当前位置:文档之家› 非隔离电源实用电路集锦

非隔离电源实用电路集锦

非隔离电源实用电路集锦
非隔离电源实用电路集锦

电容降压式电源

将交流市电转换为低压直流的常规方法是采用变压器降压后再整流滤波,当受体积和成本等因素的限制时,最简单实用的方法就是采用电容降压式电源。

一、电路原理

电容降压式简易电源的基本电路如图1,C1为降压电容器,D2为半波整流二极管,D1在市电的负半周时给C1提供放电回路,D3是稳压二极管,R1为关断电源后C1的电荷泄放电阻。在实际应用时常常采用的是图2的所示的电路。当需要向负载提供较大的电流时,可采用图3所示的桥式整流电路。

整流后未经稳压的直流电压一般会高于30伏,并且会随负载电流的变化发生很大的波动,这是因为此类电源内阻很大的缘故所致,故不适合大电流供电的应用场合。

二、器件选择

1.电路设计时,应先测定负载电流的准确值,然后参考示例来选择降压电容器的容量。因为通过降压电容C1向负载提供的电流Io,实际上是流过C1的充放电电流Ic。C1容量越大,容抗Xc越小,则流经C1的充、放电电流越大。当负载电流Io小于C1的充放电电流时,多余的电流就会流过稳压管,若稳压管的最大允许电流Idmax小于Ic-Io时易造成稳压管烧毁.

2.为保证C1可靠工作,其耐压选择应大于两倍的电源电压。

3.泄放电阻R1的选择必须保证在要求的时间内泄放掉C1上的电荷。

三、设计举例

图2中,已知C1为0.33μF,交流输入为220V/50Hz,求电路能供给负载的最大电流。 C1在电路中的容抗Xc为:

Xc=1 /(2 πf C)= 1/(2*3.14*50*0.33*10-6)= 9.65K

流过电容器C1的充电电流(Ic)为:

Ic = U / Xc = 220 / 9.65 = 22mA。

通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。

电容降压式电源是一种非隔离电源,在应用上要特别注意隔离,防止触电。

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

DC-DC电源模块常见应用问题分析与解决

DC-DC电源模块常见应用问题分析与解决 微功率DC-DC电源模块以高集成度、高可靠性、简化设计等多重优势,广泛应用于电路设计中。虽然其应用电路简单,操作简单,但往往在应用时还是会遇到一些常见问题。针对此本文对电源模块常见的应用问题以及如何排除故障进行一次详细的分析。 微功率DC-DC电源模块以高集成度、高可靠性、简化设计等多重优势,受到很多电子设计者的青睐。电源模块虽然应用电路简单,操作简单,但往往在应用时还是会遇到一些常见问题。针对此本文对电源模块常见的应用问题以及如何排除故障进行详细的分析,希望对设计者的电源模块选型时有所帮助。 常见问题一:输出纹波噪声偏大 原因1:模块在使用时,负载为动态负载,使得模块输出电压峰峰值变大,但注意这不是纹波噪声。 当负载电流如果进行周期性突变时,模块输出电压的峰峰值会变大。这是一个瞬态量,但有时会被误以为是纹波噪声。所以当使用一个电源模块给多个电路单元供电时,对于有周期性负载变化的电路,前级需要增加π型滤波,减小这部分电路的瞬态变化对其他电路的干扰。 例如,下图中电路B由于负载大小的变化,使得输入电压波动。为了减小电路B对电路A的干扰,建议在电路B的输入端增加π型滤波。 图 1 电路链接框图 原因2:示波器地线问题 在测试电源输出的纹波噪声时,示波器的地线夹和地线、模块输出引脚形成一个环路,类似于天线接收器,会引入其他噪声。如果测试的环境干扰大,这种噪声也会由示波器引入,影响纹波噪声测试的结果。 且平常我们购买的示波器探头的地与示波器内部的大地线相连,这种情况对工频干扰的抗扰能力弱,容易引入干扰噪声。所以在使用中最好保证示波器探头浮地处理(隔离开示波器的电源地,或者直接使用电池供电的示波器),减少引入的干扰。如果测量对象的供电电源也是浮地,这样更好,这样就不会导致电路特性的改变,使模块输出噪声增大。 问题二:模块启动后,输出电压偏低 原因1:输入端有防反接电路

隔离与非隔离电源的特性对比

隔离与非隔离电源的特性对比 如果拿CPU比喻为电子系统的大脑,那么电源就相当于电子系统的心脏。随着对电路设计中电源要求越来越高,隔离电源模块应运而生,而对隔离电源你又了解多少? 随着电子行业的发展,对电源的要求越来越高,体积更小,可靠性更高,电源模块作为集成器件应运而生。其具有隔离作用,抗干扰能力强,自带保护功能,便于后期系统集成等优点被越来越广泛的应用。 但是在选择合适的模块时,经常会碰到一个参数“隔离电压”,隔离电压越高,模块的价格就越贵,那么就会好奇了,什么是隔离电压,该选择什么等级的合适呢? 电源的隔离耐压在GB-4943国标中又叫抗电强度,这个GB-4943标准就是我们常说的信息类设备的安全标准,就是为了防止人员受到物理和电气伤害的国家标准,其中包括避免人受到电击伤害、物理伤害、爆炸等伤害。如下图1为隔离电源结构图。 图1 隔离电源结构图 作为模块电源的重要指标,标准中也规定了隔离耐压相关测试方法,简单的测试时一般采用等电位连接测试,连接示意图如下: 图2 隔离耐压测试示意图 测试方法: 将耐压计的电压设为规定的耐压值,电流设为规定的漏电流值,时间设为规定的测试时间值;

●操作耐压计开始测试,开始加压,在规定的测试时间内,模块应无击穿,无飞 弧现象。 注意在测试时焊接电源模块要选取合适的温度,避免反复焊接,损坏电源模块。 那么隔离电源与非隔离电源比较有什么的优缺点呢? 表 1 隔离电源与非隔离电源优缺点 通过了解隔离与非隔离电源的优缺点可知,它们各有优势,对于一些常用的嵌入式供电选择,我们可遵循以下判断条件: ●系统前级的电源,为提高抗干扰性能,保证可靠性,一般用隔离电源; ●电路板内的IC或部分电路供电,从性价比和体积出发,优先选用非隔离的方案; ●对于远程工业通信的供电,为有效降低地电势差和导线耦合干扰的影响,一般用隔 离电源为每个通信节点单独供电; ●对于采用电池供电,对续航力要求严苛的场合,采用非隔离供电; ●对安全有要求的场合,如需接市电的AC-DC,或医疗用的电源,为保证人身的安 全,必须用隔离电源,有些场合还必须用加强隔离的电源。 一般场合使用对模块电源隔离电压要求不是很高,但是更高的隔离电压可以保证模块电源具有更小的漏电流,更高的安全性和可靠性,并且EMC特性也更好一些,因此目前业界普遍的隔离电压水平为1500VDC以上。

串口隔离模块

串口隔离模块 DATA-8205 串口隔离模块 概述: 串口隔离模块主要用于对工业设备的RS232/RS485通信接口的隔离保护,通过模块内部电路的电气隔离,可有效避免地线回路电压、浪涌、感应雷击、静电、热插拔、电磁干扰等因素造成的设备损坏。 设备特点: ◆工业级电磁隔离,能够提供高达2500Vrms的隔离电压。 ◆完整的保护方案能使RS-232/RS-485设备安装于任何复杂的工业环境而免除静电、雷击、电磁和浪涌对设备的干扰或损坏。 ◆用户可自主设定隔离串口类型。 ◆全透明通信,无须调试、即插即用。 ◆通信波特率自适应。 ◆体积小巧,安装方便。 产品型号DATA-8205 符合标准EIA/TIA RS-232C、RS-485国际标准 工作方式自定义串口类型 波特率300bps ~ 57600bps自适应 信号隔离2500V 电源隔离非隔离 传输介质双绞线或屏蔽线 工作电源9 ~ 30VDC宽压输入 响应时间≤ 10nm 安装方式DIN导轨安装(35mm) 适用环境即插即用 工作环境-40℃到 85℃,相对湿度为5%到95% 外壳材质工程塑料 外型尺寸100x25.4x74mm

串口隔离模块 DATA-8301 串口隔离模块 概述 串口隔离模块是工业级电流信号隔离分配器,采用磁隔离技术保证隔离器的隔离功能:输入、输出、电源之间全隔离,能够屏蔽现场各种干扰信号和有害信号,同时保证输出信号不衰减,提供高精度信号。采集现场各类一次传感器或其他仪表输出的直流信号后,经隔离、抗干扰处理后输出,使得检测和控制回路信号的安全性和抗干扰能力大大增强,提高系统可靠性。 设备特点: ◆采用高精度采集芯片,精度高。 ◆兼容性强,可接入各种4~20mA输出的变送器及仪表。 ◆具备两路电流输入、两路隔离电流输出,可为变送器和仪表提供DC 12V/24V供电电源。 ◆体积小巧,标准DIN35导轨安装,节省空间、安装简便。 产品型号DATA-8301 工作电压:10V~30V DC 负载能力:0~250Ω 消耗功率:≤2W 工作精度:±0.2% 隔离耐压:1500VDC 绝缘电阻:>100MΩ 响应时间:200μS 电磁兼容:IEC61000-4-4:1995

基于单片机的开关电源的设计

目录 引言 ................................................................................................ 错误!未定义书签。 1 概述 .......................................................................................... 错误!未定义书签。 1.1 课题来源及意义 (1) 1.2 课题基本要求 (2) 1.3 相关背景介绍 (2) 2 基于单片机的数控直流电源方案设计 (2) 2.1 方案设计 (3) 2.1.1 方案1:开关稳压电源 (3) 2.1.2 方案2:线性稳压电源 ........................................................... 错误!未定义书签。 2.2 方案论证 ................................................................................... 错误!未定义书签。 2.2.1方案一分析............................................................................. 错误!未定义书签。 2.2.2方案二分析 (5) 3.硬件电路设计 (5) 3.1 主电源电路设计 (6) 3.1.1 变压器的选择 (6) 3.1.2 整流滤波电路 (7) 3.1.3 稳压调压电路 (8) 3.1.4 扩流电路 (8) 3.2 副电源电路设计 (9) 3.3 控制部分电路设计 (10) 3.3.1 A/D及D/A转换电路 (11) 3.3.2 校正部分电路......................................................................... 错误!未定义书签。 3.3.3 键盘及数码管显示电路 .......................................................... 错误!未定义书签。 4 软件设计.................................................................................. 错误!未定义书签。7 4.1 软件介绍 ................................................................................. 错误!未定义书签。7 4.1.1 Protel 99 SE....................................................................... 错误!未定义书签。8 4.1.2 Keil uVision2....................................................................... 错误!未定义书签。 4.2 编程思想 ................................................................................... 错误!未定义书签。 4.2.1 键盘和数码管扫描子程序 (19) 4.2.2 ADC0809转换子程序............................................................... 错误!未定义书签。 4.2.3 DAC0832转换子程序 (21) 4.2.4中断定时处理程序设计 (21) 4.2.5数码显示子程序 (22)

隔离非隔离三种常用LED驱动电源详解

三种常用LED驱动电源详解 时间:2014-5-30 LED电源有很多种类,各类电源的质量、价格差异非常大,这也是影响产品质量及价格的重要因素之一。LED驱动电源通常可以分为三大类,一是开关恒流源,二是线性IC电源,三是阻容降压电源。 1、开关恒流源 采用变压器将高压变为低压,并进行整流滤波,以便输出稳定的低压直流电。开关恒流源又分隔离式电源和非隔离式电源,隔离是指输出高低电压隔离,安全性非常高,所以对外壳绝缘性要求不高。非隔离安全性稍差,但成本也相对低,传统节能灯就是采用非隔离电源,采用绝缘塑料外壳防护。开关电源的安全性相对较高(一般是输出低压),性能稳定,缺点是电路复杂、价格较高。开关电源技术成熟,性能稳定,是目前LED照明的主流电源。 图1:开关恒流隔离式日光灯管电源

图2:开关恒流隔离式电源原理图 图3:开关恒流非隔离式球泡灯电源 图4:开关恒流非隔离式电源原理图 2、线性IC电源 采用一个IC或多个IC来分配电压,电子元器件种类少,功率因数、电源效率非常高,不需要电解电容,寿命长,成本低。缺点是输出高压非隔离,有频闪,要求外壳做好防触电隔离保护。市面上宣称无(去)电解电容,超长寿命的,均是采用线性IC电源。IC驱电源具有高可靠性,高效率低成本优势,是未来理想的LED驱动电源。

图5:线性IC电源 图6:线性IC电源原理图 3、阻容降压电源 采用一个电容通过其充放电来提供驱动电流,电路简单,成本低,但性能差,稳定性差,在电网电压波动时及容易烧坏LED,同时输出高压非隔离,要求绝缘防护外壳。功率因数低,寿命短,一般只适于经济型小功率产品(5W以内)。功率高的产品,输出电流大,电容不能提供大电流,否则容易烧坏,另外国家对高功率灯具的功率因数有要求,即7W以上的功率因数要求大于0.7,但是阻容降压电源远远达不到(一般在0.2-0.3之间),所以高功率产品不宜采用阻容降压电源。市场上,要求不高的低端型的产品,几乎全部是采用阻容降压电源,另外,一些高功率的便宜的低端产品,也是采用阻容降压电源。 图7:阻容降压电源

电源电路分析讲解(doc17页)

电源电路分析讲解(doc 17页) 电路图中的电源电路 自从IBM推出第一台PC至今,微机电源已从AT电源发展到ATX电源。时至今日,微机电源仍是根据IBM公司的个人电脑标准制造的。市场上的ATX电源,不管是品牌电源还是杂牌电源,从电路原理上来看,一般都是在AT电源的基础上,做了适当的改动发展而来的,因此,我们买到的ATX电源,在电路原理上一般都大同小异。在微机国产化的进程上,微机电源技术也由国内生产厂家逐渐消化吸收,生产出了众多国有品牌的电源。微机电源并非髙科技产品,以国内生产厂家的技术和生产实力,应该可以生产出物美价廉的电源产品。然而,纵观整个微机电源市场情况却不尽人意,许多电源产品存在着各种选料和质量问题,故障率较高。ATX电源电路结构较复杂,各部分电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有不当则电路不能正常工作。其主电路原理图见图1,从图中可以看出,整个电路可以分成两大部分:一部分为从电源输入到开关变压器T1之前的电路(包括辅助电源的原边电路),该部分电路和交流220 V电压直接相连,触及会受到电击,称为高压侧电路;另一部分为开关变压器T 1以后的电路,不和交

流220V直接相连,称为低压侧电路。二者通过C03、C0 4、C05高压瓷片电容构成回路,以消除静电干扰。其原理方框图见图2,从图中可以看出整机电路由交流输入回路、整流滤波电路、推挽开关电路、辅助开关电源、PWM脉宽调制电路、PS-ON控制电路、保护电路、输出电路和PW? OK信号形成电路组成。弄清各部分电路的工作原理及相互关系对我们维修判断故障是很有用处的,下面简单介绍一下各组成部分的工作原理。 1、交流输入回路 交流输入回路包括输入保护电路和抗干扰电路等。输入保护电路指交流输入回路中的过流、过压保护及限流电路;抗干扰电路有两方面的作用:一是指微机电源对通过电网进入的干扰信号的抑制能力:二是指开关电源的振荡髙次谐波进入电网对其它设备及显示器的干扰和对微机本身的干扰。通常要求微机对通过电网进入的干扰信号抑制能力要强,通过电网对其它微机等设备的干扰要小。 2、整流电路: 包括整流和滤波两部分电路,将交流电源进行整流滤波,为开关推挽电路提供纹波较小的直流电压。 3、辅助电源:辅助电源本身也是一个完整的开关电源。只要ATX电源一上电, 辅助电源便开始工作,输出的两路电压,一路为+5VSB电源,该输出连接到A TX主板的“电源监控部件”,作为它的工作电压,使操作系统可以直接对电源进行管理。通过此功能,实现远程开机,完成电脑唤醒功能;另一路输出电压为保护电路、控制电路等电路供电。 4、推挽开关电路: 推挽开关电路是ATX开关电源的主要部分,它把直流电压变换成高频交流电压, 并

隔离收发器外围保护电路设计

隔离收发器外围保护电路设计 各位工程师对于CAN总线隔离方案想必都极为熟悉,但可能会遇到CAN总线采用了隔离方案依旧通讯异常的情况。这一类问题应该怎么解决呢?本文将对各类方案电路原理为大家分析原因并提供相应解决方案。 1、常见主流收发器芯片 随着汽车电子和工业的迅猛发展,CAN总线被广泛的应用各行各业的总线通信上。半导体行业的不断更新,早期的CAN收发器已经不能满足现在的需求,世界上CAN收发器的生产公司,也在不断地进行技术更新,推出性能更好的CAN收发器。 目前主流的CAN收发器是PCA82C250/251,TJA1040/1050T/1051以及ZLG的CTM系列与SC系列隔离CAN模块等。PCA82C250/251是最早期的CAN收发器,采用的是三极管构架的,在电磁辐射和斜率控制上不是很理想,高速CAN上容易出现下冲;TJA1040/1050T/1051和MC33901基本性能参数优良;ZLG的CTM隔离CAN模块是集成了CAN收发器、电源及信号隔离于一体。 2、总线隔离方案 为保证CAN网络的通讯稳定性,通讯接口通常会做隔离,目前隔离CAN的方案包括两种,其一,采用收发器芯片、隔离芯片以及隔离电源分立搭建隔离CAN电路,电路简图如下图所示。 采用分立的方案搭建,从物料成本来判断,较为节约成本,但隔离电路的稳定性和一致

性不好保证,需要工程师自主要调节到好电路的隔离效果,在研发投入以及后期的物料管理等方面需要进行相应投入。全隔离模块方案相比于分立芯片的价格偏高,但在会经过一系列的可靠性与EMC测试,能够保证在产品性能的一致性与稳定性。 3、为什么隔离总线接口还需要保护 目前,工业产品对通信接口的EMC等级要求越来越高。许多应用要求满足IEC61000-4-2静电放电4级,IEC61000-4-5 浪涌抗扰4级要求。一般的收发器ESD、浪涌的防护等级均比较低,如CTM1051M隔离CAN收么器的隔离耐压为2500VDC,裸机情况下,ESD、浪涌等级均较低。所以有必要增加外围电路,提高通信端口的EMC等级。 4、总线接口保护电路 (1)方案一 结合隔离收发器的特性,此处提供了一个隔离CAN、485收发器的外围保护电路,如下图。 此保护电路主要由气体放电管、限流电阻、TVS管、共模电感组成。气体放电管GDT 用于吸收大部分浪涌能量;限流电阻R2、R3限制流过TVS管的电流,防止流过TVS管的电流过大损坏TVS管;TVS管将收发器引脚之间的电压限制在TVS的钳位电压,保护后级收发器芯片。T1用于抑制收发器对外界造成的传导骚扰,并抑制部分共模干扰。此保护电路可以有效地抑制共模浪涌及差模浪涌。电路推荐参数如下表所示,根据此表的推荐参数,可满足IEC61000-4-2,IEC61000-4-5 4级要求。 (2)方案二 图1的电路中,TVS管的结电容较大,可达到上百皮法,并不适合节点数较多的应用场合。如果总线节点数较多,建议增加快恢复二极管,如HFM107,以降低结电容对通信造成的影响,如下图所示。

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

基于单片机控制的开关电源及其设计

2.基于单片机控制的开关电源的可选设计方案 由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种: ( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。这种方案仅仅是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。这种方式最简单。 ( 2) 单片机和开关电源专用PWM芯片相结合。此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。 ( 3) 单片机直接控制型。即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。这种方式单片机介入电源工作最多。 3.最优设计方案分析 三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。这种方案中, 仅仅是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。这种方案中单片机可以只是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。在这种方案中,对单片机的要求不是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机和许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型

隔离CAN接口的电源地、信号地、屏蔽地、外壳地的区别

隔离CAN 接口的电源地、信号地、屏蔽地、外壳地的区别 工业现场CAN 环境复杂多变,工程师面对信号的杂、乱、差却是束手无策,追根溯源对于信号的各种地你接对了吗? CAN 总线以其高可靠性、实时性、灵活性以及严谨的数据处理机制等特点,在工业现场和汽车行业得到广泛应用,但随着环境干扰以及节点数目的增加等对CAN 总线的稳定性提出更高的要求,而面对电源地、信号地、屏蔽地、外壳地不同的接地方式又该如何处理呢? 如图1分别是电源地、信号地、屏蔽地以及大地四种不同地的常见符号。 图1 四种接地符号 电源地概念: 电源地也为供电地,是为保证供电电源形成完整的电流回路设置的供电地,即GND 。 电源地处理: 与单电源供电的负极相连。 图2 CAN 收发器电源地(GND )接线 信号地概念: 信号地也称为隔离地,为使电子设备工作时有一个统一的参考电位,避免有害电磁场的干扰,使设备稳定可靠的工作,设备中的信号电路统一参考地,即CAN-GND ; 信号地处理: 许多实际应用中,设计者常直接将每个节点的参考地接于本地的大地,作为信号的返回地,看似正常可靠的做法,却存在极大的隐患!

信号地(CAN-GND)正确的接法主要分为两种: 单屏蔽层线缆:如果线缆是单屏蔽层,信号地理想接法是使用专门的信号线将所有节点信号地连接,起到参考地的作用。但如果缺少信号地线,亦可将所有节点信号地都连接到屏蔽层,但这样屏蔽效果亦差强人意。 图 3 带有屏蔽层双绞线 图 4 含信号地线双绞线连接方式 图 5 信号地与屏蔽层连接方式 双屏蔽层线缆:当使用双层屏蔽电缆时,需要将所有节点信号地连接到内屏蔽层,若使用非屏蔽线进行数据传输时,请保持信号地管脚悬空处理。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

隔离电源模块的5个作用

隔离电源模块的5个作用 在工业控制设备中,有时候要求两个系统之间的电源地线隔离,如隔离地线噪声、隔离高共模电压等,采用带变压器的直流变换器,将两个电源之间隔开,使他们相互独立,从而实现以上目的!每个隔离电源模块单独供电,防止一个模块因受高压放电或其他原因导致损坏后殃及其他模块。这样做的目的可以保证每个模块独立工作,不受干扰。 隔离电源模块的5个作用 一、隔离 ●安全隔离:强电弱电隔离IGBT隔离驱动\浪涌隔离保护\雷电隔离保护(如人体接触的 医疗电子设备的隔离保护); ●噪声隔离:(模拟电路与数字电路隔离、强弱信号隔离); ●接地环路消除:远程信号传输\分布式电源供电系统。 二、保护 短路保护、过压保护、欠压保护、过流保护、其它保护。 三、电压变换 四、稳压交流 ●市电供电\远程直流供电\分布式电源供电系统\电池供电。 五、降噪 ●有源滤波。 ●而隔离器是一种采用线性光耦隔离原理,将输入信号进行转换输出。输入,输出和工作 电源三者相互隔离,特别适合与需要电隔离的设备仪表配用。隔离器又名信号隔离器,是工业控制系统中重要组成部分。主要是用来减弱冲击和振动传输的。 隔离电源模块使用环境

●净化电源 原来的配电系统中装置有一些机械设备、高频设备、火花机等一类的负载,这些负载往往对电源进行一些调制干扰。一些对电源质量要求比较高的设备(如精密仪器等)就要求使用隔离电源的办法。 ●安全电源 发电厂送出来的三相电源中的中性点是接在地上的,低压侧的零线实际上也是接地的,这样,如果人体接触火线和地面,就等于和配电系统成了回路很危险,为了安全在一些特定场合就用到隔离电源。 ●RS232、RS485/422、CAN-bus等隔离通讯接口 医学、手持、便携仪表、运算放大器电源 ●大功率IGBT驱动 ●纯数字电路、模拟前端隔离电路 一般低频模拟电路 自控装置

单片机开关电源电路

课程设计 题目单片开关电源电路设计与制作 姓名学号 系(院)班级 指导教师职称 2015年06月20日 目录

1前言---------------------------------------------------------------------------------------------------3 2工作原理---------------------------------------------------------------------------------------------4 1开关电源介绍----------------------------------------------------------------------------------4 2电源原理----------------------------------------------------------------------------------------5 3反激式变换器--------------------------------------------------------------------------------------6 1反激式变换器工作原理----------------------------------------------------------------------6 2反激式变换器工作模式----------------------------------------------------------------------7 3单相二极管整流桥--------------------------------------------------8 4缓冲电路----------------------------------------------------------------------------------------8 4 TOPSwitch-GX芯片----------------------------------------------------9 1 TOPSwitch-GX性能--------------------------------------------------9 2 TOPSwitch-GX内部结构--------------------------------------------10 3 TOPSwitch-GX引脚功能---------------------------------------------12 5 反激式变换器的高频变压器设计----------------------------------------13 1 绕组符合安全规程--------------------------------------------------------------------------13 2 低漏感的绕制方法--------------------------------------------------------------------------14 3 变压器紧密耦合的绕制方法--------------------------------------------------------------16 4 确定磁心尺寸--------------------------------------------------------------------------------17 5 反激式变压器设计--------------------------------------------------------------------------19 6 单端反激式开关电源—主电路设计----------------------------------------------------------21 1单端反激式开关电源主电路介绍---------------------------------------------------------21 2 单端反激式开关电源驱动电路介绍------------------------------------------------------22 7 设计结果及分析----------------------------------------------------------------------------------22 1设计结果分析----------------------------------------------------------------------------------24 8 结论-------------------------------------------------------------------------------------------------25

电脑开关电源电路大全详解

电脑开关电源详解 计算机电源是根据计算机相应的电源标准设计和生产的,在计算机高速发展的这十多年间,计算机电源标准也跟着在不断地发生变化,以适应计算机高速发展的要求,计算机电源主要采用了以下几个标准: PC/XT标准: 是由IBM最先推出个人PC/XT计算机时制定的标准; AT标准: 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供大约190W的电力供应; ATX标准: 是由Intel公司于1995年提出的工业标准,从最初的ATX1.0开始,ATX标准又经过了多次的变化和完善,目前国内市场上流行的是ATX2.03和ATX12V这两个标准,其中ATX12V 又可分为ATX12V1.2、ATX12V1.3、ATX12V2.0等多个版本。 ATX与AT标准比较:

1、ATX标准取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能; 2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进。 ATX12V与ATX2.03标准比较: 1、ATX2.03是1999年以前PII、PIII时代的电源产品,没有P4 4PIN接口; 2、ATX12V加强了+12VDC端的电流输出能力,对+12V的电流输出、涌浪电流峰值、滤波电容的容量、保护等做出了新的规定; 3、ATX12V增加的4芯电源连接器为P4处理器供电,供电电压为+12V; 4、ATX12V加强了+5VSB的电流输出能力,改善主板对即插即用和电源唤醒功能的支持。 ATX12V标准之间的比较: ATX 12V是支持P4的ATX标准,是目前的主流标准,该标准又分为如下几个版本: ATX12V_1.0:2000年2月颁布,P4 时代电源的最早版本,增加P4 4PIN接口;

隔离电源模块B_S-1W_2W系列数据手册

B_S-1W/2W 系列 https://www.doczj.com/doc/c413816331.html, REV:2.11 2011/07/19 1 1W / 2W ,效率高达82%,超低纹波,隔离非稳压单路输出,DC-DC 模块 产品特性 ? 开关型、效率高达82% ? 超低纹波噪声 ? 隔离电压1000V ? 超小型,国际标准引脚 ? 符合UL94-V0阻燃标准 ? MTBF > 350万小时 ? 自然空气冷却,无需散热片 ? 工作温度:-40℃~+85℃ 产品概述 TEN-POWER 的BxxxxS-1W/2W 系列产品是专门针对线路板上分布式电源系统中需要产生一组与输入电源高隔离电源的应用场合而设计的。该产品适用: ● 输入电压变化≤±10% ● 隔离电压 ≤1000VDC ; ● 纯数字电路,一般低频模拟电路。 输出特性表 项目 工作条件 Min Type Max 单位 输出功率 0.2 --- 2 W 线性调节率 输入标称电压±1% --- --- ±1.3 % 负载调整率 20%到100%负载(B0505S-2W ) --- --- 10 20%到100%负载(其他型号) --- --- 8 纹波+噪声 20MHz 带宽,输出无外接电容, --- --- 70 mVp-p 输出短路保护 --- --- 0.5 S 温度漂移 100%负载 --- --- 0.03 %/℃ 开关频率 100%的负载,输入电压范围 60 80 120 KHz

B_S-1W/2W系列 1W / 2W,效率高达82%,超低纹波,隔离非稳压单路输出,DC-DC模块

B_S-1W/2W 系列 https://www.doczj.com/doc/c413816331.html, REV:2.11 2011/07/19 3 1W / 2W ,效率高达82%,超低纹波,隔离非稳压单路输出,DC-DC 模块

MC34063组成的DC电源或隔离电路

MC34063组成的DC电源或隔离电路 MC34063A(MC33063)芯片器件简介 该器件本身包含了DC/DC变换器所需要的主要功能的单片控制电路且价格便宜。它由具有温度自动补偿功能的基准电压发生器、比较器、占空比可控的振荡器,R—S触发器和大电流输出开关电路等组成。该器件可用于升压变换器、降压变 换器、反向器的控制核心,由它构成的DC/DC变换器仅用少量的外部元器件。主要应用于以微处理器(MPU)或单片机(MCU)为基础的系统里。 MC34063集成电路主要特性: 输入电压范围:2、5~40V 输出电压可调范围:1.25~40V 输出电流可达:1.5A 工作频率:最高可达100kHz 低静态电流 短路电流限制 可实现升压或降压电源变换器 主要参数:

MC34063的工作原理 MC34063组成的降压电路 MC34063组成的降压电路原理如图7。工作过程: 1.比较器的反相输入端(脚5)通过外接分压电阻R1、R2监视输出电压。其中,输出电压U。=1.25(1+ R2/R1)由公式可知输出电压。仅与R1、R2数值有关,

因1.25V为基准电压,恒定不变。若R1、R2阻值稳定,U。亦稳定。 2.脚5电压与内部基准电压1.25V同时送人内部比较器进行电压比较。当脚5的电压值低于内部基准电压(1.25V)时,比较器输出为跳变电压,开启R—S触发器的S脚控制门,R—S触发器在内部振荡器的驱动下,Q端为“1”状态(高电平),驱动管T2导通,开关管T1亦导通,使输入电压Ui向输出滤波器电容Co 充电以提高U。,达到自动控制U。稳定的作用。 3.当脚5的电压值高于内部基准电压(1.25V)时,R—S触发器的S脚控制门被封锁,Q端为“0”状态(低电平),T2截止,T1亦截止。 4. 振荡器的Ipk 输入(脚7)用于监视开关管T1的峰值电流,以控制振荡器的脉冲输出到R—S触发器的Q端。 5. 脚3外接振荡器所需要的定时电容Co电容值的大小决定振荡器频率的高低,亦决定开关管T1的通断时间。 MC34063 升压电路 MC34063组成的降压电路原理如图8,当芯片内开关管(T1)导通时,电源经取样电阻Rsc、电感L1、MC34063的1脚和2脚接地,此时电感L1开始存储能量,而由C0对负载提供能量。当T1断开时,电源和电感同时给负载和电容Co提供能量。电感在释放能量期间,由于其两端的电动势极性与电源极性相同,相当于两个电源串联,因而负载上得到的电压高于电源电压。开关管导通与关断的频率称为芯片的工作频率。只要此频率相对负载的时间常数足够高,负载上便可获得连续的直流电压。

电池隔离电路设计原理分析

电池隔离电路设计原理分析 1、6515B 英业达主副电池一级PMOS开启 当电池单独工作时,无论主副电池都将无条件的开启一级MOS管导通,+VBATA和+VBATB经D517送至Q28,其栅极接一稳压管,稳压值为7.5V,因此该MOS导通,将电池电压加至Q513 Q514栅极,同时开启主副电池隔离一级MOS管。 开启一级MOS管的同时还要产生低电平的CFET_A和CFET_B两个信号,后面有述。 一级MOS一旦开启就会经D21和D27无条件的产生+VBDC(主副电池交汇点),再经检流电阻后送至公共放电MOS管Q12产生系统公共主供电+VBATR。 适配器存在时,且高于电池电压,就会由+VADPBL控制Q12截止。

前提: 一级MOS要完全开通,+VBATA +VBATB转换+VBDC,主副电池共用通道开通。 +VBDC直接上拉CFET_A#和CFET_B#,图中只画出一路上拉关系,而另一路简化。由此图可看出,控制一级MOS导通的控制源同时还控制Q23B和Q505B使其导通产生CFET_A和CFET_B为低电平信号。 由于CFET_A#和CFET_B#同时为高,D511反向截止。 该设计一是为了产生一级MOS开启控制信号,二是开启一级MOS的同时要对二级MOS 管实现截止控制。一开一关。 +3VAL由一级MOS导通一再经D21 D27产生系统公共点电压+VBATR后,再产生LDO 给KBC做为主供电,当KBC得到主供电后,自身时钟复位全部正常后,首先要扫描当前供电模式,如果没有检测到适配器存在信号ADP_ID及ADP_PRES,而是接收到BATCON 为低,那么就不会发出KBC_PWR_ON,从而有效控制系统供电在电池模式下不允许产生。 U501B得到+3VAL电压后,即可工作,由于D511反向截止,+3VAL经R498加至反相器输入端, BATCON必为低电平,代表当前电池存在。 因此KBC接下来就会发出电池放电模式的相关信号,比如主副电池哪个电量高低的选 择,由哪一块电池进行放电,哪一块电池由于电量低需要关闭,需相关控制逻辑关系完成。

相关主题
文本预览
相关文档 最新文档