的目的,做到有的放矢,有条理不遗漏的用代码实现银行家算法。

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

题目蒙特卡洛算法的设计和实现

题目:蒙特卡洛算法的设计和实现 班别:12accp2班 组员姓名:蔡添来杨善挺 时间:2013.6.28

应用数学二期末考核 项目设计说明书 项目名称:蒙特卡洛算法的设计和实现 人员情况 (注:写上组员的姓名、学号) 蔡添来-010******* 杨善挺-010******* 人员分工情况 (注:写上每个组员完成那个部分的详细情况) N-S图和代码蔡添来负责编写,杨善挺参与讨论,杨善挺负责写摘要问题分析、问题总结以及饼状图的代码编写及处理等等,主要结果及其分析讨论部分由蔡添来写,该部分一些问题杨善挺参与讨论。 蒙特卡洛算法的设计和实现 摘要 (注:请写上你对本项目题目的基本认识和介绍,解决该问题用的的方法和算法的基本思想和原理,以及本问题的主要结论及对结论的简单总结和分析) 本文根据蒙特卡洛算法以实验为基础阐述其算法的设计思路和实现过程,可以通过反复多次的实验,利用数学的的N-S算法,以及MATLAB编程等,并联系实际生活情况,分析蒙特卡洛算法给现实世界带来的各种好处,并提出合理的的建议。 针对本项目问题,首先从抽奖的本质出发,分析该问题到底能让哪方获益,估算抽奖者得到各种结果的概率,以及设奖者受益情况。首先从硬币的分值来分析,列出抽取10枚硬币的总和,再计算每种情况出现的概率,再给予一定的奖罚,这样才能即吸引抽奖者,又可以让设奖者盈利,让抽奖者的损失尽可能少。既可以达到娱乐的效果,又可以得到大家都认可。 最后总结蒙特卡洛算法在数学方面的运用以及对现代社会的经济等方面的推动作用,并给出一些建议。

关键词:模拟概率大量统计 蒙特?卡罗的背景介绍和发展 (注:请介绍你对本项目的背景和发展历史等相关内容) 蒙特?卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。 蒙特卡洛算法对于本身就具有随机性质的问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 蒙特卡罗方法的验证需要次数较多的实验和多次的验证。实验越接近理想状态,所得到的实验结果才越精确。所谓理想的实验次数,就是实验次数尽可能的多和用同样的验证方法验证多次,并取他们的平均值,以便减少误差。而且蒙特卡罗方法每次得到的结果具有随机性,因此,现实生活中该算法又可以为人们的生活娱乐带来乐趣,又可以为商家带来赚钱对的好机会。 当实验对象是某种随机事件出现的概率时,或者是某个随机变量的期望值时,可以进行反复“实验”,以这种事件出现的频率估计这一随机事件的概率,并计算全部概率的均值,或者得到这个随机变量的某些数字特征,并将其作为问题的解。以便减少实验误差。 对于本项目的实验对象,利用蒙特卡罗方法以同样的方法反复实验,方便快捷可以得到我们想要的结果,,这是典型的蒙特卡罗方法的运用,而近代也有不少科学家解决同样的问题。例如:1777年,法国数学家布丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。而这被认为是蒙特卡罗方法的起源。 利用蒙特.卡罗方法对该抽签将活动模拟问题分析和数学模型 (注:请介绍你对本项目的解决方法的思路和方法,要求:必须具有对问题解决方法的数学模型(数学模型:数学表达式或算法)的介绍和为什么使用该模型?若问题能求出理论解,在此地方必须给出理论解) 利用N-S图分析思路,再利用MATLAB程序代码运行得到具体结果,结合高中数学的组合运算,因涉及概率等等问题,以及局限于我们的知识,我们只有利用高中的组合运算和大学一年级的N-S图来分析问题,并且利用这几个经典的数学方法,我们可以轻松的解决这个抽奖问题。

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

1蒙特卡罗算法举例

MC方法计算阴影部分面积 计算阴影部分面积。 一个古人要求一个图形的面积,他把图形画在一块方形布上,然后找来一袋豆子,然后将所有豆子洒在布上,落在图形内豆子的重量比上那块布上所有豆子的重量再乘以布的面积就是他所要求的图形的面积。 两种编程思路来计算这个面积: 方法一:将整个坐标轴看成一个边长为12的正方形,然后均匀的这个正方形分成N(N的大小取决于划分的步长)个点,然后找出N个点中有多少个点是属于阴影部分中,假设这个值为k,则阴影部分的面积为:k/N*12^2 方法二:将整个坐标轴看成一个边长为12的正方形,然后在(-6,6)中随机出N(N越大越好,至少超过1000)个点,然后找出这N个点中有多少个点在阴

影区域内,假设这个值为k,则阴影部分的面积为:k/N*12^2。然后重复这个过程100次,求出100次面积计算结果的均值,这个均值为阴影部分面积。 对比分析:以上两个方法都是利用蒙特卡罗方法计算阴影部分面积,只是在处理的细节有一点区别。前者是把豆子均匀分布在布上;后者则是随机把豆子仍在布上。就计算结果的精度而言,前者取决点的分割是否够密,即N是否够大;后者不仅仅通过N来控制精度,因为随机的因素会造成单次计算结果偏高和偏小,所以进行反复多次计算最后以均值来衡量阴影部分面积。 附上MATLAB程序: 方法一: clear x=-6:0.01:6; y=x; s=size(x); zs=s(1,2)^2; k=0; for i=1:s(1,2) for j=1:s(1,2) a1=(x(i)^2)/9+(y(j)^2)/36; a2=(x(i)^2)/36+y(j)^2; a3=(x(i)-2)^2+(y(j)+1)^2;

武汉理工大学算法分析实验报告

学生实验报告书 实验课程名称算法设计与分析开课学院计算机科学与技术学院 指导教师姓名李晓红 学生姓名 学生专业班级软件工程zy1302班2015-- 2016学年第一学期

实验课程名称:算法设计与分析 同组者实验日期2015年10月20日第一部分:实验分析与设计 一.实验内容描述(问题域描述) 1、利用分治法,写一个快速排序的递归算法,并利用任何一种语言,在计算机上实现,同时 进行时间复杂性分析; 2、要求用递归的方法实现。 二.实验基本原理与设计(包括实验方案设计,实验手段的确定,试验步骤等,用硬件逻辑或者算法描述) 本次的解法使用的是“三向切分的快速排序”,它是快速排序的一种优化版本。不仅利用了分治法和递归实现,而且对于存在大量重复元素的数组,它的效率比快速排序基本版高得多。 它从左到右遍历数组一次,维护一个指针lt使得a[lo..lt-1]中的元素都小于v,一个指针gt 使得a[gt+1..hi]中的元素都大于v,一个指针i使得a[lt..i-1]中的元素都等于v,a[i..gt]中的元素都还未确定,如下图所示: public class Quick3way { public static void sort(Comparable[] a, int lo, int hi) { if (lo >= hi) return; int lt = lo, i = lo + 1, gt = hi; Comparable pivot = a[lo];

第二部分:实验调试与结果分析 一、调试过程(包括调试方法描述、实验数据记录,实验现象记录,实验过程发现的问题等) 1、调试方法描述: 对程序入口进行断点,随着程序的运行,一步一步的调试,得到运行轨迹; 2、实验数据: "R", "B", "W", "W", "R", "W", "B", "R", "R", "W", "B", "R"; 3、实验现象: 4、实验过程中发现的问题: (1)边界问题: 在设计快速排序的代码时要非常小心,因为其中包含非常关键的边界问题,例如: 什么时候跳出while循环,递归什么时候结束,是对指针的左半部分还是右半部分 排序等等; (2)程序的调试跳转: 在调试过程中要时刻记住程序是对那一部分进行排序,当完成了这部分的排序后, 会跳到哪里又去对另外的那一部分进行排序,这些都是要了然于心的,这样才能准 确的定位程序。 二、实验结果分析(包括结果描述、实验现象分析、影响因素讨论、综合分析和结论等) 1、实验结果:

算法与设计实验报告

算法与分析实验报告软件工程专业 安徽工业大学 指导老师:许精明

实验内容 1:杨辉三角 2:背包问题 3:汉诺塔问题 一:实验目的 1:掌握动态规划算法的基本思想,学会用其解决实际问题。 2:通过几个基本的实验,提高算法分析与设计能力,提高动手操作能力和培养良好的编程习惯。 二:实验内容 1:杨辉三角 2:背包问题 3:汉诺塔问题 实验一:杨辉三角

问题分析: ①每行数字左右对称,由1开始逐渐变大,然后变小,回到1。 ②第n行数之和为2^n。 ③下一行每个数字等于上一行的左右两个数字之和。 算法设计及相关源代码: public void yanghui(int n) { int[] a = new int[n]; if(n==1){ System.out.println(1); }else if(n==2) { System.out.print(1 + " " +1); }else{ a[1]=1; System.out.println(a[1]); a[2]=1;

System.out.println(a[1]+" "+a[2]); for(int i=3;i<=n;i++){ a[1]=a[i]=1; for(int j=i-1;j>1;j--){ a[j]=a[j]+a[j-1]; } for(int j=1;j<=i;j++){ System.out.print(a[j]+" "); } System.out.println(); } } } 实验结果:n=10 实验二:0-1背包问题 问题分析::令V(i,j)表示在前i(1<=i<=n)个物品中能够装入容量为就 j(1<=j<=C)的背包中的物品的最大价值,则可以得到如下的动态规划函数: (1) V(i,0)=V(0,j)=0 (2) V(i,j)=V(i-1,j) j

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.doczj.com/doc/c74949930.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

算法设计与分析实验报告

本科实验报告 课程名称:算法设计与分析 实验项目:递归与分治算法 实验地点:计算机系实验楼110 专业班级:物联网1601 学号:2016002105 学生:俞梦真 指导教师:郝晓丽 2018年05月04 日

实验一递归与分治算法 1.1 实验目的与要求 1.进一步熟悉C/C++语言的集成开发环境; 2.通过本实验加深对递归与分治策略的理解和运用。 1.2 实验课时 2学时 1.3 实验原理 分治(Divide-and-Conquer)的思想:一个规模为n的复杂问题的求解,可以划分成若干个规模小于n的子问题,再将子问题的解合并成原问题的解。 需要注意的是,分治法使用递归的思想。划分后的每一个子问题与原问题的性质相同,可用相同的求解方法。最后,当子问题规模足够小时,可以直接求解,然后逆求原问题的解。 1.4 实验题目 1.上机题目:格雷码构造问题 Gray码是一个长度为2n的序列。序列无相同元素,每个元素都是长度为n的串,相邻元素恰好只有一位不同。试设计一个算法对任意n构造相应的Gray码(分治、减治、变治皆可)。 对于给定的正整数n,格雷码为满足如下条件的一个编码序列。 (1)序列由2n个编码组成,每个编码都是长度为n的二进制位串。 (2)序列中无相同的编码。 (3)序列中位置相邻的两个编码恰有一位不同。 2.设计思想: 根据格雷码的性质,找到他的规律,可发现,1位是0 1。两位是00 01 11 10。三位是000 001 011

010 110 111 101 100。n位是前n-1位的2倍个。N-1个位前面加0,N-2为倒转再前面再加1。 3.代码设计:

算法设计实验报告(川大陈瑜)

《算法设计》课程报告 课序号: 01 学号: 2012141461134 姓名:刘佳玉 任课教师:陈瑜 评阅成绩: 评阅意见: 提交报告时间:2014年 6 月 16 日

贪心算法 1、问题描述 (这是我在soj上找的一道题,以前没做出来,现在用贪心的思想做出来了) 约翰要去钓鱼。他有h小时可用(1≤h≤16),在这个地区有n个湖泊(2≤n≤25),所有的湖泊沿着一条单行道可到达。约翰从湖泊1开始,他可以在任何湖泊结束。他只能从一个湖,到下一个,但他没有必要停在任何湖除非他想停。对于每个i = 1,……,n-1,ti 表示从湖i到湖i+1的5分钟的时间间隔(0 < ti < = 192)。例如,t3 = 4意味着它从湖3湖4需要20分钟的时间。 为了帮助他们规划自己的钓鱼旅行,约翰已经收集了一些关于湖泊信息。对于每个湖泊的i,能钓到的鱼在最初的5分钟的数量,用fi表示(fi > = 0),是已知的。每钓5分钟的鱼,能钓到的鱼在接下来的5分钟的间隔降低一个恒定的数di(di>=0)。如果能钓到的鱼在一个时间区的数量小于或等于di,将不会有更多的鱼留在湖里在下一个时间间隔。为了简化规划,约翰认为没有人会在影响他期待钓到的鱼的数量的湖里钓鱼。 写一个程序来帮助约翰计划他的最大化期望钓到的鱼的数量的钓鱼之旅。在每个湖花费的时间数必须是5的倍数。 这个问题包含多个测试案例! 一个多输入的第一行是一个整数N,然后一个空白行后的N个输入块。每个输入块由问题描述中的格式表示的。每个输入块之间有一个空行。 输出格式包含N个输出块。输出块之间要有一个空白行。 输入 在输入中,会给你一个案例输入的数量。每一种情况下,以n开始,其次是h,接下来有一行n个整数指定fi(1 < =i< = n),然后有一行n个整数di(1≤i<=n),最后,有一行n - 1的整数ti(1≤i<=n-1)。输入在n=0的情况下终止。 输出

相关主题
文本预览
相关文档 最新文档