当前位置:文档之家› 第三章离散时间信号的时域分析

第三章离散时间信号的时域分析

第三章离散时间信号的时域分析
第三章离散时间信号的时域分析

南昌大学实验报告

学生姓名:学号: 6103413001 专业班级:

实验类型:□验证□综合□设计□创新实验日期:实验成绩:

第三章:离散时间信号的频域分析

一、实验目的:

1、学会用MATLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。

2、学会使用基本的MATLAB命令,并将它们应用到简单的数字信号处理问题中。

二、实验要求:

1、学习并调试本章所给的例子。

2、回答书后给出的问题。

3、实验报告仅回答偶数信号的例子。

三、实验程序及结果

Q3.2运行程序P3.1求离散时间傅立叶变换的实部、虚部以及幅度和相位谱列。离散时间傅立叶变换是ω的周期函数吗?若是,周期是多少?描述这四个图形的对称性。

程序:

%离散时间傅立叶变换的频率样本

w=-4*pi:8*pi/511:4*pi;

num=[2 1];den=[1 -0.6];

h=freqz(num,den,w);

%plot the DTFT

subplot(2,1,1)

plot(w/pi,real(h));grid

title('H(e^|j\omegal|)的实部')

xlabel('\omega/\pi');

ylabel('振幅');

subplot(2,1,2)

plot(w/pi,imag(h));grid

title('H(e^|j\omegal|)的虚部')

xlabel('\omega/\pi');

ylabel('振幅');

pause%暂停等待指令执行后面程序

subplot(2,1,1)

plot(w/pi,abs(h));grid

title('|H(e^|j\omega|)|幅度谱')

xlabel('\omega/\pi');

ylabel('振幅');

subplot(2,1,2)

plot(w/pi,angle(h));grid

title('相位谱arg[H(e^|j\omega|)]')

xlabel('\omega/\pi'); ylabel('以弧度为单位的相位'); 程序结果如下:

离散时间傅立叶变换是ω的周期函数,周期为2π

H(e |j ωl|)的实部

振幅

ω/π

振幅

振幅

ω/π

以弧度为单位的相位

Q3.4 修改程序P3.1,计算如下有限长序列的离散傅里叶变换:g[n]=[1 3 5 7 9 11 13 15 17] 并重做习题Q3.2.讨论你的结果。你能解释相位谱中的跳变吗? 程序

%离散时间傅立叶变换的频率样本 w=0:8*pi/511:1*pi;

num=[1 3 5 7 9 11 13 15 17]; h=freqz(num,1,w); %plot the DTFT

subplot(2,1,1)

plot(w/pi,real(h));grid title('H(e^|j\omegal|)的实部') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,1,2)

plot(w/pi,imag(h));grid title('H(e^|j\omegal|)的虚部') xlabel('\omega/\pi'); ylabel('振幅');

pause%暂停等待指令执行后面程序 subplot(2,1,1)

plot(w/pi,abs(h));grid

title('|H(e^|j\omega|)|幅度谱') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,1,2)

plot(w/pi,angle(h));grid

title('相位谱arg[H(e^|j\omega|)]') xlabel('\omega/\pi'); ylabel('以弧度为单位的相位');

因为离散时间傅里叶变换是ω的衰减周期函数,周期为0.25π,当计算的相位在频率范围[-π, π]之外时,相位按取0.25π模计算,因此就会出现0.25π的不连续。

H(e |j ωl|)的实部

ω/π

振幅

00.10.20.30.4

0.50.60.70.80.91

H(e |j ωl|)的虚部

ω/π

振幅

50

100

|H(e |j ω|)|幅度谱

ω/π

振幅

0.1

0.2

0.3

0.4

0.50.6

0.7

0.8

0.9

1

-4-2024相位谱arg[H(e |j ω|)]

ω/π

以弧度为单位的相位

Q3.6 通过加入合适的注释语句和程序语句修改程序P3.2,对程序生成的图形中的两个轴加标记。哪个参数控制时移量? 验证傅里叶变换的时移性质 程序:

%p3.2

%离散时间傅立叶变换的时移性质 clf;

w=-pi:2*pi/255:pi;wo=0.4*pi;D=10; num=[1 2 3 4 5 6 7 8 9]; h1=freqz(num,1,w);

h2=freqz([zeros(1,D) num],1,w); subplot(2,2,1)

plot(w/pi,abs(h1));grid title('原序列的幅度谱') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,2)

plot(w/pi,abs(h2));grid title('时移后序列的幅度谱') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,3)

plot(w/pi,angle(h1));grid title('原序列的相位谱')

xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,4)

plot(w/pi,angle(h2));grid title('时移后序列的相位谱') xlabel('\omega/\pi'); ylabel('振幅');

所得图像如下所示:参数D 控制时移量

02040

60原序列的幅度谱

ω/π

振幅

时移后序列的幅度谱

ω/π

振幅

-4-202

4原序列的相位谱

ω/π

振幅

时移后序列的相位谱

ω/π

振幅

Q3.8 选取不同的时移值重做习题Q3.7。

序列:num=[1 2 3 4 5 6 7 8 9]; 程序: %p3.8

%离散时间傅立叶变换的时移性质 clf;

w=-pi:2*pi/255:pi;wo=0.4*pi;D=50; num=[1 2 3 4 5 6 7 8 9]; h1=freqz(num,1,w);

h2=freqz([zeros(1,D) num],1,w); subplot(2,2,1)

plot(w/pi,abs(h1));grid title('原序列的幅度谱') xlabel('\omega/\pi'); ylabel('振幅');

subplot(2,2,2)

plot(w/pi,abs(h2));grid title('时移D=50后序列的幅度谱') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,3)

plot(w/pi,angle(h1));grid title('原序列的相位谱') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,4)

plot(w/pi,angle(h2));grid title('时移D=50后序列的相位谱') xlabel('\omega/\pi'); ylabel('振幅');

图形显示如下:

-1

-0.5

00.51

02040

60原序列的幅度谱

ω/π

振幅

-1

-0.5

00.5102040

60时移D=50后序列的幅度谱

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4原序列的相位谱

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4时移D=50后序列的相位谱

ω/π

振幅

时移特性:信号在时域移动某个距离,则所得信号的幅度谱和原信号相同,而相位谱是原信号的相位谱再附加一个线性相移,由时移特性可以看到,信号的相位谱可以反映信号在时域中的位置信息,不同位置上的同一信号,它们具有不同的相频特性,而幅频特性相同

Q3.10 通过加入合适的注释语句和程序,修改程序P3.3,对程序生成的图形中的两个轴加标记。哪个参数控制频移量?

验证傅里叶变换的频移性质

%p3.3

%离散时间傅里叶变换的频移性质

clf;

w=-pi:2*pi/255:pi;wo=0.4*pi; num1=[1 3 5 7 9 11 13 15 17]; L=length(num1);

h1=freqz(num1,1,w);

n=0:L-1;

num2=exp(wo*i*n).*num1;

h2=freqz(num2,1,w);

subplot(2,2,1)

plot(w/pi,abs(h1));grid

title('原序列幅度谱')

xlabel('\omega/\pi');

ylabel('振幅');

subplot(2,2,2)

plot(w/pi,abs(h2));grid

title('频移后序列的幅度谱') xlabel('\omega/\pi');

ylabel('振幅');

subplot(2,2,3)

plot(w/pi,angle(h1));grid

title('原序列的相位谱')

xlabel('\omega/\pi');

ylabel('振幅');

subplot(2,2,4)

plot(w/pi,angle(h2));grid

title('频移后序列的相位谱') xlabel('\omega/\pi');

ylabel('振幅');

所得图像如下所示:参数wo控制频移量

-1-0.5

00.51

050

100

原序列幅度谱

ω/π

振幅

-1

-0.500.51

050

100

频移后序列的幅度谱

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4原序列的相位谱

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4频移后序列的相位谱

ω/π

振幅

Q3.12 选取不同的频移值,重做习题Q3.11.

频移:wo=0.8*pi; 程序: %p3.3

%离散时间傅里叶变换的频移性质 clf;

w=-pi:2*pi/255:pi;wo=0.8*pi; num1=[1 3 5 7 9 11 13 15 17]; L=length(num1); h1=freqz(num1,1,w); n=0:L-1;

num2=exp(wo*i*n).*num1; h2=freqz(num2,1,w); subplot(2,2,1)

plot(w/pi,abs(h1));grid title('原序列幅度谱') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,2)

plot(w/pi,abs(h2));grid

title('频移wo=0.8*pi 后序列的幅度谱') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,3)

plot(w/pi,angle(h1));grid title('原序列的相位谱') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,4)

plot(w/pi,angle(h2));grid

title('频移wo=0.8*pi 后序列的相位谱') xlabel('\omega/\pi'); ylabel('振幅');

所得图像如下所示:

-1-0.5

00.51

050

100

原序列幅度谱

ω/π

振幅

-1

-0.5

00.51050

100

频移wo=0.8*pi 后序列的幅度谱ω/π

振幅

-1

-0.5

00.5

1

-4-202

4原序列的相位谱

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4频移wo=0.8*pi 后序列的相位谱ω/π

振幅

由结果图可得出在参数wo 的控制下,离散时间傅里叶变换的幅度谱和相位谱都随着控制参数右移k 个单位(wo=k*pi )。

Q3.14 通过加入合适的注释语句和程序语句,修改程序P3.4,对程序生成的图形中两个轴加标记。

验证傅里叶变换的卷积性质 程序:

%p3.4

%离散傅里叶变换的卷积性质 clf;

w=-pi:2*pi/255:pi;

x1=[1 3 5 7 9 11 13 15 17]; x2=[1 -2 3 -2 1];

y=conv(x1,x2);

h1=freqz(x1,1,w);

h2=freqz(x2,1,w);

hp=h1.*h2;

h3=freqz(y,1,w);

subplot(2,2,1)

plot(w/pi,abs(hp));grid

title('幅度谱的乘积')

xlabel('\omega/\pi');

ylabel('振幅');

subplot(2,2,2)

plot(w/pi,abs(h3));grid

title('卷积后序列的幅度谱') xlabel('\omega/\pi');

ylabel('振幅');

subplot(2,2,3)

plot(w/pi,angle(hp));grid title('相位谱的和')

xlabel('\omega/\pi');

ylabel('振幅');

subplot(2,2,4)

plot(w/pi,angle(h3));grid title('卷积后序列的相位谱') xlabel('\omega/\pi');

ylabel('振幅');

所得图像如下所示:

-1-0.5

00.51

050

100

幅度谱的乘积

ω/π振幅

-1

-0.500.51

050

100

卷积后序列的幅度谱

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4相位谱的和

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4卷积后序列的相位谱

ω/π

振幅

Q3.16 选取两个改变了长度的序列,重做Q3.15。

程序: %p3.4

%离散傅里叶变换的卷积性质 clf;

w=-pi:2*pi/255:pi;

x1=[1 3 5 7 9 11 13 15 ]; x2=[1 -2 3 -2 ]; y=conv(x1,x2); h1=freqz(x1,1,w); h2=freqz(x2,1,w); hp=h1.*h2; h3=freqz(y,1,w); subplot(2,2,1)

plot(w/pi,abs(hp));grid title('幅度谱的乘积') xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,2)

plot(w/pi,abs(h3));grid title('卷积后序列的幅度谱') xlabel('\omega/\pi');

ylabel('振幅'); subplot(2,2,3)

plot(w/pi,angle(hp));grid title('相位谱的和')

xlabel('\omega/\pi'); ylabel('振幅'); subplot(2,2,4)

plot(w/pi,angle(h3));grid title('卷积后序列的相位谱') xlabel('\omega/\pi'); ylabel('振幅');

所得图像如下所示:

-1

-0.5

00.51

0204060

80幅度谱的乘积

ω/π振幅

-1

-0.5

00.51

0204060

80卷积后序列的幅度谱

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4相位谱的和

ω/π

振幅

-1

-0.5

00.5

1

-4-202

4卷积后序列的相位谱ω/π

振幅

结论:得出幅度谱的乘积和卷积后的幅度谱相同,相位谱的乘积和卷积后的相位谱相同。

Q3.18 运行修改后的程序并讨论你的结果。

%程序p

%离散傅里叶变换的调制性质 clf;

w=-pi:2*pi/255:pi;

x1=[1 3 5 7 9 11 13 15 17]; x2=[1 -1 1 -1 1 -1 1 -1 1]; y=x1.*x2;

h1=freqz(x1,1,w);

实验一离散时间信号分析

实验一离散时间信号分析 一、实验目的 1. 初步掌握Matlab 的使用,掌握编写M 文件和函数文件 2. 掌握各种常用序列的表达,理解其数学表达式和波形表示之间的关系。 3. 掌握生成及绘制数字信号波形的方法。 4. 掌握序列的基本运算及实现方法。 5. 研究信号采样时采样定理的应用问题。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列{x(n)}来表示,其中x(n)代表序列的第n个数字,n 代表时间的序列,n 的取值范围为-∞< n<+∞的整数,n 取其它值x(n)没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号x a(t)进行等间隔采样,采样间隔为T,得到{x (nT )} a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)δ(n)、单位阶跃序列u(n)、矩形序列R N(n)、 实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算

序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 y(n)=∑ x (m )h (n ?m )+∞m=?∞ =x(n)*h(n) 上式的运算关系称为卷积运算,式中* 代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4 个步骤。 (1)反褶:先将x (n )和h (n )的变量n 换成m ,变成x (m )和h (m ),再将h (m )以纵 轴为对称轴反褶成h (-m )。 (2)移位:将h (-m )移位n ,得h (n- m )。当n 为正数时,右移n 位;当n 为负数时, 左移n 位。 (3)相乘:将h (n -m )和x (m )的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得y (n )。 三、主要实验仪器及材料 PC 机、Matlab7.0。 四、实验内容 1.知识准备 认真复习以上基础理论,理解本实验所用到的实验原理。 2.离散时间信号(序列)的产生 利用MATLAB 产生和绘制下列有限长序列:

离散信号与系统时域分析

目录 第1章设计任务及要求 (1) 1.1课程设计内容 (1) 1.2课程设计要求 (1) 第2章设计原理 (2) 2.1离散信号与系统的时域分析设计 (2) 2.1.1描写系统特性的方法介绍 (2) 2.1.2系统的时域特性 (2) 第3章设计实现 (3) 3.1实验内容与方法 (3) 3.1.1实验内容 (3) 第4章设计结果及分析 (3) 4.1程序设计结果及分析 (4) 总结 (7) 参考文献: (7) 附录: (8)

第1章 设计任务及要求 1.1课程设计内容 编制Matlab 程序,完成以下功能,产生系统输入信号;根据系统差分方程求解单位脉冲响应序列;根据输入信号求解输出响应;用实验方法检查系统是否稳定;绘制相关信号的波形。具体要求如下: (1) 给定一个低通滤波器的差分方程为 ()0.05()0.05(1)0.9(1)y n x n x n y n =+-+- 输入信号分别为182()=()()()x n R n x n u n =, ① 分别求出系统响应,并画出其波形。 ② 求出系统的单位脉冲响应,画出其波形。 (2) 给定系统的单位脉冲响应为1102()=()()() 2.5(1) 2.5(2)(3)h n R n h n n n n n δδδδ=+-+-+-,用线性卷积法求18()=()x n R n 分别对系统h1(n)和h2(n)的输出响应,并画出波形。 (3) 给定一谐振器的差分方程为() 1.8237(1)-0.9801(2)()(2)o o y n y n y n b x n b x n =--++-令b0=1/100.49,谐振器的谐振频率为0.4rad 。 1) 用实验方法检查系统是否稳定。输入信号为u(n)时,画出系统输出波形。 2) 给定输入信号为()=sin(0.014)sin(0.4)x n n n +求出系统的输出响应,并画出其波形。 1.2课程设计要求 1. 要求独立完成设计任务。 2. 课程设计说明书封面格式要求见《天津城市建设学院课程设计教学工作规范》附表1 3. 课程设计的说明书要求简洁、通顺,计算正确,图纸表达内容完整、清楚、规范。 4. 简述离散系统时域分析方法和通过实验判断系统稳定性的方法;完成以上设计实验并对结果进行分析和解释;打印程序清单和要求画出的信号波形;写出本次课程设计的收获和体会。 5. 课设说明书要求: 1) 说明题目的设计原理和思路、采用方法及设计流程。 2) 详细介绍运用的理论知识和主要的Matlab 程序。 3) 绘制结果图形并对仿真结果进行详细的分析。

典型连续信号和离散信号时域波形图

一.典型连续信号和离散信号的时域波形。 1.单边指数信号)()(t u Ae t y t α=; 2.单位冲激信号)()(0t t t y +=δ; 3.单位阶跃信号)()(0t t u t y +=; 4.矩形脉冲信号)]()([)(21t t u t t u A t y +-+?=; 5.正弦信号)()sin()(t u t A t y ω?=; 6.单位序列)()(0n n n y +=δ; 7.单位阶跃序列)()(0n n u n y +=; 8.单位矩形序列)()()(21n n u n n u n y +-+=; 9.指数序列)()(n u a A n y n ?=; 10.正弦序列)()sin()(n u n A n y ω?=。

单边指数信号 function zhishu(A,a,t1,t2,dt) t1=0 t2=10 A=1 A=-0.4 dt=0.01 t=t1:dt:t2; y=A*exp(a*t); plot(t,y) axis([t1,t2,0,1.2]) xlabel('t') ylabel('y(t)') title(' 单边指数信号') 单位冲激信号 function chongji(t1,t2,t0) dt=0.01; t1=10; t2=-5; t=t1:dt:t2; n=length(t); x=zeros(1,n); x(1,(-t0-t1)/dt+1)=1/dt; stairs(t,x); axis([t1,t2,0,1.2/dt]) xlabel('t') ylabel('y(t)') title('单位冲激信号')

实验一 时域离散信号与系统变换域分析(2015)资料

实验一 时域离散信号与系统变换域分析 一、实验目的 1.了解时域离散信号的产生及基本运算实现。 2.掌握离散时间傅里叶变换实现及系统分析方法。 3. 熟悉离散时间傅里叶变换性质。 4. 掌握系统Z 域分析方法。 5. 培养学生运用软件分析、处理数字信号的能力。 二、实验设备 1、计算机 2、Matlab7.0以上版本 三、实验内容 1、对于给定的时域离散信号会进行频谱分析,即序列的傅里叶变换及其性质分析。 2、对于离散系统会进行频域分析及Z 域分析。包括频谱特性、零极点画图、稳定性分析。 3、对于差分方程会用程序求解,包括求单位冲击序列响应,零输入响应、零状态响应、全响应,求其系统函数,及其分析。 4、信号时域采样及其频谱分析,序列恢复。 5、扩展部分主要是关于语音信号的读取及其播放。 四、实验原理 1、序列的产生及运算 在Matlab 中自带了cos 、sin 、exp (指数)等函数,利用这些函数可以产生实验所需序列。 序列的运算包括序列的加法、乘法,序列)(n x 的移位)(0n n x -,翻褶)(n x -等。序列的加法或乘法指同序号的序列值逐项对应相加或相乘,但Matlab 中“+”“.*”运算是对序列的值直接进行加或乘,不考虑两序列的序号是否相同,因此编程时考虑其序号的对应。 2、序列的傅里叶变换及其性质 序列的傅里叶变换定义:)(|)(|)()(ω?ωωω j j n n j j e e X e n x e X ==∑∞-∞=-,其幅度特性为|)(|ωj e X , 在Matlab 中采用abs 函数;相位特性为)(ω?,在Matlab 中采用angle 函数。 序列傅里叶变换的性质:

时域离散信号的产生与基本运算

实验一 时域离散信号的产生与基本运算 一、实验目的 1、了解常用的时域离散信号及其特点。 2、掌握MATLAB 产生常用时域离散信号的方法。 3、掌握时域离散信号简单的基本运算方法。 二、实验内容 1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。 2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。 3、已知信号 (1) 描绘)(n x 序列的波形。 (2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。 (3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-= 三、实现步骤 1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。 (1)单位抽样序列 程序: x=zeros(1,10);

x(2)=1; stem(x,'filled') axis([0,10,-0.2,1]); title('μ¥??3é?ùDòáD'); -0.20 0.2 0.4 0.6 0.8 图 1 (2)单位阶跃序列 程序: N=10; u=ones(1,N); stem(u,'filled') axis([-10,10,0,1]); title('μ¥???×??DòáD');

00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 单位阶跃序列 图 2 (3)正弦序列 程序: x=-20:1:20; y=sin(0.2*pi.*x+0.5*pi); stem(x,y,'filled'); axis([-20,20,-2,2]); title('?y?òDòáD');

实验用MATLAB产生时域离散信号

实验1用M A T L A B产生时域离散信号 一、.实验目的: 1、了解常用时域离散信号及其特点 2、掌握用MATLAB产生时域离散信号的方法 二、实验内容及步骤 1、阅读并上机验证实验原理部分的例题程序,理解每一条语句的含义。 改变例题中的有关参数(如信号的频率、周期、幅度、显示时间的取值范围、采样点数等),观察对信号波形的影响。 2、编写程序,产生以下离散序列: n1=-3;n2=4;n0=0; n=n1:n2; x=[n==n0]; stem(n,x,'filled'); axis([n1,n2,0,*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)'); title('单位脉冲序列'); (2)n1=-5;n2=5;n0=0; n=n1:n2; x=[n>=n0]; stem(n,x,'filled') axis([n1,n2,0,*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)'); title('单位阶跃序列'); n1=20;a=;w=*pi; n=0:n1; x=exp((a+j*w)*n); subplot(2,2,1);plot(n,real(x)); title('复指数信号的实部'); subplot(2,2,3);stem(n,real(x),'filled'); title('复指数序列的实部'); subplot(2,2,2);plot(n,imag(x)); title('复指数信号的虚部'); subplot(2,2,4);stem(n,imag(x),'filled'); title('复指数序列的虚部');

实验一离散时间信号的分析

武汉工程大学 信号分析与处理实验一 专业:通信02班 学生姓名:李瑶华 学号:1304200113 完成时间:2016年6月1日

实验一: 离散时间信号的分析 一、实验目的 1.认识常用的各种信号,理解其数学表达式和波形表示。 2.掌握在计算机中生成及绘制数字信号波形的方法。 3.掌握序列的简单运算及计算机实现与作用。 4.理解离散时间傅立叶变换、Z 变换及它们的性质和信号的频域特性。 二、实验设备 计算机,MATLAB 语言环境。 三、实验基础理论 1.序列的相关概念 2.常见序列 ● 单位取样序列?? ?≠==0n 0,0 n 1n ,)(δ ● 单位阶跃序列? ??<≥=0,00 ,1)(n n n u ● 单位矩形序列???-≤≤=其他,01 0,1)(N n n R N ● 实指数序列)()(n u a n x n = ● 复指数序列n jw e n x )(0)(+=σ ● 正弦型序列)n sin()(0?+=w A n x 3.序列的基本运算 ● 移位 y(n)=x(n-m) ● 反褶 y(n)=x(-n) ● 和 )()()(21n x n x n y += ● 积 )()()(21n x n x n y ?= ● 标乘 y(n)=mx(n) ● 累加∑-∞ == n m m x n y )()( ● 差分运算 ???--=?-+=?) 1()()() ()1()(x n x n x n x n x n x n 后相差分前向差分

4.离散傅里叶变换的相关概念 ● 定义 ∑+∞ -∞ =-=n jwn jw e n x e X )()( ● 两个性质 1) [] )2()2()2()()(,2)(ππππ++∞ -∞ =+-+--== =∑w j n n w j jw n w j jwn jw e X e n x e X e e w e X 故有。由于的周期函数,周期为是 2) 当x (n )为实序列时,)(jw e X 的幅值)(jw e X 在π20≤≤w 区间内是偶对称函 数,相位)(arg jw e X 是奇对称函数。 5.Z 变换的相关概念 ● 定义 ∑+∞ -∞ =-= n n z n x z X )()((双边Z 变换) ∑+∞ =-=0 )()(n n z n x z X (单边Z 变换) 四、实验内容与步骤 1.离散时间信号(序列)的产生 利用MATLAB 语言编程产生和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形表示。 1. 单位取样序列的产生函数 function [x,n]=impseq(n0,n1,n2) %产生x(n)=delta(n-n0);n1<=n,n0<=n2; %[x,n]=impseq(n0,n1,n2) if ((n0n2)|(n1>n2)) error('参数必须满足n1<=n0<=n2') end n=[n1:n2]; %x=[zeros(1,(n0-n1)),1,zeros(1,(n2-n0))]; x=[(n-n0)==0]; 2. 单位阶跃序列的产生函数 function [x,n]=stepseq(n0,n1,n2) %产生x(n)=u(n-n0);n1<=n,n0<=n2; %[x,n]=stepseq(n0,n1,n2) if ((n0n2)|(n1>n2)) error('参数必须满足n1<=n0<=n2') end n=[n1:n2];

离散时间信号分析

离散时间信号分析 实验目的:利用MA TLAB进行离散时间序列的基本运算,掌握基本的MA TLAB函数的编写和调试方法。 实验内容: (1)信号相加 x(n)=x1(n)+x2(n) 当两个相加的序列长度不同时或位置不对应时,首先必须调整二者的位置对齐,然后通过zeros函数左右补零使其长度相等后再相加。下面的参考代码利用函数sigadd说明了这些运算,其验证将在后续实验中进行。 MATLAB参考代码 function[y,n]=sigadd(x1,n1,x2,n2) %implements y(n)=x1(n)+x2(n) %--------------------------------------------- %[y,n]=sigadd(x1,n1,x2,n2) %y=sum sequence over n,which includes n1 and n2 %x1=first sequence over n1 %x2=second sequence over n2(n2 can be different from n1) % n=min(min(n1),min(n2)):max(max(n1),max(n2));%duration of y(n) y1=zeros(1,length(n)); y2=y1; y1(find((n>=min(n1))&(n<=max(n1))==1))=x1;%x1 with duration of y y2(find((n>=min(n2))&(n<=max(n2))==1))=x2;%x2 with duration of y y=y1+y2;%sequence addition (2)信号相乘 信号相乘,即两个序列的乘积(或称“点乘”),表达式为: x(n)=x1(n)?x2(n) 在MA TLAB中,用运算符“.*”实现。

信号、系统及系统响应,离散系统的时域分析实验报告

实验报告 实验二 信号、系统及系统响应,离散系统的时域分析 一、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变换关系,加深对时域采样定理的理 解; (2) 熟悉时域离散系统的时域特性; (3) 利用卷积方法观察分析系统的时域特性; (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信 号、离散信号及系统响应进行频域分析。 (5) 熟悉并掌握离散系统的差分方程表示法; (6) 加深对冲激响应和卷积分析方法的理解。 二、实验原理与方法 1、信号、系统及系统响应 采样是连续信号数字处理的第一个关键环节。对采样过程的研究不仅可以了解采样前后信号时域和频域特性发生的变化以及信号信息不丢失的条件,而且可以加深对傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。 我们知道,对一个连续信号xa(t)进行理想采样的过程可用(2-1)表示。 ^ ()()() (21) a a x t x t p t =- 其中^ ()a x t 为()a x t 的理想采样,()p t 为周期冲激脉冲,即 ()() (22) n p t t nT δ∞ =-∞= --∑ ^ ()a x t 的傅里叶变换^ ()a X j Ω为 ^ 1()[()] (23) a a s m X j X j m T ∞ =-∞ Ω=Ω-Ω-∑ (2-3)式表明^ ()a X j Ω为()a X j Ω的周期延拓,其延拓周期为采样角频率

(2/)s T πΩ=。其采样前后信号的频谱只有满足采样定理时,才不会发生频率混叠失真。 将(2-2)带入(2-1)式并进行傅里叶变换: ^ ()[()()]j t a a n X j x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ Ω=-∑? [()()]j t a n x t t nT e dt δ∞ ∞ -Ω-∞ =-∞ = -∑? ()(24) j nT a n x nT e ∞ -Ω=-∞ = -∑ 式中()a x nT 就是采样后得到的序列()x n ,即 ()()a x n x nT = ()x n 的傅里叶变换()j X e ω为 ()()(25) j j n n X e x n e ω ω∞ -=-∞ = -∑ 比较(2-5)和(2-4)可知 在数字计算机上观察分析各种序列的频域特性, 通常对X(ej ω)在[0, 2π]上进行M 点采样来观察分析。 对长度为N 的有限长序列x(n), 有 一个时域离散线性非移变系统的输入/输出关系为 上述卷积运算也可以在频域实现 2、离散系统时域分析 ^ ()() (26) j a T X j X e ωω=ΩΩ=-1 ()()(27) 2,0,1,,1k N j n j k n k X e x m e k k M M ωωπ ω--==-= =???-∑()()()()() (28) m y n x n h n x m h n m ∞ =-∞ =*= --∑()()() (29) j j j Y e X e H e ωωω=-式中

离散时间信号与系统

实验:离散时间信号与系统的时域分析 一、实验目的 1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数; 2、掌握离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程; 3、牢固掌握系统的单位序列响应的概念,掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。 基本要求:掌握用MATLAB描述离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。掌握线性时不变离散系统的时域数学模型用MATLAB描述的方法,掌握线性常系数差分方程的求解编程。 二、实验原理 信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。 在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。 在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。但是,还有一些信号的独立时间变量是离散变化的,这种信号称为离散时间信号。前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量是不连续的,因此日收盘指数是离散时间信号。 而系统则用于对信号进行运算或处理,或者从信号中提取有用的信息,或者滤出信号中某些无用的成分,如滤波,从而产生人们所希望的新的信号。系统通常是由若干部件或单元组成的一个整体(Entity)。系统可分为很多不同的类型,例如,根据系统所处理的信号的不同,系统可分为连续时间系统(Continuous-time system)和离散时间系统(Discrete-time system),根据系统所具有的不同性质,系统又可分为因果系统(Causal system)和非因果系统(Noncausal system)、稳定系统(Stable system)和不稳定系统(Unstable system)、线性系统(Linear system)和非线性系统(Nonlinear system)、时变系统(Time-variant system)和时不变系统(Time-invariant system)等等。 然而,在信号与系统和数字信号处理中,我们所分析的系统只是所谓的线性时不变系统,这种系统同时满足两个重要的基本性质,那就是线性性和时不变性,通常称为线性时不变(LTI)系统。 1. 信号的时域表示方法 1.1将信号表示成独立时间变量的函数

实验一离散时间信号与系统分析

实验一 离散时间信号与系统分析 一、实验目的 1.掌握离散时间信号与系统的时域分析方法。 2.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系统响应进行频域分析。 3.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。 二、实验原理 1.离散时间系统 一个离散时间系统是将输入序列变换成输出序列的一种运算。若以][?T 来表示这种运算,则一个离散时间系统可由下图来表示: 图 离散时间系统 输出与输入之间关系用下式表示 )]([)(n x T n y = 离散时间系统中最重要、最常用的是线性时不变系统。 2.离散时间系统的单位脉冲响应 设系统输入)()(n n x δ=,系统输出)(n y 的初始状态为零,这是系统输出用)(n h 表示,即)]([)(n T n h δ=,则称)(n h 为系统的单位脉冲响应。 可得到:)()()()()(n h n x m n h m x n y m *=-= ∑∞ -∞= 该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。 3.连续时间信号的采样 采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变换、傅氏变换、Z 变换和序列傅氏变换之间关系的理解。 对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘 积,即:)()()(?t t x t x T a a δ=

其中,)(?t x a 是连续信号)(t x a 的理想采样,)(t T δ是周期冲激脉冲 ∑∞ -∞=-= m T mT t t )()(δδ 设模拟信号)(t x a ,冲激函数序列)(t T δ以及抽样信号)(?t x a 的傅立叶变换分别为)(Ωj X a 、)(Ωj M 和)(?Ωj X a ,即 )]([)(t x F j X a a =Ω )]([)(t F j M T δ=Ω )](?[)(?t x F j X a a =Ω 根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即 )]()([21)(?Ω*Ω=Ωj X j M j X a a π 其中 ?∞ ∞ -Ω-==Ωdt e t x t x F j X t j a a a )()]([)( 由此可以推导出∑∞-∞=Ω-Ω=Ωk s a a jk j X T j X )(1)(? 由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,则采样后的离散序列不会发生频谱混叠现象。 4.有限长序列的分析 对于长度为N 的有限长序列,我们只观察、分析在某些频率点上的值。 ???-≤≤=n N n n x n x 其它010),()( 一般只需要在π2~0之间均匀的取M 个频率点,计算这些点上的序列傅立叶变换: ∑-=-=1 0)()(N n jn j k k e n x e X ωω 其中,M k k /2πω=,1,,1,0-=M k 。)(ωj e X 是一个复函数,它的模就是幅频特 性曲线。 三、主要实验仪器及材料

FFT对连续信号和时域离散信号进行谱研究分析

FFT对连续信号和时域离散信号进行谱分析

————————————————————————————————作者:————————————————————————————————日期:

一、实验目的与要求 学习用FFT对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析误差及其原因,以便正确应用FFT。 二、实验原理 用FFT对信号作频分析是学习数字信号处理的重要内容,经常需要进行分析的信号是模拟信号的时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N,因此要求2π/N 小于等于D。可以根据此式选择FFT的变换区间N。误差主要来自于用FFT作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N较大时,离散谱的包络才能逼近连续谱,因此N要适当选择大一些。 三、实验步骤及内容 (1)对以下序列进行FFT分析: x1(n)=R4(n) n+1 0≤n≤3 x2(n)={ 8-n 4≤n≤7 0 其它n 4-n 0≤n≤3 X3(n)={ n-3 4≤n≤7 0 其它n 选择FFT的变换区间N为8和16两种情况进行频谱分析,分别打印出幅频特性曲线,并进行讨论、分析与比较 xn1=[1 1 1 1]; Xk18=fft(xn1,8); yn11=abs(Xk18); n11=0:length(yn11)-1; Xk116=fft(xn1,16); yn12=abs(Xk116); n12=0:length(yn12)-1; n=0:3; x21=n+1; x31=4-n; n=4:7; x22=8-n; x32=n-3; xn2=[x21,x22]; Xk28=fft(xn2,8); yn21=abs(Xk28); n21=0:length(yn21)-1; Xk216=fft(xn2,16); yn22=abs(Xk216); n22=0:length(yn22)-1; xn3=[x31,x32]; Xk38=fft(xn3,8);

实验一-离散时间信号分析

实验一 离散时间信号分析 一、实验目的 1. 初步掌握 Matlab 的使用,掌握编写M 文件和函数文件 2. 掌握各种常用序列的表达,理解其数学表达式和波形表示之间的关系。 3. 掌握生成及绘制数字信号波形的方法。 4. 掌握序列的基本运算及实现方法。 5. 研究信号采样时采样定理的应用问题。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列{x (n )}来表示,其中x (n )代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为-∞< n<+∞的整数,n 取其它值x (n )没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号x a (t ) 进行等间隔采样,采样间隔为T ,得到{x (nT )} a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)δ (n )、单位阶跃序列u (n )、矩形序列R N (n ) 、 实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 y(n)=∑x (m )h (n ?m )+∞m=?∞=x(n)*h(n) 上式的运算关系称为卷积运算,式中* 代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4 个步骤。 (1)反褶:先将x (n )和h (n )的变量n 换成m ,变成x (m )和h (m ),再将h (m )以纵 轴为对称轴反褶成h (-m )。 (2)移位:将h (-m )移位n ,得h (n- m )。当n 为正数时,右移n 位;当n 为负数时, 左移n 位。 (3)相乘:将h (n -m )和x (m )的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得y (n )。 三、主要实验仪器及材料 PC 机、Matlab7.0。

实验二-离散时间信号与系统的Z变换分析

实验二 离散时间信号与系统的Z 变换分析 一、 实验目的 1、 熟悉离散信号Z 变换的原理及性质 2、 熟悉常见信号的 Z 变换 3、 了解正/反Z 变换的MATLAB 实现方法 4、 了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换和拉氏变换之间的关系 5、 了解利用MATLAB 实现离散系统的频率特性分析的方法 二、 实验原理 1、正/反Z 变换 Z 变换分析法是分析离散时间信号与系统的重要手段。 如果以时间间隔T s 对连续时间信号f (t)进行理 想抽样,那么,所得的理想抽样信号 f (t)为: 则离散信号f (k )的Z 变换定义为: k F(z) f(k)z k 从上面关于Z 变换的推导过程中可知,离散信号 f (k )的Z 变换 拉氏变换F (s)之间存在以下关系: F (s) F(z) 同理,可以推出离散信号 f (k )的Z 变换F(z)和它对应的理想抽样信号 F(j ) F(z) z e j Ts f (t) f(t)* Ts (t) f (t) (t kT s ) 理想抽样信号 f (t)的双边拉普拉斯变换 F (s)为: F (s) f(t)* k (t kT s ) e st dt f (kT s )e ksT s k 若令f (kT s ) f(k) , z e sTi , 那么 f (t)的双边拉普拉斯变换 F (s)为: F (s) f(k)z k FO zesI F(z)与其对应的理想抽样信号 f (t)的 f (t)的傅里叶变换之间的关系为

如果已知信号的Z变换F(z),要求出所对应的原离散序列f(k),就需要进行反Z变换, 其中,C为包围F(z)z k1的所有极点的闭合积分路线。 在MATLAB语言中有专门对信号进行正反Z变换的函数ztrans()和itrans() 下: F=ztrans( f ) 对f(n)进行Z变换,其结果为 F(z) F=ztrans(f,v) 对f(n)进行Z变换,其结果为F(v) F=ztrans(f,u,v) 对f(u)进行Z变换,其结果为F(v) f=itrans ( F ) 对F(z)进行Z反变换,其结果为f(n) f=itrans(F,u) 对F(z)进行Z反变换,其结果为 f(u) f=itrans(F,v,u ) 对F(v)进 行Z反变换,其结果为 f(u) 注意:在调用函数ztran()及iztran()之前,要用syms命令对所有需要用到的变量 行说明,即要将这些变量说明成符号变量。 k 例①.用MATLAB求出离散序列f(k) (0.5) (k)的Z变换 MATLAB程序如下: syms k z f=0.5A k; %定义离散信号 Fz = 2*z/(2*z-1) clc;clear all syms n hn=sym( 'kroneckerDelta(n, 1) + kroneckerDelta(n, 2)+ kroneckerDelta(n, 3)' Hz=ztra ns(h n) Hz=simplify(Hz)反Z变换的定义为: f(k) 21 j?F(z)z k1dz 其调用格式分别如 t,u,v,w )等进 Fz=ztra ns(f) 运行结果如下: %对离散信号进行Z变换 例②.已知一离散信号的Z变换式为F(z) 2z 2z 1 ,求出它所对应的离散信号f(k) MATLAB程序如下: syms k z Fz=2* z/(2*z-1); fk=iztra ns(F z,k) 运行结果如下: fk = %定义Z变换表达式%求反Z变换 例③:求序列f (k)(k 1) (t 4)的Z 变换.

离散时间信号与系统的频域研究分析

离散时间信号与系统的频域分析

————————————————————————————————作者:————————————————————————————————日期:

计算机与信息工程学院 实验报告 专业:通信工程年级/班级:2012级通信工程2013—2014学年第二学期 课程名称指导教师 本组成员 学号姓名 实验地点实验时间 项目名称离散时间信号与系统的频 域分析 实验类型 一、实验目的 1、掌握离散时间信号与系统的频域分析方法,从频域的角度对信号与系统的特性进行分析。 2、掌握离散时间信号傅里叶变换与傅里叶逆变换的实现方法。 3、掌握离散时间傅里叶变换的特点及应用 4、掌握离散时间傅里叶变换的数值计算方法及绘制信号频谱的方法 二、实验仪器或设备 一台装有MATLAB的计算机 三、实验原理 1. 离散时间系统的频率特性 在离散LTI 系统时域分析中得到系统的单位冲激响应可以完全表征系统,进而通过h[n]特性来分析系统的特性。系统单位冲激响应h[n]的傅里叶变换H () 成为LTI 系统的频率响应。与连续时间LTI 系统类似,通过系统频率响应可以分析出系统频率特性。与系统单位冲激响应h[n]一样,系统的频率响应H () 反映了系统内在的固有特性,它取决于系统自身的结构及组成系统元件的参数,与外部激励无关,是描述系统特性的一个重要参数,H () 是频率的复函数可以表示为 其中,|1随频率变化的规律称为幅频特性;?(ω)随频率变化的规律称为相频特性。 2. 离散时间信号傅里叶变换的数值计算方法

算法原理, 由傅里叶变换原理可知: 序列f [n]的离散时间傅里叶变换F是ω的连续函数。由于数据在 matlab 中以向量的形式存在,F ()只能在一个给定的离散频率的集合中计算。然而, 只有类似 形式的e? jω的有理函数,才能计算其离散时间傅里叶变换。 四、实验内容 1 离散时间傅里叶变换 (1)下面参考程序是如下序列在范围?4π≤ω≤4π的离散时间傅里叶 变换 实验代码 %计算离散时间傅里叶变换的频率样本 clear all; w=-4*pi:8*pi/511:4*pi; num=[2 1]; den=[1 -0.6]; h=freqz(num,den,w); subplot(2,1,1) plot(w/pi,real(h)); grid; title(‘实部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); subplot(2,1,2) plot(w/pi, imag(h)); grid; title(‘虚部’) xlabel(‘omega/\pi’); ylabel(‘振幅’); figure; subplot(2,1,1) plot(w/pi, abs(h)); grid; title(‘幅度谱’) xlabel(‘omega/\pi’); ylabel(‘振幅’);

6.离散时间信号与系统的时域分析

第6章线性时不变离散系统的时域分析 6.1 学习要求 (1)掌握离散信号的基本描述方法、分类及其基本运算; (2)掌握离散时间系统的差分方程描述; (3)熟练掌握系统的单位样值响应; (4)熟练掌握卷积和的概念及计算; (5)掌握系统零输入响应和零状态响应的求解方法; (6)了解离散相关的概念和性质。 6.2学习重点 (1)系统的单位样值响应的计算; (2)零输入响应和零状态响应的求解方法; (3)卷积和的概念及计算。 6.3知识结构

6.4内容摘要 6.4.1 离散时间信号的定义 离散时间信号是指仅在不连续的离散时刻有确定函数值,而在其它点上函数值未定义的信号,简称离散信号,也称序列,常用)(n x 表示。 6.4.2 常用的时间序列 (1)单位样值序列)(n

?? ?≠==0 00 1)(n n n δ (2)单位阶跃序列)(n u ? ??<≥=000 1)(n n n u )(n u 和)(n δ的关系: +-+-+-+=)3()2()1()()(n n n n n u δδδδ∑∞ =-=0 )(k k n δ )1()()(--=n u n u n δ (3)矩形序列)(n R N ? ? ?≥<-≤≤=)0(0) 10(1)(N n n N n n R N 或 矩形序列与阶跃序列、样值序列的关系: ∑-=-=+-++-+-+=10 )()1()2()1()()(N m N m n N n n n n n R δδδδδ )1()()(+--=N n u n u n R N (4)正弦序列 )sin()(0φω+=n A n x 式中,A 为幅度,φ为起始相位,0ω为正弦序列的数字域频率,N π ω20=。 (5)实指数序列 )()(n u a n x n = 波形特点为:a >1时,序列发散;1

时域离散信号的产生与运算

典型时域离散序列的产生与简单运算 1. 单位冲激序列 程序1: function [x,n]=impseq(n0,n1,n2) % generates x(n)=delta(n-n0); n1<=n<=n2 n=[n1:n2]; x=[(n-n0)==0]; 调用:[x,n]=impseq(0,-3,4); stem(n,x) 程序2: n1=-3;n2=4;n0=0; n=n1:n2; x=[n==n0]; stem(n,x,'filled'); axis([n1,n2,0,1.1*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)'); title('单位脉冲序列'); 2. 单位阶跃序列 程序: n1=-3;n2=4;n0=0; n=n1:n2; x=[n>=n0]; stem(n,x,'filled'); axis([n1,n2,0,1.1*max(x)]); xlabel('时间(n)');ylabel('幅度x(n)'); title('单位阶跃序列'); 3. 矩形序列 程序: 10()00n n n δ=?=?≠?1≥0()00n u n n ?=?

n=[-10:10]; xn1=[(n-0)>=0]; xn2=[(n-4)>=0]; %定义两个阶跃序列; xn=xn1-xn2; 两个阶跃序列之差得到矩形序列; stem(n,xn,'.'); xlabel('时间(n)');ylabel('幅度x(n)'); title(‘矩形序列'); 4. 正弦序列 程序: n=0:20; xn=sin(pi/4*n); stem(n,xn,'.'); xlabel('时间(n)');ylabel('幅度x(n)'); title(‘正弦序列'); 5. 指数序列 程序: n=[0:20]; x=(0.9).^n; stem(n,x); xlabel('时间(n)');ylabel('幅度x(n)'); title(‘指数序列'); 6. 对conv 进行简单的扩展conv_m ,可以完成任意位置序列的卷积. 对于有限长序列x (n ),h (n ),它们分别的区域为[n xb,n xe]和[n hb,n he],则卷积后的区域为 [n xb+n hb,n xe+n he] 程序: function[y,ny]=conv_m(x,nx,h,nh) nyb=nx(1)+nh(1); nye=nx(length(x))+nh(length(h)); ny=[nyb:nye]; y=conv(x,h); 调用: x=[3,11,7,0,-1,4,2]; h=[2,3,0,-5,2,1]; nx=[-3:3]; nh=[-1:4]; [y,ny]=conv_m(x,nx,h,nh) ()sin()x n A n ωθ=+n a n x =)(

实验二 离散时间信号的时域分析(附思考题程序)

实验二离散时间信号的时域分析 1.实验目的 (1)学习MA TLAB软件及其在信号处理中的应用,加深对常用离散时间信号的理解。(2)利用MA TLAB产生常见离散时间信号及其图形的显示,进行简单运算。 (3)熟悉MA TLAB对离散信号的处理及其应用。 2.实验原理 离散时间信号是时间为离散变量的信号。其函数值在时间上是不连续的“序列”。(1)单位抽样序列 如果序列在时间轴上面有K个单位的延迟,则可以得到,即: 该序列可以用MA TLAB中的zeros函数来实现。 (2)正弦序列 可以利用sin函数来产生。 (3)指数序列 在MA TLAB中通过:和来实现。 3.实验内容及其步骤 (1)复习有关离散时间信号的有关内容。 (2)通过程序实现上述几种信号的产生,并进行简单的运算操作。 单位抽样序列 参考:% Generation of a Unit Sample Sequence clf; % Generate a vector from -10 to 20 n = -10:20; % Generate the unit sample sequence u = [zeros(1,10) 1 zeros(1,20)]; % Plot the unit sample sequence stem(n,u); xlabel('Time index n');ylabel('Amplitude'); title('Unit Sample Sequence'); axis([-10 20 0 1.2]); 如果序列在时间轴上面有K个单位的延迟,则可以得到,即: ,通过程序来实现如下所示结果。

相关主题
文本预览
相关文档 最新文档