当前位置:文档之家› 稀土掺杂纳米发光材料的研究进展

稀土掺杂纳米发光材料的研究进展

稀土掺杂纳米发光材料的研究进展
稀土掺杂纳米发光材料的研究进展

稀土掺杂纳米发光材料的研究进展

姓名:雷强强学号:5901210080 班级:机电学院材成102班

中文摘要:稀土发光材料,具有荧光寿命较长,谱线强度较低、呈线状等特点,因而在照和明显示方面获得广泛的应用。同时,由于它们在近红外区的激光有许多可透过大气和光纤,从而在激光防伪,太阳能电池,测距和光通讯等方面获得应用。论文主要围绕“稀土掺杂发光纳米材料纳米发展”开展研究工作。概述了纳米稀土发光材料的研究进展,着重研究了纳米稀土发光材料的结构与性能之间的关系。光谱学的研究主要集中在发射光谱、发光强度、荧光寿命和浓度猝灭等方面。并对该类材料的应用及发展前景进行了探讨及展望。

关键词: 纳米;稀土;发光材料

1.引言

纳米材料[1] 稀土发光纳米材料[2] 应用前景及展望[3]

1.1纳米发展小史

1959年,著名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。

1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/ 6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。

1.1.1什么是纳米材料

纳米材料通常被定义为组成相或晶粒结构控制在小于100nm的长度尺寸的材料,也可以说纳米材料的平均粒径或结构畴尺寸在100nm以下。纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。

2.稀土发光纳米材料简介

稀土元素具有一般元素所无法比拟的光谱学性质,使稀土发光材料被广泛应用于发光、显示、光信息传递、太阳能光电转换、X射线影像、激光、闪烁体及飞点扫描等领域。据统计,稀土发光新材料中稀土的总用量不及稀土消耗量的4%,但其产值却占稀土市场总销售额的41%,是稀土行业最热门的行业[1]。纳米稀土发光材料是指基质粒子尺寸在1~lOOnm的发光材料,对其研究始于最近几年由于纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子

隧道效等,受这些结构特性的影响,将稀土发光材料纳米化无疑能在原有特性的基础上赋予一系列新的特性,将更有利于发现新的发光材料和新的特性。如当发光材料基质的颗粒尺寸小到纳米级范围内,其中掺杂的激活离子的发光和动力学性质就会发生改变,就会影响其光吸收、激发寿命、能量传递、发光量子效率和浓度猝灭等性质,从而其物理性质就会发生改变[2,3,4]。

2.1纳米稀土发光材料的结构与性能

除了半导体荧光材料以外,还有一类重要的稀土化合物荧光材料。这类材料的种类繁多、性能优异,因而得到了广泛应用。在早期的纳米材料科学研究中,这类重要的应用光学材料没有得到应有的重视,只是最近考虑到此类稀土化合物纳米材料的优异特性及广泛的应用前景,才逐步开始对稀土化合物纳米材料的荧光性能进行较深入的研究。关于稀土纳米氧化物的制备有不少文献[5,6]报道过。当然稀土化合物纳米荧光材料不只是单一的氧化物, 包括Y3Al5O12、YSiO5、Y2Si O7、YVO4等多种,都是重要的荧光材料[8],因此,这类稀土纳米荧光材料的制备是一个非常活跃的研究领域,尤其是对多元的稀土化合物纳米荧光材料的合成。从理论上讲,稀土化合物纳米材料的能级结构与荧光特性是一个全新领域;从荧光机制来讲,稀土化合物纳米荧光材料和半导体纳米荧光材料完全不同,它们从能量的传递机理到材料的发光中心都有很大区别。因此,稀土化合物纳米荧光材料的能级结构和光谱特性是令人很感兴趣的一个研究领域。纳米稀土发光材料的发射波长、荧光寿命、发光效率以及猝灭浓度等与纳米微粒的粒径有关。这些现

象与纳米材料的结构特性密切相关。

2.1.1稀土发光纳米材料的特性

稀土发光纳米材料物理性质1性能特点与常规的微米颗粒的发光材料相比,纳米稀土发光材料的颗粒尺度通常小于激发或发射光波的波长,因此光场在微粒范围内可以近似为均匀的,不存在对光波的限域作用引起的微腔效应,而且对超细颗粒而言,尺寸变小,其比表面积亦显著增加,产生大的表面态密度。这两方面都使纳米稀土发光材料产生一系列新奇的性质,主要表现在以下几方面。

(1)荧光寿命变化。纳米Y:O。:Eu3+的荧光寿命与微米Y:O。:Eu3+的比较[7],看到纳米化后荧光寿命明显延长。这是因为小颗粒粒径限制了Eu3+的能量转移过程,导致交叉驰豫过程不起作用。而用溶胶提拉法制备的Zn。SiO。:Mn2+纳米微晶薄膜中观察到Mn2+的荧光寿命缩短,与相同工艺条件下制得的Z n。SiO。:Mn2+粉末材料(2/tm)相比,Mn2+发光的寿命缩短了5个量级,这是由于表面缺陷增加引起的£7]。

(2)红外吸收带宽化。纳米Y:O。:Eu3+的红外谱Y—O吸收带宽化[8]的原因是:纳米粒子大的比表面导致了平均配位数下降,不饱和键和悬键增多,与常规材料大不相同,没有一个单一的,择优的键振动模,而存在一个较宽的键振动模的分布,在红外光场作用下它们对红外吸收的频率也就存在一个较宽的分布,这就导致了纳米粒子红外吸收带的宽化。

(3)光谱发生红移或蓝移。有时可以观察到纳米发光材料的光激发光谱和发射光谱相对于粗颗粒发光材料呈现红移现象,其原因是:粒径减小的同时,颗粒内部的内应力会增加,这种压应力的增加使得能带结构的变化,电子波函数重叠加大,

结果带隙、能级间距变窄,这就导致电子由低能级向高能级及半导体电子由价带到导带跃迁引起的光吸收带和吸收边发生红移[9]。而有时纳米稀土发光材料的激发光谱和发射光谱会发生蓝移现象,如文献[53在对纳米Y。o。:Eu3+和纳米Y。A160。:(YAG):Ce3+的光谱研究中均发现了光谱蓝移现象,伴随着这些现象同时出现的是纳米Y:O。:Eu3+和纳米YAG:Eu3+的晶格畸变现象,这可能是由于纳米材料巨大的表面张力导致晶格畸变,并通过晶体场的作用产生光谱蓝移。

(4)浓度猝灭。纳米发光材料还存在另一个重要的现象就是猝灭浓度的变化,如纳米Y。0。:Eu3+(20nm)比微米Y203:Eu3+的激活剂临界浓度高,纳米Y:O。:Eu3+中Eu3+的临界浓度为8mol%[10,11],这种现象说明纳米Y:O。:Eu3十颗粒间大的界面使能量传递速率降低,进而使得传递给淬灭中心的能量减少。

3.纳米稀土发光材料的应用前景及展望

纳米稀土发光材料独特的性质使其具有广阔的应用前景。纳米稀土发光材料可广泛应用于发光、显示、光信息传递、太阳能光电转换、X射线影像、激光、闪烁体等领域,是本世纪含CRT、FED和各种平板显示器的信息显示、人类医疗健康、照明光源、粒子探测和记录、光电子器件及农业、军事等领域中的支撑材料,发挥着越来越重要的作用。纳米量级的荧光粉颗粒能够显著改善阴极射线馆(CRT)和彩色等离子显示器(PDP)涂屏的均匀性,有助于提高显示清晰度。而场发射器件(FED)用的纳米级荧光粉与传统的FED荧光体相比,其所具有小的尺寸可以被低压电子完全渗透,从而使材料得以有效应用。同时由于纳米荧光粉的比表面积增大,发光颗粒数增加,从而可以减少稀土三基色荧光粉的用量,致使成本降低,是照明灯和显示器涂屏的首选材料。此外,制备稀土离子掺杂的纳米材料还为发展和研究透明复合材料开辟了新途径。纳米粒子光散射小,可将其埋在无定型透明基质中,可望在激光和放大器上获得应用。4研究展望纳米稀土发光材料在研究中所显示的许多奇特性能,使它成为一类极有希望的新型发光材料。可以预期纳米稀土发光材料将在光电子学和光子学的发展中发挥十分重要的作用。同时它所存在的一些问题都需要从理论和实践上作更深入的研究。其发展趋势主要有以下几方面。

(1)纳米稀土发光材料的理论体系还需进一步建立和完善。由于对此类材料的研究是近年来才开展的,现有的理论体系还不够完善,需要深入研究。比如在纳米颗粒中激活剂的分布、分凝问题;越过界面时能量传递机制的改变等等。(2)表面修饰研究。纳米稀土发光材料具有大的比表面积会影响到激活剂和缺陷在粒子的表面、界面和次级相间的分布,其表面缺陷是影响发光材料发光效率的重要原因,因此需要对表面修饰进行深入的研究。

(3)开发和探索纳米稀土发光材料制备新方法。将微波烧结技术和超声波分散技术等高新技术与化学合成技术结合来制备纳米稀土发光材料是近来的发展趋

势之一。

[1]李建宇.稀土发光材料及应用I-M].北京:化学工业出版社,2003.

[2]孙家跃.稀土发光材料[M].北京;化学工业出版社,2003.

[3]洪广言.稀土产业与纳米科技口].稀土信息,2002,(5):5~9.

[4]林映霞等.纳米发光材料的发展及研宄综述[J].山东化工,2004,(33):12

-15.

[5]李强,高濂等.稀土化合物纳米荧光材料研究的新进展

[6]Williams D K,Bihari B,etal.Spectral hole burning in crys—talline Eu 203 and Y203:Eu3+nanoparticles[J].PhysicsChemistry Bulletin,1998,1 02:916~920.

[7]Tao Ye,Zhao Guiwen,etal.Combustion synthesis and photoluminesof nanocrstaltine Y203:Eu”phoshors[J].Mate—rials Research Bulletin,199 7,32(5):501~506.

[8]谢平波,张慰萍等.纳米Zn2SiOd:Mn薄膜的Sol—Gel法制备和荧光性能[J].中国科技大学学报,1997。27(4):389~394.

[9]邱关明,耿秀娟等.纳米稀土发光材料的光学特性及软化学

制备口].中国稀土学报,2003,21(2):109~114.

[10]周永慧,林君等.纳米发光材料研究的若干进展[J].化

学研究与应用,2001,13(2):117~122.

[11] 张慰萍,尹民等.稀土掺杂的纳米发光材料的制备和发

光[J].发光学报。2000,21(4):314~319.

EnglishTitle

Advance in Study on Nanoscale Rare Earth Luminescent Materials

Name:Leiqiangqiang. StudentNumber:5901210080Class:102

Abstract:Lanthanide-doped luminescent materials possess evident visible luminescence because havening characters of low intensity of lines, long fluorescence lifetime,linear shape. So, result in comprehensive applicatio n in display and illumination. Moreover, have great potentials in the field of solar cells, anticounterfeiting, measure, and luminescent communicatio n applications dueing to large numbers of penetrating atmosphere and lu minescent fines in Near-Infrared range. The recent work on nanoscale lu minescent materials of rare earth was summarized.This review laid spec ial stress on studying the preparation,structure and luminescence properti es of nanoscale rare earth materials.The spectroscopic studies concen trated on the basic lumicence spectroscopy,luminescence intensity,decay t ime and concentration quenching.The application and development prosp ects of this kind of materials were dicussed

and prospected.

Key words: nanoscale; rare earth; luminescent materials

纳米材料的研究进展及其应用全解

纳米材料的研究进展及其应用 姓名:李若木 学号:115104000462 学院:电光院

1、纳米材料 1.1纳米材料的概念 纳米材料又称为超微颗粒材料,由纳米粒子组成。纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型人介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著不同。 1.2纳米材料的发展 自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段: 第一阶段(1990年以前):主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。 第二阶段(1990~1994年):人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。 第三阶段(1994年至今):纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。

2、纳米材料:石墨烯 2.1石墨烯的概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。2004年,英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,成功从石墨中分离出石墨烯,证实它可以单独存在,两人也因此共同获得2010年诺贝尔物理学奖。 石墨烯既是最薄的材料,也是最强韧的材料,断裂强度比最好的钢材还要高200倍。同时它又有很好的弹性,拉伸幅度能达到自身尺寸的20%。它是目前自然界最薄、强度最高的材料,如果用一块面积1平方米的石墨烯做成吊床,本身重量不足1毫克便可以承受一只一千克的猫。 石墨烯目前最有潜力的应用是成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机。用石墨烯取代硅,计算机处理器的运行速度将会快数百倍。 另外,石墨烯几乎是完全透明的,只吸收2.3%的光。另一方面,它非常致密,即使是最小的气体原子(氦原子)也无法穿透。这些特征使得它非常适合作为透明电子产品的原料,如透明的触摸显示屏、发光板和太阳能电池板。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2/V·s,又比纳米碳管或硅晶体(monocrystalline silicon)高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料。 作为目前发现的最薄、强度最大、导电导热性能最强的一种新型纳米材料,石墨烯被称为“黑金”,是“新材料之王”,科学家甚至预言石墨烯将“彻底改变21世纪”。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。

关于碳纳米管的研究进展综述

关于碳纳米管的研究进展 1、前言 1985年9月,Curl、Smally和Kroto发现了一个由个60个碳原子组成的完美对称的足球状分子,称作为富勒烯。这个新分子是碳家族除石墨和金刚石外的新成员,它的发现刷新了人们对这一最熟悉元素的认识,并宣告一种新的化学和全新 的“大碳结构”概念诞生了。之后,人们相继发现并分离出C 70、C 76 、C 78 、C 84 等。 1991年日本的Iijima教授用真空电弧蒸发石墨电极时,首次在高分辨透射电子显微镜下发现了具有纳米尺寸的碳的多层管状物—碳纳米管。年,日本公司的科学家和匆通过改进电弧放电方法,成功的制备了克量级的碳纳米管。1993年,通过在电弧放电中加入过渡金属催化剂,NEC和IBM研究小组同时成功地合成了单壁碳纳米管;同年,Yacaman等以乙炔为碳源,用铁作催化剂首次针对性的由化学气相沉积法成功地合成了多壁碳纳米管。1996年,我国科学家实现了碳纳米管的大面积定向生长。1998年,科研人员利用碳纳米管作电子管阴极同年,科学家使用碳纳米管制作室温工作的场效应晶体管;中国科学院金属研究所成会明研究小组采用催化热解碳氢化合物的方法得到了较高产率的单壁碳纳米管和由多根单壁碳纳米管形成的阵列以及由该阵列形成的数厘米长的条带。1999年,韩国的一个研究小组制成了碳纳米管阴极彩色显示器样管。2000年,日本科学家制成了高亮度的碳纳米管场发射显示器样管。2001年,Schlitter等用热解有纳米图形的前驱体,通过自组装合成了单壁碳纳米管单晶,表明已经可以在微米级制得整体材料的单壁碳纳米管,并为宏量制备指出了方向。 2、碳纳米管的制备方法 获得大批量、管径均匀和高纯度的碳纳米管,是研究其性能及应用的基础。而大批量、低成本的合成工艺是碳纳米管实现工业化应用的保证。因此对碳纳米管制备工艺的研究具有重要的意义。目前,常用的制备碳纳米管的方法包括石墨电弧法、化学气相沉积法和激光蒸发法。一般来说,石墨电弧法和激光蒸发法制备的碳纳米管纯度和晶化程度都较高,但产量较低。化学气相沉积法是实现工业化大批量生产碳纳米管的有效方法,但由于生长温度较低,碳纳米管中通常含有

稀土纳米发光材料

《电子信息材料》报告 姓名崔立莹 学号41230179 班级材料1206

稀土纳米发光材料 崔立莹 (北京科技大学材料1206 41230179) 摘要:随着科技的迅猛发展,稀土纳米材料在近几年得到广泛应用。稀土纳米发光材料作为一种重要的稀土纳米材料,与体相发光材料有着明显的区别。本文着重介绍了稀土纳米发光材料的定义、制备、应用以及研究前景。 关键词:纳米;稀土;材料 1、稀土纳米发光材料的定义 纳米材料作为新兴材料种类,近些年来研究进展颇丰。纳米发光材料是指颗粒尺寸在1~100 nm的发光材料,它包括纯的和掺杂离子的纳米半导体复合发光材料和具有分立发光中心的掺杂稀土或过渡金属离子的纳米发光材料。 所谓稀土纳米材料,即稀土掺杂无机纳米材料的优良光学性能(如荧光寿命长、光谱线宽窄、可调谐荧光发射波长等)及其在荧光生物标记等方面的潜在应用,已经引起了国内外学者的普遍关注,有望成为替代分子探针的新一代荧光生物标记材料[1]。 稀土发光材料的种类繁多,可以按照不同的方式进行分类,若按发光材料中稀土的作用分类,可以分为两类:1.稀土离子作为激活剂在基质中作为发光中心而掺入的离子称为激活剂。以稀土离子作为激活剂的发光体是稀土发光材料中最为重要的一类。2.稀土化合物作为基质材料常见的可作为攮质材料的稀七化合物有Y203、La203和Gd203等。 2、稀土纳米发光材料的制备[2] 为了制备具有良好发光性能的发光粉,人们尝试了各种方法。而随着交叉学科的发展和新技术的出现,发光材料的合成面临着不可多得的机遇和挑战,各种制备发光粉的方法更是层出不穷,各以其独特优点为发光材料的发展发挥着巨大

浅论纳米稀土发光材料

浅论纳米稀土发光材料 摘要:本文对稀土元素的发光机理作了大概描述, 且主要针对纳米稀土发光材料的性能、制备方法、存在问题及发展前景作了主要论述。 关键词:稀土;发光材料;纳米技术;光学性能;制备 引言 稀土元素包括钪、钇和57到71的镧系元素共17种元素。它们在自然界中共同存在, 性质非常相似。由于这些元素发现的比较晚, 又难以分离出高纯的状态, 最初得到的是元素的氧化物, 它们的外观似土, 所以称它们为稀土元素。镧系元素离子的吸收光谱或激发光谱, 来源于fn 组态内的电子跃迁, 即f- f 跃迁; 组态间的能级跃迁, 即4f-5d, 4f-6s, 4f-6p 等跃迁: 还有电荷迁移跃迁, 即配体离子的电子向Ln3+ 离子的跃迁, 从高能级向低能级的跃迁就产生相应的发射光谱。由于稀土的这些特性,所以它可以做发光材料。发光材料包括半导体发光材料和稀土化合物发光材料两大类[ 1]。稀土荧光材料以应用铕、铽、钆、钇等高纯中、稀土为主要特色[ 2]。纳米稀土发光材料是指基质粒子尺寸在1—100nm的发光材料[ 3]。稀土掺杂纳米发光材料以其种类繁多、性能优异的特点己发展成为一个新的产业, 广泛应用于信息显示、绿色照明、医疗健康、光电子等领域。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等[4]。受这些结构特性的影响, 纳米稀土发光材料表现出许多奇特的物理和化学特性, 从而影响其中掺杂的激活离子的发光和动力学性质, 如光吸收、激发态寿命、能量传递、发光量子效应和浓度猝灭等性质。因此, 纳米稀土发光材料已经成为纳米材料和稀土发光材料领域中的一个新的研究热点[5-8]。 本文将对纳米稀土发光材料的性能特点、制备方法、应用前景及存在的问题等展开论述。 一、纳米稀土发光材料的性能特点 与常规的微米颗粒的发光材料相比, 纳米稀土发光材料的颗粒尺度通常小于激发或发射光波的波长, 因此光场在微粒范围内可以近似为均匀的, 不存在对光波的限域作用引起的微腔效应, 而且对超细颗粒而言, 尺寸变小, 其比表面积亦显著增加, 产生大的表面态密度。这两方面特性都使纳米稀土发光材料产生一系

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

碳纳米管材料的研究现状及发展展望

碳纳米管材料的研究现状及发展展望 摘要: 碳纳米管因其独特的结构和优异的物理化学性能,具有广阔的应用前景和巨大的商业价值。本文综述了碳纳米管的制备方法、结构性能、应用以及碳纳米管发展趋势。 关键词:碳纳米管;制备;性质;应用与发展 1、碳纳米管的发展历史 1985年发现了巴基球(C60);柯尔、克罗托和斯莫利在模拟宇宙长链碳分子的生长研 究中,发现了与金刚石、石墨的无限结构不同的,具有封闭球状结构的分子C60。(1996年获得诺贝尔化学奖) 1991年日本电气公司的S. Iijima在制备C60、对电弧放电后的石墨棒进行观察时,发现圆柱状沉积。空的管状物直径0.7-30 nm,被称为Carbon nanotubes (CNTs); 1992年瑞士洛桑联邦综合工科大学的D.Ugarte等发现了巴基葱(Carbon nanoonion); 2000年,北大彭练矛研究组用电子束轰击单壁碳纳米管,发现了Ф0.33 nm的碳纳米管,稳定性稍差; 2003年5月,日本信州大学和三井物产下属的公司研制成功Ф 0.4 nm的碳纳米管。 2004年3月下旬, 中国科学院高能物理研究所赵宇亮、陈振玲、柴之芳等研究人员,利用一定能量的中子与C70分子相互作用,首次成功合成、分离、表征了单原子数目富勒烯 分子C141。 2004 ,曼彻斯特大学的科学家发现Graphene(石墨烯)。进一步激发了人们研究碳纳米材料的热潮。 2、碳纳米管的分类 2.1碳纳米管 碳纳米管是由碳原子形成的石墨烯片层卷成的无缝、中空的管体,一般可分为单壁碳纳 米管、多壁碳纳米管。 2.2纳米碳纤维 纳米碳纤维是由碳组成的长链。其直径约50-200nm,亦即纳米碳纤维的直径介于纳米碳 管(小于100 nm)和气相生长碳纤维之间。 2.3碳球 根据尺寸大小将碳球分为:(1)富勒烯族系Cn和洋葱碳(具有封闭的石墨层结构,直径在2—20nm之间),如C60,C70等;(2) 纳米碳粉。 2.4石墨烯 石墨烯(graphene)是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,是构建其它维度碳质材料的基本单元。 3、碳纳米管的制备 3.1电弧法

稀土发光材料的研究进展

前言 当稀土元素被用作发光材料的基质成分,或是被用作激活剂、共激活剂、敏化剂或掺杂剂时,这类材料一般统称为稀土发光材料或稀土荧光材料。我国丰富的稀土资源,约占世界已探明储量的80%以上。稀土元素具有许多独特的物理化学性质,被广泛地用于各个领域,成为发展尖端技术不可缺少的特殊材料。稀土离子由于独特的电子层结构使得稀土离子掺杂的发光材料具有其它发光材料所不具有的许多优异性能,可以说稀土发光材料的研究开发相对于传统发光材料来说犹如一场革命。稀土无机发光材料方面,稀土发光材料与传统的发光材料相比具有明显的优势。就长余辉发光材料来说,稀土长余辉发光材料的发光亮度是传统发光材料的几十倍,余辉时间高达几千分钟。由于稀土发光材料所具有如此优异的性能使得发光材料的研究主要是围绕稀土发光材料而进行的。 由于稀土元素具有外层电子结构相同、内层4f 电子能级相近的电子层构型,含稀土的化合物表现出许多独特的理化性质,因而在光、电、磁领域得到广泛的应用,被誉为新材料的宝库。在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d 电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20 余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用将得到显著的发展。进入二十一世纪后,随着一些高新技术的发展和兴起,稀土发光材料科学和技术又步入一个新的活跃期,它为今后占主导地位的平板显示、第四代新照明光源、现代医疗电子设备、更先进的光纤通信等高新技术的可持续发展和源头创新提供可靠的依据和保证。所以,充分综合利用我国稀土资源库,发展稀土发光材料是将我国稀土资源优势转化为经济和技术优势的具体的重要途径。 纳米稀土发光材料是指基质粒子尺寸在1~100 纳米的发光材料。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学和和特性,从

稀土发光材料的研究和应用.

稀土发光材料的研究和应用 摘要:介绍了稀土发光材料的发光特性与发光机理。综述了我国在稀土发光材料的化学合成方法。总结了稀土发光材料的应用。最后对我国存在问题和发展前景进行了叙述。关键字:稀土发光材料;发光特性;发光机理;合成;应用;问题和展望。 Abstract:Introduces the luminescence properties of rare earth luminescent material and luminescence mechanism. Rare-earth luminescence materials in China, the paper summarized the chemical synthesis method. The application of rare earth luminescence materials is summarized. Finally, the existing problems and development prospect of the narrative in our country. Keywords:Rare earth luminescent material; Luminescence properties; Light-emitting mechanism; Synthesis; Application; Problems and its prospect. 化学元素周期表中镧系元素———镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),以及与镧系的15个元素密切相关的两个元素——钪(Sc)和钇(Y)共17种元素称为稀土元素。稀土化合物包含至少一种稀土元素的化合物。它是一种重要的战略资源,特别是高新技术工业的重要原料,如军事装备方面一些精确打击武器、一些汽车零部件和高科技产品,都依赖用稀土金属制造的组件。据了解,中国是唯一能有效提供全部17种稀土金属的国家,且储量远远超过世界其他国家的总和,是名副其实的“稀土大国”。由于稀土元素的离子具有特别的电子层结构和丰富的能级数量,使它成为了一个巨大的发光材料宝库。在人类开发的各种发光材料中,稀土元素发挥着重要作用,稀土发光几乎覆盖了整个固体发光的范畴。稀土发光材料具有发光谱带窄,色纯度高,色彩鲜艳;光吸收能力强,转换效率高;发射波长分布区域宽;荧光寿命从纳秒跨越到毫秒达6个数量级;物理和化学性质稳定,耐高温,可承受大功率电子束、高能辐射和强紫外光的作用等。目前稀土材料已广泛用于照明、显示、信息、显像、医学放射学图像和辐射场的探测等领域,并形成很大的工业生产和消费市场规模;同时也正在向着其他新型技术领域扩展,成为人类生活中不可缺少的重要组成部分。本文将介绍掺稀土离子发光材料的发光机理、节能灯、白光LED用荧光粉、PDP显示用荧光粉,以及对在上转换发光、生物荧光标记和下转换提升太阳能效率等方面的应用前景进行总结和展望。

稀土聚合物发光材料

稀土聚合物发光材料 李建宇 (北京工商大学化工学院 北京 100037) 摘 要 近年来稀土聚合物发光材料显现出广泛的应用前景,它主要包括两类材料:稀土配合物-聚合物发光材料和长余辉发光塑料。本文介绍掺杂型稀土配合物-聚合物材料用于有机电致发光和荧光塑料的研究状况;评述键合型稀土配合物-聚合物发光材料的几种合成方法;并对长余辉发光塑料作简要概述。 关键词 稀土 聚合物 复合材料 发光材料 由于稀土元素具有独特的电子层结构,稀土化合物表现出许多优异的光、电、磁功能,尤其是稀土元素具有一般元素所无法比拟的光谱学性质,稀土发光材料格外引人注目。稀土发光材料广泛应用于照明、显示和检测三大领域,形成了工业生产和消费市场规模,并正在向其他新兴技术领域拓展,因而稀土聚合物发光材料应运而生,目前它主要分为两类:稀土配合物-聚合物发光材料和长余辉发光塑料。 1 稀土配合物-聚合物发光材料 稀土配合物在发光与显示领域表现出独特的荧光性能,但是往往又因其自身固有的在材料性能方面的缺陷限制了它的应用。制成发光稀土配合物-聚合物复合材料,可以改善它的应用性能,拓宽它的应用范围。制备方法分为两种:掺杂法和键合法。前者实用、简便,但稀土配合物与高分子基质之间相容性差,不可避免地出现相分离和荧光猝灭等现象;后者克服了掺杂型材料中稀土配合物与高分子基质亲和性小、材料透明性和力学性能差等缺点,为获得宽稀土含量、高透光率的稀土高分子功能材料提供了可能,但制备工艺比较复杂。 111 掺杂型稀土配合物-聚合物发光材料 掺杂型稀土配合物-聚合物发光材料,即是直接将发光稀土配合物作为添加成分掺杂于高分子基质中,大多数稀土聚合物发光材料都是这样制备的,在许多领域得到应用。 11111 有机电致发光材料 有机电致发光(organic electroluminescence,OE L) 是目前国际上的一个研究热点,它具有高亮度、高效率,低压直流驱动,可与集成电路匹配,易实现彩色平板大面积显示等优点。人们预言,不久的将来,OE L 将取代无机电致发光和液晶显示的地位,使平板显示技术发生革命。稀土配合物的发射光谱谱带尖锐,半高宽度不超过10nm,色纯度高,这一独特优点是其他发光材料所无法比拟的,因而有可能用以制作高色纯度的彩色OE L显示器。然而,以小分子稀土配合物作为OE L器件的发光层材料存在一个显著缺陷:真空蒸镀成膜困难,器件制备工艺复杂,在成膜和使用过程中易出现结晶,使层间的接触变差,从而影响器件的发光性能和缩短器件的使用寿命。因此,经常将配合物与导电高分子(如聚乙烯咔唑,PVK)掺杂后采用旋涂的方法来制备发光层。为了保证掺杂均匀,须将稀土配合物和PVK共溶于易挥发的有机溶剂(如氯仿)。Zhang等以氯仿为溶剂,将Tb(AH BA)3 (AH BA为邻氨基24十六烷基苯甲酸)掺杂于PVK制备发光层,获得了良好的成膜性能和较为理想的发光亮度。董金凤等将红色荧光配合物Eu(TT A) m (TT A 为α2噻吩甲酰三氟丙酮)与PVK共混,制备单层器件,发光层成膜性能得到改善,器件的稳定性得到提 高。如果直接用Eu(TT A) m制成单层器件,则不能产生电致发光,这是由于配合物的成膜性能差,无法形成均匀致密的薄膜,施加电压后存在很大的漏电流。 陶栋梁等报道了将Tb(aspirin) 3 Phen(aspirin为乙酰水 11 2005年第5期 中国照明电器 CHI NA LIG HT&LIG HTI NG

稀土发光

关于稀土发光材料的认识(孙三大) 绪论 稀土元素由于具有未充满的4f电子壳层和4f电子被外层的5s,5p电子屏蔽的特性,使稀土元素具有极复杂的类线性光谱。吸收光谱使稀土离子大多有色,发射光谱使许多稀土化合物产生荧光和激光。镧系原子的组态为1S22S22P63S23P63d104S24P64d105S25P6(4f n6S2或4f n-15d6S2),其中n=1-15,La,Ce,Gd,Lu为4f n-15d6S2(镧系稀土元素电子层结构的特点是电子在外数第三层的4f轨道上填充,4f轨道的角量子数l=3,磁量子数m可取0、±1、±2、±3等7个值,故4f亚层具有7个轨道。根据Pauli不相容原理,在同一原子中不存在4个量子数完全相同的两个电子,即一个原子轨道上只能容纳自旋相反的两个电子,4f 亚层只能容纳14个电子,从La到Lu,4f电子依次从0增加到14),其余的元素4f n6S2[1-3]。 大部分无机固体致发光材料遵守斯托克斯定律,即发射光的光谱能量低于激发光的光谱能量,这样发光的现象叫做下转换发光。对于下转换发光由外界光源直接作用于稀土离子。1)使稀土离子中的电子由基态跃迁到激发态,完成高能级电子的排布,如图(1)所示,2)由某基团或离子等吸收高能光子后通过非福射他豫将能量传递给较低能级的稀土离子,使稀土离子中的电子由基态跃迁到激发态,如图(2)所示;另外,在1966年,在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。这一小部分光致发光材料违背了斯托克斯定律,即上转换发光,它通过吸收低光子能量的长波福射转换为高光子能量的短波福射。稀土离子可以通过激发态吸收或能量传递过程被激发至高能级而发射上转换发光,如图(3)所示。 Gound state (1)(2)(3) 图中所示(1)和(2)为下转换发光过程,图(3)为上转换发光过程。 稀土上转换/下转换发光材料在众多领域具有巨大的应用价值,对其进行理论和实验的深入

稀土发光材料的发光机理及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.doczj.com/doc/c412185161.html,/Periodical_ydysg201201028.aspx

碳纳米管的研究进展

碳纳米管的研究进展* 王全杰1,2** 王延青1*** (1. 陕西科技大学资源与环境学院,陕西 西安 710021;2. 烟台大学化学生物理工学院, 山东 烟台 264005) 摘要:碳纳米管是由石墨层片卷成的管状结构的一种新型纳米材料,拥有独特的物理化学、电学、热学和机械性能以及十分诱人的应用前景。文章对碳纳米管的制备方法、性质、纯化及应用前景进行了简要的综述。 关键词:碳纳米管;合成;性能;纯化;应用 中图分类号G 311 文献标识码 A Progress of Research for Carbon Nanotubes Wang Quanjie 1,2,Wang Yanqing 1 (1.College of Resource and Environment,Shaanxi University of Science and Technology,Xi’an 710021,China;2. Chemistry and Biology College,Yantai University,Yantai 264005,China)Abstract: Carbon nanotubes are a new class of nano-material with tubular structure formed via rolling-up of coaxial sheets of graphite. They have unique physicochemical, electrical, thermal and mechanical properties, opening up various intriguing possibilities for applications. The preparation methods, properties, methods of purification and application of carbon nanotubes are briefly reviewed. Key words: carbon nanotubes;synthesis;property;purification;application 自1991年日本科学家Lijima发现碳纳米管(Carbon Nanotubes,简称CNTs),1992年Ebbesn等人提出了实验室规模合成碳纳米管的方法后,其独特的结构和物理化学性质受到人们越来越多的关注[1]。碳纳米管因具有尺寸小、机械强度高、比表面大、电导率高、界面效应强等特点,从而使其具有特殊的机械、物化性能,在工程材料、催化、吸附、分离、储能器件电极材料等诸多领域中具有重要的应用前景。 *基金来源:山东省科技攻关项目(2008GG10003020) **第一作者简介:王全杰,男,1950年生,教授 ***通讯联系人

稀土掺杂纳米发光材料的研究发展

稀土掺杂纳米发光材料的研究发展 姓名:王林旭学号:5400110349 班级:经济107 摘要:本文先介绍了关于稀土纳米发光材料的有关基本概念及基本用途,让读者有个基本认识。文章重点对稀土氟化物纳米颗粒的上转换光学性能以及稀土磷酸盐纳米发光材料的研究进展方面做个简单的介绍 关键词:稀土发光材料稀土磷酸盐纳米发光材料 1.引言:短短半个学期的选修课学习,自己对纳米材料有了一定的了解,这篇论文的选题是“稀土掺杂纳米发光材料的研究发展”,查阅跟搜索了相关资料后,主要从稀土氟化物纳米颗粒的上转换光学性能以及稀土磷酸盐纳米发光材料的研究进展方面给以论述。 首先,先来了解几个基本概念。 1.1什么是稀土元素? 稀土元素包括钪、钇和57到71的镧系元素共17种元素。它们在自然界中共同存在,性质非常相似。由于这些元素发现的比较晚又难以分离出高纯状态,最初得到的是元素的氧化物,它们的外观似土,所以称它们为稀土元素。 稀土元素的电子组态是[Xe]4fDI15s25 ̄sao~6s2。镧系元素离子的吸收光谱或激发光谱,来源于组态内的电子跃迁,即f—f跃迁;组态间的能级跃迁,即4f一5d,4f一6s,4f一6p等跃迁:还有电荷迁移跃迁,即配体离子的电子向离子的跃迁,从高能级向低能级的跃迁就产生相应的发射光谱。由于稀土的这些特性,所以它可以做发光材料。发光材料包括半导体发光材料和稀土化合物发光材料两大类…1。稀土荧光材料以应用铕、铽、钆、钇等高纯中稀土为主要特色2。纳米稀土发光材料是指基质粒子尺寸在1—1oo哪的发光材料l3。纳米粒子本身具有量子尺寸效应、小尺寸效应、表面效应和宏观量子隧道效应等。受这些结构特性的影响,纳米稀土发光材料表现出许多奇特的物理和化学特性,从而影响其中掺杂的激活离子的发光和动力学性质,如光吸收、激发态寿命,能量传递,发光量子效应和浓度猝灭等性质。在各种类型激发作用下能产生光发射的材料。 1.2什么是发光材料? 在各种类型激发作用下能产生光发射的材料。主要由基质和激活剂组成,此外还添加一些助溶剂、共激活剂和敏化剂 1.3什么是稀土发光材料? 稀土发光是由稀土4f电子在不同能级间跃出而产生的,因激发方式不同,发光可区分为光致发光(photoluminescence)、阴极射线发光(cathodluminescence)、电致发光(electroluminescence)、放射性发光(radiation luminescence)、X射线发光(X-ray luminescence)、摩擦发光(triboluminescence)、化学发光(chemiluminescence)和生物发光(bioluminescence)等。稀土发光具有吸收能力强,转换效率高,可发射从紫外线到红外光的光谱,特别在可见光区有很强的发射能力等优点。稀土发光材料已广泛应用在显示显像、新光源、X射线增光屏等各个方面。 1.4什么是纳米材料? 纳米材料是指晶粒尺寸小于100nm的单晶体或多晶体,由于晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,因而使纳米材料有许多不同于一般粗晶材料的性能,如强度和硬度增大、低密度、低弹性模量、高电阻、低热导

稀土发光材料的特点及应用介绍

稀土发光材料的特点及应用介绍 专业:有机化学姓名:杨娟学号:201002121343 发光是物体把吸收的能量转化为光辐射的过程。当物质受到诸如光照、外加电场或电子束轰击等的激发后,吸收外界能量,处于激发状态,它在跃迁回到基态的过程中,吸收的能量会通过光或热的形式释放出来。如果这部分能量是以光的电磁波形式辐射出来,即为发光。 所谓的稀土元素,是指镧系元素加上同属IIIB族的钪Sc和钇Y,共17种元素。这些元素具有电子结构相同,而内层4f电子能级相近的电子层构型、电价高、半径大、极化力强、化学性质活泼及能水解等性质,故其应用十分广泛。 1稀土发光材料的发光特性 稀土是一个巨大的发光材料宝库,稀土元素无论被用作发光(荧光)材料的基质成分,还是被用作激活剂,共激活剂,敏化剂或掺杂剂,所制成的发光材料,一般统称为稀土发光材料或稀土荧光材料。 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。 因为稀土元素原子的电子构型中存在4f轨道,当4f电子从高的能级以辐射驰骋的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能。 稀土发光材料优点是发光谱带窄,色纯度高色,彩鲜艳;吸收激发能量的能力强,转换效率高;发射光谱范围宽,从紫外到红外;荧光寿命从纳秒跨越到毫秒6个数量级,磷光最长达十多个小时;材料的物理化学性能稳定,能承受大功率的电子束,高能射线和强紫外光的作用等。今天,稀土发光材料已广泛应用于显示显像,新光源,X射线增感屏,核物理探测等领域,并向其它高技术领域扩展。 2稀土发光材料的合成方法 稀土发光材料的合成方法包括水热合成法、高温固相合成法、微波合成法、溶胶——凝胶法、微波辐射法、燃烧合成法以及共沉淀法。 2. 1 水热合成法

发光材料的发光机理以及各种发光材料的研究进展(精)

发光材料的发光机理以及各种发光材料的研究进展 罗志勇20042401143 摘要:发光材料种类繁多,自然界中很多物质都具有不同程度的发光现象。本文通过按照不同的发光机理,将现在常见的发光物质进行分类,并介绍他们的发展与研究进展。 关键词:发光材料发光机理进展 1.前言 物质的发光可由多种外界作用引起,如电磁辐射作用、电场或电流的作用、化学反应、生物过程等等。根据不同的发光原因,可以将发光材料分为光致发光材料、电致发光材料、化学发光材料等等。发光材料涉及了无机和有机功能材料和固、液、气三种聚集状态,所以又可以将发光材料分为无机固体发光材料和有机发光材料等等。现在人们研究得比较深入的有有机电致发光材料、有机光致发光材料、有机偏振发光材料、稀土高分子发光材料、无机电致发光材料、纳米稀土发光材料等等。不同的发光材料可以应用于各种光源、显示器等现代显示技术之中。 2.发光材料的发光机理 2.1光致发光材料发光机理 光致发光材料是指在一定波长的光照射,材料分子中基态电子(主要是π电子和f、d电子)被激发到高能态,电子从高能态回到激发态时,多余的能量以光的形式散发出来,达到发光的目的。这种发光材料称为荧光材料,大部分的稀土发光材料均以这种方式发光,原因是稀土元素基本都具有f电子,并且f电子的跃迁方式多样,因此稀土元素是一个丰富的发光材料宝库。 2.2电致发光材料发光机理 电致发光是在直流或交流电场的作用下,依靠电流和电场的激发使材料发光的现象,也称场致发光。电致发光的机理有本征式和注入式两种。本征式场致发光是用交变电场激励物质,使产生正空穴和电子。当电场反向时,那些因碰撞离化而被激发的电子,又与空穴复合而发光。注入式场致发光是指n-型半导体和p-型半导体接触时,在界面上形成p-n结。由于电子和空穴的扩散作用,在p-n结接触面的两侧形成空间电荷区,形成一个势垒,阻碍电子和空穴的扩散。n区电子要到达p区,必须越过势垒;反之亦然。当对p-n结施加电压时会使势垒降低。这样能量较大的电子和空穴分别进入p区和n区,分别同p区的空穴和n区的电子复合。同时以光的形式辐射出多余的能量。 2.3化学发光材料发光机理

相关主题
文本预览
相关文档 最新文档