当前位置:文档之家› 各种类型空调负荷计算

各种类型空调负荷计算

各种类型空调负荷计算
各种类型空调负荷计算

空调负荷计算

(一)、空调负荷计算依据1.人体的舒适性及空调室内空气的设计参数一.人体的舒适性

空气调节建筑的一个主要目的就是要为其使用人员创造一个舒适的生活,工作,娱乐或购物等的环境空间。因此,也可称为人工环境工程的一部分,这一点对于高层高级民用建筑尤为突出。通常来说,在高层民用建筑空调中,影响人体舒适性的环境因素有以下内容。

1. 室内温度

室内温度是影响人员舒适性的最主要因素,也是空调设计中首要考虑的问题。室温对人员的影响是通过人体表面皮肤的对流换热和导热作用来表现的,无论是冬季还是夏季,过高或低的室内温度都会使人体本身的平衡受到破坏,从而产生极不舒适的感觉,严重时甚至导致室内人员生病的情况发生。

2. 相对湿度

相对湿度影响人体表面汗液的蒸发,实际上也是对人梯热平衡的一种影响。相对湿度过高会使人感到气闷,汗出不来,过低又会使人感觉干燥。我国北方地区的一些建筑,冬季室内物品经常产生静电,也是相对湿度过低引起的。相对湿度过低的另一个不良影响是使室内木制家具及装修材料产生裂纹给用户带来直接的经济损失。

3. CO2浓度及新风量

在空调建筑中,通常对门窗的密闭性要求较高,除非特殊要求,采用开窗取新风的办法是不合适的。然而,今年来由于新鲜空气不足而产生的所谓的空调病,使许多人对空调产生一种抵触心理,因此,必须不断地对人员的活动空间提供一定量的新鲜空气,以稀释室内人员产生的CO2及其他物品产生的有害气体的浓度。只有当有害气体和CO2的浓度控制在一定的范围时,才能满足室内人员的最低舒适性要求,实际上就是保证人员卫生健康所要求的最低标准。

随着人们生活水平的提高,相信对此的要求也会逐渐提高,这也符合目前学术界正关注的IAQ(室内空气质量)问题的讨论结果和要求。尽管这样做必须以多耗能源为代价,但如果不这样要求,则是以人的健康为代价,这显然背离了人们最根本的需求及空调建筑的初衷了。

4. 室内空气流速

由于空调通风,必然会造成室内空气的流动,气流速度也会对人体造成一定的影响。最明显的是夏季送冷风时,如果冷空气的流速过大,造成人梯吹冷风的感觉时,会对舒适性产生不利的影响。

5. 周围物体的表面温度

由于人体的散热量中,有一部分是通过人体对周围物体的辐射来进行的,辐射散热量的大小取决于人体与物体表面的温差。因此,周围物体的表面温度也是影响时室内人员冷,热感觉的因素之一。

6. 噪声

噪声将使人产生烦躁不安的情绪,有害于人体身心健康。有效的控制空调通风系统的噪声,是空调设计的一个重要部分。

影响人体舒适性的因素是多方面的。除上述之外,诸如人员穿衣多少,个人生活习惯,房间的使用性质,都会对其产生一定的影响。另外,现行的国家和地方的有关标注,规范等,也对上述舒适性参数的设计选用产生一定的制约因素。

要缩合考虑地区、经济条件和节能要求等因素,根据我国国家标准《采暖通风与空气调节设计规范》(GBJ 19-87)的规定,对于舒适性空调,室内设计参数如下:

夏季:温度应采用24~28℃;冬季:温度应采用18~22℃;

相对湿度应采用40%~65%;相对湿度应采用40%~60%;

风速不应大于0.3m/s。风速不应大于0.2 m/s。

标准中给出的数据是概括性的。对于具体的民用建筑而言,由于各空调房间的使用功能各不相同,而其室内空调设计计算参数也会有较大的差异。以下为各种不同用途房间的室内空调设计计算参数可参照以下表格中的数据确定。

(1) 客房空调室内设计参数,可根据国标《旅游旅馆建筑热工与空气调节节能设计标准》(GB 50189-93)规定的客房空调设计计算参数。

国内旅馆客房空调设计计算参数

房间类型夏季冬季

空气中含尘浓

度(mg.m-3)

空气温度

/℃

相对湿度

/%

风速

/(m.s-1)

空气温度

/℃

相对湿度

/%

风速

/(m.s-1)

客房一级24 ≤55≤0.2524 ≥50≤0.15

≤0.15二级25 ≤60≤0.2523 ≥40≤0.15

三级26 ≤65≤0.2522 ≥30≤0.15

四级27 ──21 ──

(2)国标GB50189-93规定的餐厅、宴会厅(多功能厅)空调室内设计参数

房间类型夏季冬季

空气中含尘浓

度(mg.m-3)

空气温度

/℃

相对湿度

/%

风速

/(m.s-1)

空气温度

/℃

相对湿度

/%

风速

/(m.s-1)

餐厅宴会厅一级23 ≤65≤0.2523 ≥40≤0.15

≤0.15二级24 ≤65≤0.2522 ≥40≤0.15

三级25 ≤65≤0.2521 ≥40≤0.15

四级26 ──20 ──

(3)国标GB50189-93规定的康乐中心空调室内空调设计参数

房间类型夏季冬季

空气中含尘浓

度(mg.m-3)

空气温度

/℃

相对湿度

/%

风速

/(m.s-1)

空气温度

/℃

相对湿度

/%

风速

/(m.s-1)

美容美发室 24 ≤60≤0.1523 ≥50≤0.15≤0.25康乐设施24 ≤60≤0.2520 ≥40≤0.25≤0.15 (4)办公建筑设计规范(JGJ67-89)规定的办公用房室内温度、湿度的设计参数

房间类型夏季冬季

空气温度

/℃

相对湿度

/%

气流平均速

度/(m.s-1)

空气温度

/℃

相对湿度

/%

气流平均速度

/(m.s-1)

一般办公室26~28 ≤65≤0.318~20 ─≤0.20

高级办公室24~27 ≤60≤0.320~22 ≥35≤0.20

会议室接待室25~27 ≤65≤0.316~18 ─≤0.20

电话总机房25~27 ≤65≤0.316~18 ─≤0.20

计算机房24~28 ≤60≤0.318~20 ─≤0.20

复印机房24~28 ≤55 ─18~20 ──

2.空调室外空气的计算参数室外空气计算参数的取值大小将直接影响室内空气状态和空调费用。因此,在空调设计中,暖通空调工程师要严格按照规范选用室外空气计算参数作为建筑物围护结构的温差传热量和新风负荷的计算依据。在选用时暖通空调工程师应该明确下列要求:

(1)设计规范中规定的室外计算参数是按全年少数时间不保证室内温湿度标准而制定的,因

此,若室内温湿度必须保证时,应另行规定。

(2)空调系统冬季的加热、加湿所耗费用远小于夏季的冷却去湿所耗费用。为了便于计算,冬季可按稳定传热方法计算传热量,而不考虑室外气温的波动。

(二)、空调负荷计算1、空调房间的冷负荷包括(1)、由于室内外温差和太阳辐射作用,通过建筑物围护结构传入室内的热量形成的冷负荷;

(2)、人体散热、散湿形成的冷负荷;

(3)、灯光照明散热形成的冷负荷;

(4)、其他设备散热形成的冷负荷;

(5)渗透空气所形成的冷负荷

空调房间的冷负荷是确定空调送风系统风量和空调设备的依据。

2、冷负荷计算(1)围护结构瞬变传热形成冷负荷的计算方法

a、外墙和屋面瞬变传热引起的冷负荷

在日射和室外气温综合作用下,外墙和屋面瞬变传热引起的逐时冷负荷可按下式计算:Qw=AK(tc-tn)

Qw-----------外墙和屋面瞬变传热引起的逐时冷负荷,W;

A-------------外墙和屋面的面积,㎡

K-------------屋面和外墙的传热系数,W/(㎡.℃);

tn-------------室内设计温度,℃;

tc-------------外墙和屋面的冷负荷计算温度的逐时值,℃;

以下表格为部分屋面及外墙的结构型式:

外墙结构型式:

墙壁厚(mm) 构造(由外到内) 传热系数[W/(㎡.℃)] 类别

240

砖墙、白灰粉墙2 Ⅲ

370 1.55 Ⅱ

240 水泥沙浆、砖墙、白灰粉

墙1.97 Ⅲ

370 1.5 Ⅱ

240

水泥沙浆、砖墙、木丝板1.5 Ⅲ

370 1.26 Ⅱ

240

硅酸盐砖墙、白灰粉刷2.14 Ⅲ

370 1.62 Ⅱ屋顶结构型式:

壁厚(mm) 构造(由上到下)

保温层传热系数

[W/(㎡.℃)]

类别

材料厚度(mm)

35 砾砂外表层5mm、卷材防

水层、水泥砂浆找平层、

保温层、隔汽层、水泥砂

浆找平层、预制钢筋混凝

土屋面板、内粉刷

水泥膨胀珍珠岩

25 1.86 Ⅵ

50 1.33 Ⅴ

75 1.04 Ⅴ

100 0.85 Ⅴ

125 0.72 Ⅳ

150 0.62 Ⅳ

175 0.55 Ⅳ

200 0.49 Ⅲ

沥青膨胀珍珠岩25 1.59 Ⅴ

50 1.07 Ⅴ75 0.8 Ⅴ100 0.64 Ⅳ125 0.53 Ⅳ150 0.47 Ⅳ175 0.41 Ⅲ200 0.36 Ⅲ

加气混凝土、泡沫混凝土25 2.26 Ⅵ50 1.78 Ⅴ75 1.47 Ⅴ100 1.24 Ⅴ125 1.08 Ⅳ150 0.97 Ⅳ175 0.86 Ⅲ200 0.78 Ⅲ

沥青蛭石板25 1.78 Ⅴ50 1.24 Ⅴ75 0.97 Ⅳ100 0.78 Ⅳ125 0.66 Ⅲ150 0.57 Ⅲ175 0.5 Ⅱ200 0.44 Ⅱ

70 砾砂外表层5mm、卷材防

水层、水泥砂浆找平层

20mm、保温层、隔汽层、

现浇钢筋混凝土屋面板、

内粉刷

水泥膨胀珍珠岩

25 1.86 Ⅴ

50 1.33 Ⅴ

75 1.04 Ⅳ

100 0.85 Ⅳ

125 0.71 Ⅵ

150 0.62 Ⅲ

175 0.55 Ⅲ

200 0.49 Ⅲ

沥青膨胀珍珠岩

25 1.58 Ⅴ

50 1.07 Ⅴ

75 0.8 Ⅳ

100 0.64 Ⅳ

125 0.53 Ⅲ

150 0.47 Ⅲ

175 0.41 Ⅲ

200 0.36 Ⅲ

加气混凝土、泡沫混25 2.26 Ⅴ

凝土50 1.78 Ⅴ

75 1.47 Ⅳ

100 1.24 Ⅳ

125 1.08 Ⅲ

150 0.97 Ⅲ

175 0.86 Ⅲ

200 0.78 Ⅲ

沥青蛭石板25 1.78 Ⅴ50 1.24 Ⅳ75 0.97 Ⅳ100 0.78 Ⅲ125 0.66 Ⅲ150 0.57 Ⅱ175 0.5 Ⅱ200 0.44 Ⅱ

注:以上两表摘自陆耀庆主编的《实用供热空调设计手册》

其余类型的外墙及屋顶结构可参阅《实用供热空调设计手册》。

b、内围护结构冷负荷

内围护结构是指内隔墙及内楼板,它们的冷负荷也是通过温差传热(即与邻室的温差)而产生的,这部分可视为稳定传热,不随时间而变化,其计算公式:

Qn=AnKn(tw+△t-tn)

Kn-----------内墙或内楼板传热系数,W/(㎡.℃);

An-----------内墙或内楼板面积,㎡;

tw------------夏季空调室外计算日平均温度,℃;

△t----------附加温升,取邻室平均温度与室外平均温度的差值,℃;

c、外玻璃窗瞬变传热引起的冷负荷

在室内外温差作用下,玻璃窗瞬变传热引起的冷负荷按下式计算:

Qw=AwKw(tc-tn)

Qw-----------外玻璃窗瞬变传热引起的冷负荷,W;

Aw-----------窗口面积,㎡;

Kw-----------玻璃窗的传热系数,W/(㎡.K);

tc-------------玻璃窗的冷负荷温度的逐时值,℃;

d、透过玻璃窗的日射得热引起冷负荷的计算方法

Qw=CaAwCsCiDj.maxCLQ

Qw-----------透过玻璃窗的日射得热形成的冷负荷,W;

Aw-----------窗口面积,㎡;

Ca------------有效面积系数;

Cs------------窗玻璃的遮阳系数;

Ci------------窗内遮阳设施的遮阳系数;

Dj.max--------日射得热因数最大值,W/㎡;

CLQ----------窗玻璃冷负荷系数,无因次。

门窗框材料门窗类型空气层厚度(mm) K[W/(㎡.℃)]

钢、铝单层玻璃窗、门 6.4

单框双玻璃、门12 3.9 16 3.7 20-30 3.6

双层玻璃窗100-140 3 单层+单框双玻璃100-140 2.5

木、塑料单层玻璃窗、门 4.7 单框双玻璃、门

12 2.7

16 2.6

20-30 2.5 双层玻璃窗100-140 2.3 单层+单框双玻璃100-140 2

木外门 4.5

木内门 2.9

注:摘自全国民用建筑工程设计技术措施《暖通空调.动力》

e、室内设备散热形成的冷负荷

Qw=QsCLQ

Qw-----------设备和用具显热形成的冷负荷,W;

Qs------------设备和用具实际显热散热量,W;

CLQ----------设备和用具显热散热冷负荷系数;如果空调系统不连续运转,则CLQ=1.0

f、人体显热散热形成的冷负荷

Qw=qsnΦCLQ

Qw-----------人体显热散热形成的冷负荷,W;

qs------------不同室温和劳动性质的成年男子显热散热量,W;

n-------------室内全部人数;

Φ-------某些空调建筑物内的群集系数;

CLQ----------人体显热散热冷负荷系数,应注意对于人员密集的场所(如电影院、剧院、会堂等),由于人体对围护结构和室内物品的辐射换热量相应减少,可取CLQ=1.0

g、人体潜热散热形成的冷负荷

Qc=q1nΦ

Qc-----------人体潜热散热形成的冷负荷,W;

q1-----------不同室温和劳动性质的成年男子潜热散热量,W;

注:以上所有的空调冷负荷计算公式可参见陆耀庆主编的《实用供热空调设计手册》。3、民用建筑空调负荷的概算指标在空调初步设计阶段,空调负荷一般都是根据空调负荷的概算指标来估算的,或根据实际工作中积累起来空调负荷的经验数据进行粗略估算。所谓空调负荷概算指标是指折算到建筑物中每平方米空调面积(或建筑面积)所需冷冻机负荷值或热负荷值。

以下为部分有代表性的空调负荷概算指标,仅供参考。其概算指标值可用作设计计算的粗略估算和用作方案阶段、扩初阶段的估算。

序号建筑物类型及房间名称冷负荷指标(W)

1 旅游旅馆:客房标准80~110

2 酒吧、咖啡厅100~180

3 西餐厅160~200

4 中餐厅、宴会厅180~350

5 商店、小卖部100~160

6 中庭、接待90~120

7 小会议室(允许少量吸烟)200~300

8 大会议室(不允许吸烟)180~280

9 理发、美容120~180

10 健身房、保龄球100~200

11 弹子房90~120

12 室内游泳池200~350

13 舞厅(交谊舞)200~350

14 舞厅(迪斯科)250~350

15 办公90~120

16 医院:高级病房80~110

17 一般手术室100~150

18 医院:洁净手术室300~500

19 X光、CT、B超诊室120~150

20 商店:营业厅150~250

21 影剧院:观众席180~350

22 休息厅(允许吸烟)300~400

23 化妆室90~120

24 体育馆:比赛馆120~250

25 观众休息厅(允许吸烟)300~400

26 贵宾室100~200

27 展览厅、陈列室130~200

28 会堂、报告厅150~200

29 图书阅览室75~100

30 科研、办公90~140

31 公寓、住宅80~90

32 餐馆200~350

注:摘自陆耀庆主编的《实用供热空调设计手册》

4、新风量负荷的计算空调新风负荷按下式计算:QW=GW(iw-in)

式中 QW:新风负荷,KW

GW:新风量 Kg/s

iw:室外空气焓值,KJ/kg

in:室内空气焓值,KJ/kg

为了设计方便,下表给出全国主要城市夏季1kg/s新风量对应不同室内参数的夏季新风负荷值。使用时,请注意,各城市空调室外设计参数是按照《采暖通风与空气调节设计规范》选定的

表2-67 全国主要城市夏季1Kg/s新风量的新风负荷值/Kw

地点室内干球温度24℃室内干球温度25℃室内干球温度26℃

室内干球温度

28℃

相对相对相对相对相对相对相对相对相对相对相对湿相对湿

湿度50% 湿度

55%

湿度

60%

湿度

50%

湿度

55%

湿度

60%

湿度

50%

湿度

55%

湿度

60%

湿度

65%

度55% 度60%

35.35 32.4 29.96 32.32 29.73 27.1 29.72 26.94 24.14 21.34 21.06 17.9 上

42.51 40.1 37.71 40.02 37.44 34.87 37.41 34.69 31.96 29.23 28.88 25.8 天

36.42 34.01 31.62 33.93 31.35 28.78 31.32 28.6 25.87 23.14 22.79 19.71 石

37.61 35.14 37.7 35.06 32.47 29.84 32.46 29.68 26.88 24.08 23.8 20.64

23.69 21.07 18.45 21.07 18.27 15.47 18.34 15.35 12.4 9.39 9.22 5.85

14.5 11.68 8.83 11.72 8.72 5.71 8.86 5.77 2.44 / / /

30.49 28.02 25.58 27.94 25.35 27.72 25.34 22.56 19.76 16.96 16.68 13.52

28.9 26.43 23.99 26.35 23.76 21.13 23.75 20.97 18.17 15.37 15.09 11.93

25.97 23.48 20.96 23.4 20.75 18.08 20.74 17.91 15.06 12.21 11.96 8.72

22.76 20.27 17.75 20.19 17.54 14.87 17.53 14.7 11.85 9 8.75 5.51

43.42 41.01 38.62 40.93 38.35 35.78 38.32 35.6 32.87 30.14 30 26.71 杭

44.75 42.28 39.84 42.2 39.61 36.98 39.6 36.82 34.02 31.22 30.94 27.78 合

43.28 40.81 38.37 40.73 38.14 35.51 38.13 35.35 32.55 29.75 29.47 26.31 福

42.28 39.81 37.37 39.73 37.14 34.51 37.13 34.35 31.55 28.75 28.47 25.31 南

41.8 39.33 36.85 39.25 36.66 34.03 36.65 33.87 31.07 28.27 27.99 24.83 济

36.61 34.14 31.7 34.06 31.47 28.84 31.46 28.68 25.88 23.08 22.8 19.64 郑

40.42 37.95 35.51 37.87 35.28 32.65 35.27 32.49 29.69 26.89 26.61 23.45 武

43.25 40.78 38.34 40.7 38.11 35.48 38.1 35.32 32.52 29.72 29.44 26.28

37.42 34.95 32.51 34.87 32.28 29.65 32.27 29.49 26.69 23.89 23.61 20.45 沙

广

43.23 40.76 38.32 40.68 38.09 35.46 38.08 35.3 32.5 29.7 29.42 26.26 州

41.85 39.38 36.94 39.3 36.71 34.08 36.7 33.92 31.12 28.32 28.04 24.88 口

39.33 36.86 34.42 36.78 34.19 31.56 34.18 31.4 28.6 25.8 25.52 22.36 宁

37.71 35.24 32.68 35.19 32.46 29.74 32.51 29.6 26.7 23.77 23.57 20.25 都

39.33 36.84 34.32 36.76 34.11 31.44 34.1 31.27 28.42 25.57 25.32 22.08 庆

23.93 21.11 18.26 21.15 18.15 15.14 18.29 15.2 11.87 8.66 8.61 4.99 阳

西

34 31.53 28.97 31.48 28.75 26.03 28.8 25.89 22.99 20.06 19.86 16.54 安

临时用电负荷计算实例

临时用电负荷计算实例 一、用电负荷运算: 现场用电设备: 1、卷扬机3台(7.5KW)22.5 KW 2、砂浆机3台(3KW)9KW 3、加压泵1台(5.5KW) 5.5K W 4、介木机4台(3KW)12K W 5、振动器3台(1.1KW) 3.3K W 6、电焊机1台(25.5KW)25.5 KW 7、镝灯4支(3.5KW)14K W 8、碘钨灯10支(1KW)10K W 9、其他用电10(KW)10K W 10、生活用电10(KW)10K W 施工现场用电设备的kx、cos、tg 1、卷扬机kx=0.3 cosφ=0.7 tgφ=1.02 2、砂浆机kx=0.7 cosφ=0.68 tgφ=0.62 3、加压泵kx=0.5 cosφ=0.8 tgφ=0.75 4、介木机kx=0.7 cosφ=0.75 tgφ=0.88

5、振动器kx=0.65 cosφ=0.65 tgφ=1.17 6、电焊机kx=0.45 cosφ=0.87 tgφ=0.57 7、镝灯kx=1 8、碘钨灯kx=1 9、其他用电kx=1 10、生活用电kx=1 有功荷载运算: 1、卷扬机Pj1=Pj×kx=22.5kw×0.3=6.75kw 2、砂浆机Pj2=Pj×kx=9kw×0.7=6.3kw 3、加压泵Pj3=Pj×kx=5.5kw×0.5=2.75kw 4、介木机Pj4=Pj×kx=12kw×0.7=8.4kw 5、振动器Pj5=Pj×kx=3.3kw×0.65=2.15kw 6、电焊机Pj6=Pj×kx=25.5kw×0.45=11.48kw 7、镝灯Pj7=Pj×kx=14kw×1=14kw 8、碘钨灯Pj8=Pj×kx=10kw×1=10kw 9、其他用电Pj9=Pj×kx=10kw×1=10kw 10、生活用电Pj10=Pj×kx=10kw×1=10kw 无功荷载运算: 1、卷扬机Qj1=Pj1×tgφ=6.75kw×1.02=6.89 KV AR 2、砂浆机Qj2=Pj2×tgφ=6.3kw×0.62=3.91 KV AR 3、加压泵Qj3=Pj3×tgφ=2.75kw×0.75=2.06 KV AR

空调工程负荷计算实例

空调工程负荷计算实例 七十年代末空调工程负荷用瞬变传热计算代替了稳定传热计算七十年代末空调工程负荷用瞬变传热计算代替了稳定传热计算,,并且区分了得热和负荷的概念了得热和负荷的概念。。八十年代出版的所有空调书籍八十年代出版的所有空调书籍,,如空气调节工程如空气调节工程、、空气调节设计手册调节设计手册、、暖通空调常用数据手册暖通空调常用数据手册、、高层建筑空调与节能等皆引用了动态负荷计算负荷计算。。动态负荷在围护结构方面的计算显得比较繁琐动态负荷在围护结构方面的计算显得比较繁琐,,即便是各种手册采用了一些简化手段用了一些简化手段,,计算工作量也较大计算工作量也较大。。计算软件的产生似乎解决了这一问题计算软件的产生似乎解决了这一问题,,但是应用上也不普遍但是应用上也不普遍,,只有估算最简便只有估算最简便,,捷径行路捷径行路,,人之通性人之通性,,慢慢地被它取而代之了而代之了。。但是估算的根基并不坚实但是估算的根基并不坚实,,偏于保守是不可避免的偏于保守是不可避免的,,总是顾虑怕估算的小了算的小了,,这也是可以理解的这也是可以理解的。。 1、空调工程第一个实例 图1是位于苏州地区旅馆建筑客房的标准层平面简图是位于苏州地区旅馆建筑客房的标准层平面简图,,层高3米,共十层共十层,,24墙两面抹灰墙两面抹灰,,客房为单层塑钢玻璃窗客房为单层塑钢玻璃窗,,面积6m 2,挂浅色窗帘挂浅色窗帘,,屋顶的传热系数为1.19W/m 2℃。客房要求设计干球温度25℃,2人间人间,,新鲜空气量为30m 3/人时人时,,室内平均用电量150W 。走道与楼梯间走道与楼梯间、、电梯间等公用部分电梯间等公用部分,,送冷风保持27℃,客房与走道的温差为2~3℃,可以忽略传热计算可以忽略传热计算,,因而客房的围护结构负荷只有外墙构负荷只有外墙、、外窗外窗、、屋顶等部分屋顶等部分。。从图1可看出可看出,,客房的围护结构的大小和朝向共有6种型式种型式,,并编号如下并编号如下::1.南向南向,,2.北向北向,,3.西南向西南向,,4.西北向西北向,,5.东南向东南向,,6.东北向东北向。。对于顶层多了一个屋面对于顶层多了一个屋面,,编号为1-顶~6-顶。 应用动态传热计算应用动态传热计算,,其最大冷负荷与发生时刻列于表1。

空调负荷计算公式

1、冷负荷计算 (一)外墙的冷负荷计算 通过墙体、天棚的得热量形成的冷负荷,可按下式计算: CLQτ=KF⊿tτ-ε W 式中K——围护结构传热系数,W/m2?K; F——墙体的面积,m2; β——衰减系数; ν——围护结构外侧综合温度的波幅与内表面温度波幅的比值为该墙体的传热衰减度; τ——计算时间,h; ε——围护结构表面受到周期为24小时谐性温度波作用,温度波传到内表面的时间延迟,h; τ-ε——温度波的作用时间,即温度波作用于围护结构内表面的时间,h; ⊿tε-τ——作用时刻下,围护结构的冷负荷计算温差,简称负荷温差。 (二)窗户的冷负荷计算 通过窗户进入室内的得热量有瞬变传热得热和日射得热量两部分,日射得热量又分成两部分:直接透射到室内的太阳辐射热qt和被玻璃吸收的太阳辐射热传向室内的热量qα。 (a)窗户瞬变传热得形成的冷负荷 本次工程窗户为一个框二层3.0mm厚玻璃,主要计算参数K=3.5 W/m2?K。工程中用下式计算: CLQτ=KF⊿tτ W 式中K——窗户传热系数,W/m2?K; F——窗户的面积,m2; ⊿tτ——计算时刻的负荷温差,℃。 (b)窗户日射得热形成的冷负荷 日射得热取决于很多因素,从太阳辐射方面来说,辐射强度、入射角均依纬度、月份、日期、时间的不同而不同。从窗户本身来说,它随玻璃的光学性能,是否有遮阳装置以及窗户结构(钢、木窗,单、双层玻璃)而异。此外,还与内外放热系数有关。工程中用下式计算: CLQj?τ= xg xd Cs Cn Jj?τ W

式中xg——窗户的有效面积系数; xd——地点修正系数; Jj?τ——计算时刻时,透过单位窗口面积的太阳总辐射热形成的冷负荷,简称负荷,W/m2; Cs——窗玻璃的遮挡系数; Cn——窗内遮阳设施的遮阳系数。 (三)外门的冷负荷计算 当房间送风两大于回风量而保持相当的正压时,如形成正压的风量大于无正压时渗入室内的空气量,则可不计算由于门、窗缝隙渗入空气的热、湿量。如正压风量较小,则应计算一部分渗入空气带来的热、湿量或提高正压风量的数值。 (a)外门瞬变传热得形成的冷负荷 计算方法同窗户瞬变传热得形成的冷负荷。 (b)外门日射得热形成的冷负荷 计算方法同窗户日射得热形成的冷负荷,但一层大门一般有遮阳。 (c)热风侵入形成的冷负荷 由于外门开启而渗入的空气量G按下式计算: G=nVmγw kg/h 式中Vm——外门开启一次(包括出入各一次)的空气渗入量(m2/人次?h),按下表3—9选用; n——每小时的人流量(人次/h); γw——室外空气比重(kg/m2)。 表3—9 Vm值(m2/人次?h) 每小时通过 的人数普通门带门斗的门转门 单扇一扇以上单扇一扇以上单扇一扇以上 100 3.0 4.75 2.50 3.50 0.80 1.00 100~700 3.0 4.75 2.50 3.50 0.70 0.90 700~1400 3.0 4.75 2.25 3.50 0.50 0.60

中央空调冷热负荷计算

3.2空调冷负荷 3.2.1通过围护结构传入室内的热量 手术室内衬小室的围护结构均属内围护结构,用下式计算其传入室内的热量: CL1=KF(t1s-t n)(3.1) 式中 CL1——内围护结构传热形成的冷负荷,W; K一一内围护结构的传热系数,W/(m2·℃): F-一内围护结构的面积,m2; t n一一手术室夏季空气调节室内计算温度,℃; t wp——邻室计算平均温度,℃。 对于洁净手术室来讲,邻室是一个技术夹层(或顶棚空间)可以认为是散热量<23w/m3的非空调房间。 tis=t wp+3(3.1.1) 式中t wp——夏季空气调节室外计算日平均温度(℃)。 按GBJ19-87第2.2.9条规定采用壁面的复合板传热系数可由下式计算: 式中 R一一内表面对流换热器,按GBJ19-87表 3.1.4-3规定采用; R——外表面对流换热器,按GBJ19-87表 3.1.4-3规定采用; R——组成围护结构的第i层单一材料的热 阻(m2·℃/W); RI=δJγ(3.1.3) δ1——第i层材料层厚度,m; γci—一第i层材料层计算导热系数, W/(m·℃)。 3.2.2人体散热量 手术室内人员数量及活动规律较难掌握,为简化计算,可以不考虑人体散热冷负荷系数的影响: CL2=nq(3.2)式中CL2——人体散热形成的冷负荷,w; n——手术室内的人数: 对于特大手术室不超过15~17人; 对于大手术室不超过12~15人; 对于中手术室不超过10~12人; 对于小手术室不超过8~10人; q一一一每人平均散热量,取轻劳动度,

q=70w/P。 3.2.3照明散热量 《综合医院建筑设计规范》(JGJ49-88)第5.4.5条推荐手术室照度为100~200(IX)。若采用荧光灯作为泛光照明,不计手术灯集中照明。耗电量约为15W/m2,手术室泛光照明灯不考虑同时使用系数的折减,整流器在吊顶内明装,所以由照明设施形成的冷负荷以15w/m2计。 CL3=F·15 (3.3) 式中CL3一一泛光照明形成的冷负荷,W; F—手术室面积,m2. 3.2.4手术室内设备的散热量 手术室内用电设备包括手术用无影灯、麻醉机、电力呼吸机、心脏监护仪、人工心肺机、X 光机、腹腔镜、电动手术台等,数量较多,种类也较复杂,使用频率差异也较大,应由手术室提出手术器械的配置后详细计算,若无以上资料可按70W/m2估算。 CL a=F·70 (3.4) 式中CL4一一手术室内设备散热形成的冷负荷, w: F一一手术室面积,m2。 3.2.5伴随各种散混过程产主的潜热量 手术室内散湿主要来自人员的散湿和湿表面的散湿。 人员散湿量;W1=nw (3.5) 式中 W1-一人体的散湿量,g/h; n—一手术室内的人数(见前); W——每人平均散湿费按轻劳动强取 值,w=167g/(h·P)。 由此散湿形成的潜冷负荷为112W。 手术室内湿表面的大小因手术种类而异,通常可取0.7m2的湿表面,湿表面温度取40℃,φ=50%,W2=1.022kg/h,由散湿形成的冷负荷为685W,手术室内由于散湿而增加的冷负荷为:CL5=112n+685(3.6) 式中CL5——手术室内散湿过程形成的冷负荷,W; n——手术室内的人数(见前)。 3.2.6手术室空调冷负荷汇总及热温比。 手术室室内空调冷负荷即室内余热量为: CL=CL1+CL2+CL3+CL4+CL5(W)(3.7) 手术室室内空调湿负荷即室内余湿量为: W=W1十W2(kg/kg)(3.8)

某工厂电力负荷计算示例

某工厂电力负荷计算示例 2、1 负荷计算 2、1、1负荷计算得目得 计算负荷就是确定供电系统、选择变压器容量、电气设备、导线截面与仪表量程得依据,也就是整定继电保护得重要数据。计算负荷确定得就是否正确合理,直接影响到电器与导线得选择就是否合理。如计算负荷确定过大,将使电器与导线截面选择过大,造成投资与有色金属得浪费;如计算负荷确定过小,又将使电器与导线运行时增加电能损耗,并产生过热,引起绝缘过早老化,甚至烧毁,以至发生事故。为此,正确进行负荷计算就是供电设计得前提,也就是实现供电系统安全、经济运行得必要手段。 2、1、2负荷计算得方法 目前负荷计算常用需要系数法、二项式法与利用系数法、利用各种用电指标得负荷计算方法。前两种方法在国内各电气设计单位得使用最为普遍。 1、需要系数法 适用范围:当用电设备台数较多、各台设备容量相差不太悬殊时,特别在确定车间与工厂得计算负荷时,宜于采用。组成需要系数得同时系数与负荷系数都就是平均得概念,若一个用电设备组中设备容量相差过于悬殊,大容量设备得投入对计算负荷投入时得实际情况不符,出现不理想得结果。 2、二项式法 当用电设备台数较少、有得设备容量相差悬殊时,特别在确定干线与分支线得计算负荷时,宜于采用。 3、利用系数法 通过平均负荷来求计算负荷,计算依据就是概率论与数理统计,但计算过程较为复杂。 4、利用各种用电指标得负荷计算方法 适用于在工厂得初步设计中估算符合、在各类建筑得初步设计中估算照明负荷用。 根据计算法得特点与适用范围我们选取需要系数法来计算负荷。 2、1、3计算负荷得公式

按需要系数法确定计算负荷得公式 有功(kW) P c = K d ·P e (2-1) 无功(kvar) Q c = P c ·tanφ(2-2) 视在(kVA) S c = (2-3) 电流 (A) I c = (2-4) 式中 K d ——该用电设备组得需用系数; P e ——该用电设备组得设备容量总与,但不包括备用设备容量(kW); P c Q c S c ——该用电设备组得有功、无功与视在计算负荷(kW kvar kVA); U——额定电压(kW); tanφ——与运行功率因数角相对应得正切值; I c ——该用电设备组得计算电流(A); 2、1、4负荷计算 1、染车间动力(AP103B) P c = K d ·P e = 67、5×0、75= 50、6kW Q c = P c ·tan(arccosφ) = 50、6×tan(arccos0、8) = 38、0 kvar S c = = 63、3 kVA 2、预缩力烘干机(AP104E) P c = K d ·P e = 50×0、7= 35、0kW Q c = P c ·tan(arccosφ) = 35、0×tan(arccos0、8) = 26、3 kvar S c = = 43、8 kVA 3、树脂定型机(AP104J) P c = K d ·P e = 150×0、7= 105、0kW Q c = P c ·tan(arccosφ) = 105、0×tan(arccos0、8) = 78、8 kvar S c = = 131、3 kVA 4、车间照明(AL105C1) P c = K d ·P e = 7、77×0、9= 7、0kW Q c = P c ·tan(arccosφ) = 7、0×tan(arccos0、6) = 9、3 kvar S c = = 11、7 kVA

中央空调的负荷计算以及注意事项修订稿

中央空调的负荷计算以 及注意事项 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

中央空调的负荷计算以及注意事项 一,如何自己算面积 一般按照每个平方200-220的冷量去计算实际使用面积即可,一般为保温好的,如卧室选择200左右的冷量,客厅相对保温略差,选择220左右的冷量即可。如果需要制热效果好,那么以每平方250左右计。制冷量就是每个厂家上内机的制冷(热)量或制冷(热)能力。(如何计算冷量:内机的制冷量/制热量÷每个平方的冷量或热量=实际平方数)。 二,外墙厚度 外墙厚度越厚,保温效果越好,每个人都可以自己测量一下自家外墙的厚度,18-22厘米为普通,通常无保温材料;外墙22-26厘米,通常有一层保温材料,保温效果尚可;28厘米或以上,保温效果较好,通常有二层保温材料,可以略微降低一点空调配置。 三,注意事项 卧室的飘窗面积如果超过个平方或以上,要略微增加一点冷量或热量,一般加20-30左右为宜;高层,如果超过10楼或以上,制热量每平增加30左右为宜,有地暖制冷无需增加。薄型风管机的使用高度尽量不超过3米米,天花机的高度尽量不要高于5米,否则影响效果,尤其制热。玻璃尽量采用双层玻璃,能有效防止冷量热量的消耗,窗帘采用双层的话,一层采用较厚深色系为好,能略微阻止冷热量的损失。 四,末端损耗 当中央空调铜管总长超过30米,离室外机最远的一个内机损耗会相对增加,造成效果的下降,弥补措施就是略微加大匹数或冷量,譬如原先应该装一台2500冷量的1匹机型,换成冷量3200或3600的匹机型就可以了。五,连接率 连接率一般是指中央空调所有内机功率冷量的总和与室外机总冷量之间的比值。现在普通家庭使用空调时,普遍不会出现所有内机空调全开的情形,所以家庭用中央空调的设计中就不会采取外机功率与内机功率完全对应的方案(家用空调和风管式空调为内外机功率完全对应),而是以常用内机数量的功率总和值来选择相应匹配的外机,从而降低购买费用,避免不必要的浪费。国内厂商基本把连接率控制在100%---130%之间,也就是内机较外机超配30%。在这个数值间的中央空调选型,确定了室内每个房间区域所需的内机功率总和之后,才能在合理的连接率范围内选择匹配功率的外机。一般厂家认为的最佳配置是在120%左右的连接率是最合适的。(PS:多联机外机全部都有一个外机制冷量,比如外机制冷量10000,那么最高130%,外机冷量,就是代表可以连接内机台数的总冷量不能大于13000,以此类推来推算连接率) 如果内机总冷量超过外机冷量比,也就是说的在超配后所有内机全部开启就会发生以下情况 1.如全部内机同开的情况下,每台内机会受连接率的影响而得不到外机全功率支持,造成实际输出冷量效率低下,制冷速度缓慢,甚至达不到设定

中央空调系统负荷计算(经验数据)

中央空调系统负荷计算(经验数据) 人体负荷43W + 建筑负荷60W + 照明负荷40W=143W/平米 然后143W+正常每平米100W=243W/平米 17×243W/平米=你需要的空调功率 这只是一个估算冷指标 维护结构可以忽略,然后设备人员这些,大多数时候甲方觉得你就是万能的, 设备这些他们很多时候也不是很清楚,你问多了人家还烦。所以就基本上剩下风量的了。 计算需要查看焓湿图。不知道大家都是怎么算的,反正我只计算新风和回风的冷湿量。。。 一般的还行,涉及到超精度的车间就得考虑全面了。 1:因为之前配置空调负荷的时候,比如说宾馆住宅之类的,公司的工程师都说按照200~250w/㎡配置肯定不会错, 所以之前也就没纠结如何配置室内机冷量问题。现在我就想问问这200~250w/㎡冷量是怎么样计算来的。 因为做暖通行也得许多东西也都是经验得来的,没有具体理论实际的算过。 是按照建筑保温,外墙是否被对阳光,是否墙面为玻璃。人头空

调负荷,还是其他一些估测值吗? 如果是估测值那么估测的依据又是从哪来的呢???求解最好有计算的公式,或者一些经验估值。谢谢 2:可能没有一些案例会说的不清楚,假如说:有一个电影院170平方,146人座的。设计依据室外35度,室内26度50%湿度,我是这样计算空调负荷对不对,新风负荷没人25m3/h 新风风量:146*25*1.1=4000风量。q新风=cm*温差=4000*9=36kw。 然后人体空调负荷没人85w,q人=146*85=12.4kw则总冷量=12.4+36=48.4kw。 每平方就是350w左右,但是还有别的根据焓差计算的,我不太懂求解答这是问题一。 问题二:如果考虑新风负荷的话电影院也会有排风负荷,是不是空调负荷还要加上排风负荷??? 新风负荷算错,根据室外空气焓值90kj/kg左右,室内设计焓值58kj/kg左右q=(90-58)*2000*1.29/3600=22.9kw (新风负荷给不了25的人员密度大的时候给15就不错了,或者直接给送风量的10%), 人体负荷有显热负荷和潜热负荷,影剧院是静坐你算的应该是差

空调冷负荷法估算冷指标

三、空调冷负荷法估算冷指标。空调冷负荷法估算冷指标(W/m2空调面积)见下表 序号 建筑类型及 房间名称空调建筑面积 平方米/人 建筑 负荷 人体 负荷 照明 负荷 新风量 W/m2 新风 负荷 总负荷 1 客房10 60 7 20 50 27 114 2 宴会厅 1.25 30 134 30 25 190 360 3 小会议室 3 60 43 40 25 92 235 4 大会议室 1. 5 40 88 40 25 190 358 5 健身房保龄球 5 35 87 20 60 130 272 6 舞厅 3 20 9 7 20 33 119 256 7 科研办公楼 5 40 28 40 20 43 151 商场 8 底层 1.0 35 160 40 12 130 365 9 二层 1.2 35 128 40 12 104 307 10 三层及三层以上 2 40 80 40 12 65 225 图书馆 11 阅览室10 50 14 30 25 27 121 展览厅 12 陈列室 4 58 31 20 25 68 177 会堂 13 报告厅 2 35 58 40 25 136 269 14 公寓住宅10 70 14 20 50 54 158 硬剧院

15 观众厅0.5 30 228 15 8 174 447 16 休息厅 2 70 64 20 40 216 370 17 化妆室 4 40 35 50 20 55 180 体育馆 18 比赛馆 2.5 35 65 40 15 65 205 19 休息厅 5 70 27.5 20 40 86 203 20 贵宾厅8 58 17 30 50 68 173 医院 21 高级病房110 22 一般手术室150 23 洁净手术室300 24 X光CTB超150 25 餐馆300 注:本表为最大负荷,在求建筑总冷负荷时,应考虑空调房间同时使用系数0.7-0.9 四、按建筑面积冷指标进行估算建筑面积冷指标 建筑名称 冷负荷指标 W/m22建筑面积建筑名称 冷负荷指标 W/m2建筑面积 旅馆80-90 体育馆 100-135 200-350(按人员座位数)办公楼85-100 图书馆35-40 计算机房190-380 医院80-90 数据处理320-400 商店 105-125 营业厅设空调时,200-250按营业厅面积剧院 126-160 200-300(按观众厅面积)

中央空调设计规范标准[详]

中央空调设计规 1 总则 1.0.1 为保证家用(商用)中央空调设计的质量,使设计符合安全、适用、经济、卫生和保护环境的基 本要求,制定本规。 1.0.2 本规适用于地区新建与扩建的居住和公共建筑中,以舒适性要求为主,制冷量在7-80kw 的家用(商用)中央空调的设计。改建工程可参照本规执行。 1.0.3 家用(商用)中央空调设计时,除执行本规的规定外,尚应符合现行有关标准、规的规定。 2 术语2.0.l 家用(商用)中央空调 主要用于居住和公共建筑中,以满足舒适性为目的,制冷量在7-80kw 围,带集中冷热源的空调 型式。 2.0.2 空调风系统 空气经冷热、过滤等处理的送回风系统。 3 设计参数3.1 室外气象参数 3.1.1 冬季空调室外计算温度,应采用历年平均不保证一天的日平均温度。3.1.2 冬季空调室外计算相对湿度,应采用历年最冷月平均相对湿度。3.1.3 夏季空调室外计算干球温度,应采用历年平均不保证50h 的干球温度。3.1.4 夏季空调室外计算湿球温度,应采用历年平均不保证50h 的湿球温度。3.1.5 夏季空调室外计算日平均温度,应采用历年平均不保证5 天的日平均温

度。 3.1.6 冬季室外平均风速,应采用累年最冷三个月各月平均风速的平均值。3.1.7 夏季室外平均风速,应采用累年最热三个月各月平均风速的平均值。3.1.8 夏季太阳辐射照度,应根据当地的地理纬度、大气透明度和大气压力,按7 月21 日的太阳赤纬计 算确定。 3.1.9 一些主要城市的室外气象参数,应按《暖通空调气象资料集》中“室外气象参数”采用。 3.2 室空气质量 3.2.1 冬季空调室计算参数,应符合以下规定: 温度 18- 22℃ 人员经常活动围风速不大于0.4m/s 当无辅助热源时,冬季室外空调计算温度采用5℃。 3.2.2 设计集中采暖时,冬季室计算温度,应根据房间的用途,按下列规定采用: 1.民用建筑的主要房间,宜采用16-20℃; 2.辅助房间,不宜低于下列数值: 浴室 25℃ 更衣室 23℃ 托儿所、幼儿园、医护室 20℃ 盥洗室、厕所 12℃ 办公用室 16℃

弱电机房用电负荷计算意义及计算方法(案例分析)12.04

弱电机房用电负荷计算意义及计算方法(案例分析)12.04 前言: 弱电机房每次设计或者施工的时候,总是要统计一下用电负荷,需要甲方或者总包提供多少负荷的配电箱(配电柜),这是一项非常重要的工作,如何做好这个工作呢?那么需要计算,如何计算呢?看完本篇文章你就知道了 正文: 机房作为设备高密度存放的地方,用电量非常大。据统计,一个数据中心机房建成后的维护费用的七成都是电费,也不外乎各个企业都在想办法给机房降温了。有建在山上的、地底的,还有建在海中的,省电还真是不容易啊!相较于省电,机房的用电也是个大问题,今天来介绍机房负荷的计算方法。了解这个是安全用电的基础,这是非常重要的内容,一起来看看吧。 一、负荷计算目的和意义

低压供配电系统的设计中负荷的统计计算是一项重要内容,负荷计算结果对供电容量报装、选择供配电设备及安全经济运行均起决定性的作用。负荷计算的目的是: 1. 计算变配电所内变压器的负荷电流及视在功率,作为选择变压器容量的依据。 2. 计算流过各主要电气设备(断路器、隔离开关、母线、熔断器等)的负荷电流,作为选择设备的依据。 3. 计算流过各条线路(电源进线、高低压配电线路等)的负荷电流,作为选择线路电缆或导线截面的依据。 4. 计算尖峰负荷,用于保护电器的整定计算和校验电动机的启动条件。 二、负荷计算方法 我国目前普遍采用需要系数法和二项式系数法确定用电设备的负荷,其中需要系数法是国际上普遍采用的确定计算负荷的方法,最为简便;而二项式系数法在确定设备台数较少且各台设备容量差别大的分支干线计算负荷时比较合理;在建筑配电中,还常用负荷密度法和单位指标法统计计算负荷。在方案设计阶段可采用单位指标法;在初步设计及施工图设计阶段,宜采用需要系数法。

全厂用电负荷计算示例

全厂用电负荷计算示例 某厂设有三个车间,其中1#车间:工艺设备容量250 kW、空调及通风设备容量78 kW 、车间照明40kW、其他用电设备50 kW,共计设备容量418 kW。2#车间:共计设备容量736kW。3#车间:共计设备容量434kW。(采用需要系数法)。 全厂用电负荷计算、无功功率补偿与变压器损耗计算及变压器台数、容量和型号的选择示例,计算结果列表如下,详见表4-4 全厂用电负荷计算 表表4-4

注:①2#、3#车间的负荷计算与1#车间的负荷计算类似,从略。 ②本负荷计算中未计入各车间至变电所的线路功率损耗。(只有线路功率损耗很小时,对于变压器容量的选择影响不大时,才可以从略)。

表4-4计算过程如下:按公式(4-6)~(4-14)进行计算 1. 1#车间:车间工艺设备设备Pca= K d·Pe=250 x0.7=175(kW), Qca= Pca·tgφ=175x0.88=154(kvar), 2.空调、通风设备P ca= K d·Pe=78x0.8=62.4(kW), Qca= Pca·tgφ=62.4x0.75=46. 8(kvar), 3.车间照明设 备Pca= K d·Pe=40x0.85=34(kW), Qca= Pca·tgφ=34x0.62=21.1(kvar), 4.其他设备 Pca= K d·Pe=50x0.6=30(kW),

Qca= Pca·tgφ=30x1.02=30.6(kvar), 5. 1#车间合 计ΣPca= 175+ 62.4+34+30+=301.4(kW), ΣQca=154+46.8+21.1+30.6=252. 5(kvar), 6.有功同时系数KΣp=0.9 Pca=ΣP ca·KΣp=301.4x0.9=271.3(kW), 无功同时系数KΣq =0.95 Qca=ΣQc a·KΣq= 252.5x0.95=239.9(kvar), 视在功 率Sca= (kVA) 7.全厂合 计ΣPe=418+ 736+434=1588(kW)

冷热湿负荷计算公式及示例

冷热湿负荷计算公式及示例 1围护结构传热 1.1 建筑结构组成及传热系数的确定: 外墙:水泥砂浆+砖墙(240mm)+内粉刷(5mm) 内墙:内粉刷(5mm)+砖墙(240mm)+内粉刷(5mm) 地面:大理石(20mm)+钢筋混泥土(100mm)+内粉刷(5mm) 屋面:预制细石混泥土板(25mm),表面喷白色水泥浆+通风层(≥200mm) +卷材防水层+水泥沙浆找平层(20mm)+保温层(沥青膨胀珍珠岩100mm)+隔汽层+现浇钢筋混泥土板+内粉刷(5mm)。 外窗:单层钢窗,6mm厚普通玻璃,窗高2 .4m。 内门:木门,高2.1m,大堂外门为玻璃门。 由以上建筑结构查得传热系数: 外墙K=1.97 W/(m2·o C)内墙K=1.73 W/(m2·o C) 地面K=3.12 W/(m2·o C)屋面 K=0.55 W/(m2·o C) 内门K=2.90 W/(m2·o C) 1.2 外墙和屋面瞬变传热形成的冷负荷: Qc(τ) =KA(t’c(t)-t R)ka kρ 式中:Qc(τ)—通过外墙和屋面的得热量所形成的冷负荷,W K —外墙和屋面的传热系数,W/(m2·oC) F —外墙和屋面的面积,m2 tc(t)—外墙或屋面冷负荷逐时计算温度,oC tn —室内设计温度,oC t’c(t)= tc(t)+td t’c(t)—经过修正的本地外墙或屋面计算温度逐时值,o C td —地点(福州市)修正值 ka —外表面放热系数修正值 kρ—吸收系数修正 1.3 外窗瞬时传热冷负荷:

Qc(τ) =K w A W C W△t 式中:Qc(τ) —通过外墙和屋面的得热量所形成的冷负荷,W A W —外墙和屋面的面积,m2 K w —玻璃窗传热系数,单层窗玻璃,取6.15W/(m2·o C) △t—计算时刻下,结构的负荷温差 1.4 内墙、内门、地面楼板传热形成得冷负荷: Qc(τ) =KF△t1s 式中:K —内结构传热系数,W/(m2·o C) F —内结构面积,m2 △t1s—计算温差,空调房间邻室为通风较好、散热量较大的非空调房间,按外墙计算冷负荷。 2 过玻璃窗的日射得热引起的冷负荷 Qc(τ) =CaA w CsCiD j,max C LQ 式中:Qc(τ) —各小时的日射得热冷负荷; A w —窗户面积,m2; Ca—有效面积系数,单层钢窗取0.85; C b —窗玻璃修正系数,0.89,查空气调节设计手册; C i —窗内遮阳设施的遮阳系数。采用内活动百叶,朝阳面颜色为浅色,取0.65; C LQ —窗玻璃冷负荷系数; Dj,max—夏季各纬度带的日射得热因数最大值,W/m2 ; 3 人员散热引起的冷负荷 Qc(τ) =Qc(τ) x+Qc(τ) q 人体显热散热引起的冷负荷: Qc(τ) x=q x nΦC LQ 人体潜热散热引起的冷负荷: Qc(τ) q=q q nΦ 式中:Qc(τ) x —人体显热散热引起的冷负荷,W Qc(τ) q —人体潜热散热引起的冷负荷,W n —室内全部人;

空调房间冷热负荷计算表说明

空调房间冷热负荷计算 1 电算表格编制说明 1.1 冬季围护结构热负荷计算 1、 按空调房间为正压考虑,不计算空气渗透热负荷;当需要计算时,应采用《采暖房间热负荷 计算》电算表。 2、 按不考虑房间发热量的最不利情况,计算围护结构热负荷作为空调房间热负荷;需要考虑发 热量时另行计算。 3、 围护结构传热系数K 值和房间冬季围护结构热负荷采用公式同《采暖房间热负荷计算》电算 表。 1.2 空调房间逐时冷负荷计算采用冷负荷系数法,并进行了如下简化和假设。当实际情况与之不符 时,应对计算进行修改。 1、 忽略冬夏季外围护结构外表面换热系数的不同,均按冬季不利情况考虑。 2、 忽略窗的内遮阳和有效面积修正。 3、 假设无外遮阳设施。 4、 按空调房间为正压考虑,不计算空气渗透冷负荷。 5、 灯光、人体、设备和其他负荷按稳定传热考虑。 1.3 空调房间各项冷负荷采用以下公式计算: 1、 外墙和屋面传热引起的逐时冷负荷0CL (W ) )'(0000n l t t K F CL ?= ραC C t t t dl l l ·)('00+= 式中:0K ——外墙和屋面的传热系数(W/(m 2·℃)); 0F ——外墙和屋面的面积(m 2); n t ——室内计算温度(℃); 0'l t ——外墙和屋面的综合冷负荷计算温度的逐时值(℃); 0l t ——外墙和屋面的冷负荷计算温度的逐时值(℃); dl t ——围护结构的地点修正值(℃); αC ——外表面放热系数修正值,为简化计算,表中取1; ρC ——吸热系数修正值,为安全和简化计算,表中统一取1。 2、 玻璃窗瞬变传热引起的冷负荷1·ch CL (W ) ]t )t [(t C C K F CL n d lc K K ch ch ch ?+2211·= 式中:ch F ——窗口面积(m 2); ch K ——玻璃窗的传热系数(W/(m 2·℃)); 1K C ——不同类型窗框的玻璃窗传热系数修正值,安全起见,本表中取最大值1.2; 2K C ——有内遮阳设施玻璃窗的传热系数修正值,安全起见,本表中取最大值1.0,即 无内遮阳设施; n t ——室内设计温度(℃); lc t ——玻璃窗的逐时冷负荷计算温度(℃); 2d t ——玻璃窗的地点修正值(℃); 3、 由于太阳辐射透过玻璃窗进入室内的热量引起的逐时冷负荷2?ch CL (W )

负荷计算举例

负荷计算实例(需要系数法) P jx=K x×Pe Qjx=P jx×tanφ S jx=jx 2+ P2 jx Q 补偿容量计算 企业、住宅小区或大商业总平均功率因数 1、补偿前的总平均功率因数 cosφ1=2 β +Pjx a ? Qjx 1/1? ( ? /) ? 2、补偿后的总平均功率因数 cosφ2=2 β +Pjx a Qjx ? Qc /) ( ? 1/1? - ? 计算时平均负荷因数a、β相近视,可以取0.7~0.8.通常取0.75 补偿容量的确定: Qc=aхP jxх(tanφ1- tanφ2) 或Qc=aхP jxхq c q c——比补偿功率(千乏/千瓦)(详见表) tanφ1——补偿前功率因数正切值 tanφ2——补偿后功率因数正切值 变压器有功及无功损耗为: △P b=△P k+△P e×(S jx/S e)2 △Q b=△Q k+△Q e×(S jx/S e)2 式中 Sjx——变压器低压侧的计算负荷 Se——变压器的额定负荷(变压器铭牌)容量(KVA)得 △Pk——变压器空载时的有功损耗(铁损)千瓦

△P e——变压器在额定负荷时的有功损耗(铜损) △Qk=Ik%×Se/100 (其中:Ik%为变压器空载电流占额定电流的百分数)△Qe=Ik%×Se/100 (其中:Uk%为变压器短路电压占额定电压的百分数)Se、△Pk、△P e、Ik%、Ik%由变压器资料中查得 比补偿功率qc(千乏/千瓦)(见表)

商业用电负荷计算举例 某超市建筑面积10000㎡,计算负荷详见下表: 负荷计算表 视在功率:S jx==+227.65686.91977.4312625.846142+=1130.22KVA 补偿前平局功率因数:cos φ1=286.91975.0/)7.65675.0(1/1????+≈0.662 要求功率因数cos φ2补偿到0.9,查表得出补偿电容器计算容量为: q c=919.86×0.66≈607千乏 故选两台标准电容补偿柜,每台柜装240千乏电容,合计480千乏

中央空调计算公式

房间面积、层高(吊顶后)和房间换气次数三者的乘积即为房间的循环风量。利用循环风量对应风机盘管高速风量,即可确定风机盘管型号。 根据单位面积负荷和房间面积,可得到房间所需的冷负荷值。利用房间冷负荷对应风机盘管的高速风量时的制冷量即可确定风机盘管型号。 波纹补偿器也称伸缩节、膨胀节、补偿器,主要分为:波纹补偿器、套筒补偿器、旋转补偿器、方形自然补偿器等几大类型,其中以波纹补偿器较为常用,主要为保障管道安全运行,具有以下用途: 1.补偿吸收管道轴向、横向、角向热变形。 2.吸收设备振动,减少设备振动对管道的影响。 3.吸收地震、地陷对管道的变形量。 注意:注意不能用波纹补偿器来调节管道安装误差! 管道工程常用的补偿器有自然补偿器、波形补偿器、方形和Ω型补偿器、填料式补偿器、球形补偿器。 膨胀节属于方形补偿器,软管不属于补偿器范围。 金属软管用于需要减少震动的场合,广泛用于中央空调泵、消防泵、生活给水泵的进出口,有效地减少主机震动、吸收管道噪音、保护设备、延长设备使用寿命,具有:耐用、耐高温、耐高压、防腐、环保等优点。一定长度的金属软管还可以有效的横向位移,可用于沉降或伸缩的场合。管径:DN15- DN12000 (无推力减震波纹软接头也可以用) 不锈钢减震波纹补偿器是首航公司经过多年的研究,结合市场的需要,将不锈钢与橡胶进 行优化结合,形成一种刚柔相济,耐用环保的新型专利产品。广泛用于中央空调泵、消防泵、生活给水泵的进出口,有效地减少主机震动、吸收管道噪音、保护设备、延长设备使用寿命,具有:耐用、耐高温、耐高压、防腐、环

保等优点。有效地解决了老式橡胶软接头所带来的不卫生,易老化,耐压不稳定、易脱层撕裂、爆破等不良因素,解决了泵房的后顾之忧。 二、应用范围: 1.各类泵、阀、空压机的进出口; 2.各类消防配管、空调配管、蒸汽配管等; 3.一般工厂配管和需要柔性连接的场合; 4.生活用水配管和需要卫生的场合; 5.机械设备配管需要减震和补偿热位移的场合。 三、结构特点: 1.波纹管形为“S”形波,柔性大,刚性大,无应力集中; 2.本产品从DN32—DN80一边松套法兰,特别是DN100以上采用无环焊接结构,从而避免冷作硬化。有效解决波纹管焊接点的脆性所造成的易破、易漏等问题。延长波纹管的使用寿命; 3.法兰边缘有三——四个均匀分布的碗状凸耳,并配以拉杆,从而增强波纹管的工作压力; 4.每个碗状凸耳内装上一个优质减震橡胶垫,避免震动波经过拉杆传导,从而提高产品吸收管道噪音,减少震动的性能; 5.拉杆结构:两边带螺帽的螺丝向中间的管形螺母连接,从而起到调节波纹管长短、限制波纹管伸缩量的使用。易于安装。 四、选型说明: 1.本产品适用于各类泵、阀进出口和管道的柔性连接; 2.本产品是替代橡胶避震喉(软接头)的首选产品;安装、使用、维修方便;3.工作温度-196~450℃,如温度超过这个范围,订货时请注明;

精选3篇暖通空调设计工程案例.

磁悬浮中央空调解决方案经济性分析 一、工程概况 宿迁某医院外科病房楼地下一层,地上十二层,建筑面积19248.3㎡,建筑总高度44.4m。其中,地下层主要为设备用房,包括变电所、制冷机房、水泵房等,地上一、二层主要用途为输液室、办手术室等,三层及以上为病房。本方案探讨办公楼新上中央空调解决方案。 二、空调设计依据 (1)《采暖通风与空气调节设计规范》(GB50019-2003) (2)《高层民用建筑设计防火规范》(GB50045-2005) (3)《汽车库、修车库、停车库设计防火规范》(GB50067-97) (4)《通风与空调工程施工质量验收规范》(GB50243-2002) (5)《公共建筑节能设计标准》(GB50189-2005) (6)江苏省《公共建筑节能设计标准》(DGJ32/J96-2010) (7)业主提供的CAD图纸以及对本工程的具体设计要求等 三、宿迁气候地理条件概况 宿迁地处江苏省北部,属暖温带亚湿润季风气候,四季分明,季风盛行,秋冬季盛行东北风,春夏季盛行东南风;光照充足,热量丰富,雨水充沛,雨热同期,无霜期较长,冬冷夏热,春温多变,秋高气爽。年平均日照2200小时,年平均气温14.3℃左右。无霜期较长,平均为211天,初霜期一般在10月下旬,降雪初日一般在12月中旬初,活动积温5189℃,全年作物生长期为310.5天。年降水量在1000毫米上下,由于受季风影响,年际间变化不大,但降水分布不均,6到8月雨量占年降水量近六成,易形成春旱、夏涝、秋冬干燥天气。宿迁地区室外设计气象参数为:

图1宿迁全年气温分布图 四、空调负荷特点 病房楼各房间使用功能不同,空调使用时间不同,各功能区运行时间为: 可见,大楼空调使用时间较长,要求空调系统全天24小时运行,而且空调负荷波动较大,白天空调负荷大,夜间空调负荷小,低负荷时间占比较长,因此空调主机需要选取在满载时、低负荷运行时均能效较高产品。磁悬浮机组很好的适应了这一点,特别适合在本项目使用。 五、不同空调方案及设备选型 本方案拟分别将螺杆式冷水机组方案和磁悬浮机组方案做一对比。根据冷水机组选型不同,有以下三个设备方案对比:

工厂电力负荷计算示例

工厂电力负荷计算示例标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

负荷计算 2.1.1负荷计算的目的 计算负荷是确定供电系统、选择变压器容量、电气设备、导线截面和仪表量程的依据,也是整定继电保护的重要数据。计算负荷确定的是否正确合理,直接影响到电器和导线的选择是否合理。如计算负荷确定过大,将使电器和导线截面选择过大,造成投资和有色金属的浪费;如计算负荷确定过小,又将使电器和导线运行时增加电能损耗,并产生过热,引起绝缘过早老化,甚至烧毁,以至发生事故。为此,正确进行负荷计算是供电设计的前提,也是实现供电系统安全、经济运行的必要手段。 2.1.2负荷计算的方法 目前负荷计算常用需要系数法、二项式法和利用系数法、利用各种用电指标的负荷计算方法。前两种方法在国内各电气设计单位的使用最为普遍。 1.需要系数法 适用范围:当用电设备台数较多、各台设备容量相差不太悬殊时,特别在确定车间和工厂的计算负荷时,宜于采用。组成需要系数的同时系数和负荷系数都是平均的概念,若一个用电设备组中设备容量相差过于悬殊,大容量设备的投入对计算负荷投入时的实际情况不符,出现不理想的结果。 2.二项式法 当用电设备台数较少、有的设备容量相差悬殊时,特别在确定干线和分支线的计算负荷时,宜于采用。 3.利用系数法

通过平均负荷来求计算负荷,计算依据是概率论和数理统计,但就算过程较为复杂。 4.利用各种用电指标的负荷计算方法 适用于在工厂的初步设计中估算符合、在各类建筑的初步设计中估算照明负荷用。根据计算法的特点和适用范围我们选取需要系数法来计算负荷。 2.1.3计算负荷的公式 按需要系数法确定计算负荷的公式 有功(Kw) P= K·P(2-1) 无功(Kvar) Q= P·tanφ (2-2) 视在(KVA) S= (2-3) 电流(A) = (2-4) 式中 K——该用电设备组的需用系数; P——该用电设备组的设备容量总和,但不包括备用设备容量(kW); PQS——该用电设备组的有功、无功和视在计算负荷(kW); U——额定电压(kW); tanφ ——与运行功率因数角相对应的正切值; ——该用电设备组的计算电流(A);

相关主题
文本预览
相关文档 最新文档