当前位置:文档之家› 材料常用流动应力模型研究

材料常用流动应力模型研究

材料常用流动应力模型研究
材料常用流动应力模型研究

X射线衍射在残余应力分析中应用

X射线衍射在材料分析中的应用 一、X射线衍射原理 X射线照射晶体,电子受迫振动产生相干散射,同一原子内各电子散射波相互干涉形成原子散射波。由于晶体内各原子呈周期排列,因而各原子散射波间也存在固定的位相关系而产生干涉作用,在某些方向上发生相长干涉,即形成了衍射波。由此可知,衍射的本质是晶体中原子相干散射波叠加(合成)的结果。 二、X射线衍射在材料分析中的应用 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途: 1)物相分析:物相分析是指确定材料由哪些相组成和确定各组成相的含量。物相是决定或影响材料性能的重要因素,因而物相分析在材料、冶金、机械等行业中得到广泛应用。物相分析有定性分析和定量分析2 种: ①相定性分析的目的是检测固体样品中的相组成,采用未知样品衍射图谱与标 准图谱比较的办法. 如果衍射图谱相同即可确定为该物相。但如果样品为多相混合试样时,衍射线条谱多,谱线可能发生重叠,就需要根据强度分解组合衍射图谱来确定。 ②物相定量分析就是确定物质样品中各组成相的相含量. 根据衍射强度理论,物质中某相的衍射强度Ii与其质量百分数Xi 成如下关系 .Ii = KiXi/ Um 其中, Ki 为由实验条件和待测相而共同决定的常数;Xi 为质量百分数;Um 为待测样品的平均质量吸收系数,与Xi 有关。根据Um 的校正提出一系列物相定量分析方法,如内标法、K 值法、直接对比法,一般相定量分析误差可控制在5%以下; 2)结晶度:X 射线衍射图谱中,在一些情况下,结晶物质的图谱和非晶物质图谱重叠. 结晶度定义为结晶部分质量与总的试样质量之比的百分数. 目前非晶态合金用处很多,如软磁材料等. 而结晶度直接影响其材料的性能、损耗等. 测定结晶度方法主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比,也可根据衍射线位置来确定结晶度; 3)残余应力分析:将产生应力的各种外部因素去除后,物体内部依然存在的应力称为残余应力. 在固体样品中,固体处于弹性极限内,该物质将随所受外力的大小而发生形变,从微观的角度来讲其晶面间距d 将发生改变,因此, 可根据d 值变化来测量残余应力σ.由于残余应力测试的特殊性,所以必须在X 射线衍射仪基础上加应力附件测试; 4) 微晶大小:X射线衍射图中峰宽β表现了构成物质的晶粒大小,峰宽化的原因除了晶粒的大小还有晶粒内部的非均匀应变. 使用Scherrer 公式和Hall 公式可计算微晶大小和非均匀应变; 5)晶体取向的测定:又称为单晶定向,是指测定晶体样品中晶体取向与样品外观坐标系的位向关系通过建立合适的外坐标系之后,对样品进行所要求的晶面或晶向的方位测定材料的性质与它的物相组成、结晶度和结晶粒子的大小、材料内部微观应变都有密切关系。

高分子材料应力-应变曲线的测定

化学化工学院材料化学专业实验报告 实验名称:高分子材料应力-应变曲线的测定 年级: 10级材料化学 日期: 2012-10-25 姓名: 学号: 同组人: 一、 预习部分 聚合物材料在拉力作用下的应力-应变测试是一种广泛使用的最基础的力学试验。聚合物的应力-应变曲线提供力学行为的许多重要线索及表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能等)以评价材料抵抗载荷,抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线有助于判断聚合物材料的强弱、软硬、韧脆和粗略估算聚合物所处的状况与拉伸取向、结晶过程,并为设计和应用部门选用最佳材料提供科学依据。 1、应力—应变曲线 拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。 应力与应变之间的关系,即:P bd σ= 00100%t I I I ε-= ? E ε σ = 式中 σ——应力,MPa ; ε——应变,%; E ——弹性模量,MPa ; A 为屈服点,A 点所对应力叫屈服应力或屈服强度。 的为断裂点,D 点所对应力角断裂应力或断裂强度 聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图

曲线分以下几个部分: OA:应力与应变基本成正比(虎克弹性)。--弹性形变 屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。--屈服成颈 BC:出现屈服点之后,应力下降阶段--应变软化 CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变 DE:试样均匀拉伸,应力增大,直到材料断裂。断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化 通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。 根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。 (b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。 (c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。 (d)材料软而韧:模量低,屈服强度低,断裂伸长率大,断裂强度较高,可用于要求形变较大的材料。 (e)材料软而弱:模量低,屈服强度低,中等断裂伸长率。如未硫化的天然橡胶。 (f)材料弱而脆:一般为低聚物,不能直接用做材料。 注意:材料的强与弱从σb比较;硬与软从E(σ/e)比较;脆与韧则主要从断裂伸长率比较。

表面残余应力分析

表面残余应力 胡宏宇 (浙江工业大学机械工程学院,浙江杭州 310032) 摘要:残余应力主要是由构件内部不均匀的塑性变形引起的。各种工程材料和构件在毛坯的制备、零件的加工、热处理和装配的过程中都会产生不同程度的残余应力。残余应力因其直观性差和不易检测等因素往往被人们忽视。残余应力严重影响构件的加工精度和尺寸稳定性、静强度、疲劳强度和腐蚀开裂。特别是在承力件和转动件上,残余应力的存在易导致突发性破坏且后果往往十分严重。因此,研究残余应力的产生机理、检测手段、消除方法以及残余应力对构件的影响[1]。 关键词:残余应力;切削变形;磁测法;喷丸强化; Surface residual stress (S chool of mechanical engineering,Zhejiang University of Technology,Hangzhou 310032,China) Abstract:Residual stress is mainly caused by the uneven plastic deformation of component. All kinds of engineering materials in the preparation of blank, parts and components processing, heat treatment and assembly process will produce different degree of residual stress. Residual stress because of its intuitive factors such as poor and difficult to detect is often neglected. Seriously affect the residual stress of component machining precision and dimension stability, static strength, fatigue strength and corrosion cracking. Especially on the bearing and rotating parts, the existence of the residual stress can lead to sudden destruction and the consequences are often very serious. Therefore, to study the mechanism of residual stress, detection means, elimination method and the influence of residual stress of components。 Key words:Residual stress;machining deflection;magnetic method;Shot peening strengthening; 前言 随着现代制造技术的发展,大飞机、高铁、核设施等大型设备相继出现;这些设备具有高速、重载和长时间运行的特点,其零部件工作环境恶劣、复杂,且往往对安全性有着极其苛刻的要求,因而对这些设备的关键部件,如轴承、曲轴、传动轴的疲劳寿命和可靠性也有很高的要求,对它们的疲劳寿命预测 和分析成为研究的重点. 金属切削加工是一个伴随着高温、高压、高应率的塑性大变形过程, 在已加工表面上存在着相当大 的残余应力; 同时又由于切削过程切削力和切削热作用及刀具与工件的摩擦等综合因素的影响, 使得零件内部初始的残余应力重新分布并与表面层残余应力耦合作用形成新的残余应力分布规律。残余应力以平衡状态存在于物体内部, 是固有应力域中局部内应力的一种。残余应力是一种不稳定的应力状态, 当物体受到外力作用时, 作用应力与残余应力相互作用, 使其某些局部呈现塑性变形, 截面内应力重新分配; 当外力作用去除后, 整个物体由于内部残余应力的作用将发生形变。 根据理论分析和实验研究的结果,工件的疲劳寿命和加工表面的残余应力状态有重要的关系:残余压应力能抑制工件的疲劳破坏,延长疲劳寿命;残余拉应力则相反,会加速疲劳破坏的出现[2].因此,了解

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

XRD在残余应力分析中的应用

XRD 在残余应力分析中的应用 摘要 X 射线衍射测量残余应力的原理是以测量衍射线位移作为原始数据,所测量的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。 关键词 X 射线衍射 残余应力 XRD 0.引言 X 射线衍射在残余应力分析中具有重要的作用。X 射线应用在残余应力的分析中,是科技的一项重大突破。其中在:定量分析轴承和内燃机喷射器部件中的残余奥氏体;检测输片惰性轮中的残余应力;检测汽车发动机部件的残余应力(凸轮轴、连杆、发动机轴、均衡器);检测由于全回火引起的残余应力(家用电器、结构部件);检测气体传导时所存在的工作压力;检测大幅度拉伸结构件中的工作应力;通过检测应力来测量工件喷丸和轧制的效率;检测铸件的残余应力(机械工具铸铁件和汽车铸铝部件);检测焊接引起的应力(激光和电焊);研究铝合金汽车轮廓中的残余应力和应力阻抗的关系;优化切削去除的工作参数以提高机械部件的应力阻抗;检测螺旋式和叶式弹簧的残余应力;研究加上工作载荷后的临界区域(武器和航空)等很多领域都有贡献。 1.X 衍射射线分析 1.1 原理简介 X 射线衍射分析是利用晶体形成的X 射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X 射线照射到结晶性物质上时,X 射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X 射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象,图1为X 射线衍射的产生。衍射X 射线满足布拉格(W.L.Bragg )方程:λθn d =sin 2 式中:λ是X 射线的波长;θ是衍射角;d 是结晶面间隔;n 是整数。波长λ可用已知的X 射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X 射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X 射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。]1[ 图1 X 射线衍射的产生 1.2 应用——物相分析

钢铁材料的许用应力

表1 普通碳钢及优质碳钢构件基本许用应力/MPa 材 料类型材料 标号 截面尺寸 /mm 热处 理 材料性能拉压弯曲扭转剪切 抗拉强度σb 屈服强度σs /MPa ⅠⅡⅢⅠⅡⅢⅠⅡⅢⅠⅡⅢ σlσlσlστnτnτnτττ 普通碳钢Q215 100 热 扎 σb335~410 σs185~215 145 125 90 175 95 90 60 100 90 60 Q235 σb375~460 σs205~235 160 140 100 190 160 120 105 σσ110 100 70 Q275 σb490~610 σs235~275 175 150 110 210 170 130 115 140 105 120 110 80 优质碳钢20 ≤100 正 火 σb410 σs245 175 145 105 210 165 125 115 105 70 120 105 75 25 σb450 σs275 195 160 115 230 175 135 125 115 75 135 120 80 35 σb530 σs315 210 180 125 250 200 150 135 120 80 145 120 85 调质σb550~750 σs320~370 210 185 130 250 205 155 135 125 85 145 120 85 45 正火σb600 σs355 230 200 145 270 220 170 150 135 90 160 140 95 调质σb630~800 σs370~430 250 215 150 300 235 180 160 150 100 175 150 100 50 ≤25 正火σb630 σs375 250 215 150 300 235 180 160 150 100 175 150 100 ≤100 调质σb>700 σs>400 265 235 165 310 260 195 170 155 105 180 160 110

涂层残余应力预测分析模型

涂层残余应力预测解析模型:平面几何模型 热喷涂涂层:熔化的金属颗粒高速碰撞基板然后快速冷却(淬火),在几毫秒时间内冷却。形成大的拉应力。蠕变和屈服是主要的应力释放的机理。 一个典型的预测热喷涂涂层残余应力分布的数学模型。 1 模型公式 建立在平面几何的基础之上。 1.1 沉积应力 1.1.1 第一层 应变(1)σq——内(淬火)应力;E d——杨氏模量 假设每一个部位产生的应变是不相等的,并产生反作用力F(图1),于是有 (2) 可以写为(3) 在涂层形成一个很大的拉应力,同时,在基板上上产生一个对等的平衡的反作用力——压应力。 形成弯矩(banding moment)(4) 中性层δ1 (5) Composite beam stiffness

(6) 平衡弯矩M1,产生曲率变化,κ1-κ0 (7) 通常,κ0可以处理为零。如果涂层在凹面,则曲率是可以明确的。图1的情况。 假设双向应力相等(σx =σz),厚度方向应力可以忽略(σy =0)。 由泊松效应(Poisson effect),σz将在x方向导致一个应变。X方向的net应变可以写为 (8) 于是,x方向的应力应变关系可以表示为: (9) Effective young’s modulus value. 由于仅考虑弹性状态,因此,基板内沿着厚度方向的应力变化应该是线性的,只需要计算基板的底部和顶部的应力即可。从材料力学可以计算: (10) (11) 于是,可以得出涂层第一层中部的应力: (12) 1.1.2 第二层 考虑在基板(镀层)上冲击形成第二层,如图2所示。

不等应变的大小与前面相同。平衡应变改为: (13) 该式中,F2是作用在前面的镀层与基板构成的复合板上的,其中性层δ1如图1所示。这一层与基板具有相同的应变,E2e是等效杨氏模量: (14) 代入上式,可以得到F2的表达式: (15) F2分摊在镀层第一层和基板中。 作用在基板上的力为: (16) 同样,作用第一层镀层上的力为: (17) 显然地,F2s和F2w都是压应力。在镀层的第二层上存在与F2大小相等的拉应力。 大小相等方向相反的力对形成力矩M2: (18) 平衡弯矩M2,产生曲率变化,κ2-κ1 (19) 组合板的硬度(强度)可以写为: (20) 而且可以确定δ2为: (21)

各种许用应力与抗拉强度、屈服强度的关系

各种许用应力与抗拉强度、屈服强度的关系 我们在设计的时候常取许用剪切应力,在不同的情况下安全系数不同,许用剪切应力就不一样。校核各种许用应力常常与许用拉应力有联系,而许用材料的屈服强度(刚度)与各种应力关系如下: <一> 许用(拉伸)应力 钢材的许用拉应力[δ]与抗拉强度极限、屈服强度极限的关系: 1.对于塑性材料[δ]= δs /n 2.对于脆性材料[δ]= δb /n δb ---抗拉强度极限 δs ---屈服强度极限 n---安全系数 轧、锻件n=1.2-2.2 起重机械n=1.7 人力钢丝绳n=4.5 土建工程n=1.5 载人用的钢丝n=9 螺纹连接n=1.2-1.7 铸件n=1.6-2.5 一般钢材n=1.6-2.5 注:脆性材料:如淬硬的工具钢、陶瓷等。 塑性材料:如低碳钢、非淬硬中炭钢、退火球墨铸铁、铜和铝等。 <二> 剪切 许用剪应力与许用拉应力的关系: 1.对于塑性材料[τ]=0.6-0.8[δ] 2.对于脆性材料[τ]=0.8-1.0[δ] <三> 挤压 许用挤压应力与许用拉应力的关系 1.对于塑性材料[δj]=1.5- 2.5[δ]

2.对于脆性材料[δj]=0.9-1.5[δ] 注:[δj]=1.7-2[δ](部分教科书常用) <四> 扭转 许用扭转应力与许用拉应力的关系: 1.对于塑性材料[δn]=0.5-0.6[δ] 2.对于脆性材料[δn]=0.8-1.0[δ] 轴的扭转变形用每米长的扭转角来衡量。对于一般传动可取[φ]=0.5°--1°/m;对于精密件,可取[φ]=0.25°-0.5°/m;对于要求不严格的轴,可取[φ]大于1°/m计算。 <五> 弯曲 许用弯曲应力与许用拉应力的关系: 1.对于薄壁型钢一般采取用轴向拉伸应力的许用值 2.对于实心型钢可以略高一点,具体数值可参见有关规范。

材料的许用应力和安全系数

第四节 许用应力·安全系数·强度条件 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 b b n σσ= ][ (5-8) 对于塑性材料,许用应力 s s n σσ= ][ (5-9) 其中b n 、s n 分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取0.2~5.1=s n ;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取0.5~0.2=b n ,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 ][max max σσ≤=A N (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,

金属热处理残余应力及其影响分析

热处理残余应力是指工件经热处理后最终残存下来的应力,对工件的形状、尺寸和性能都有极为重要的影响。当它超过材料的屈服强度时,便引起工件的变形,超过材料的强度极限时就会使工件开裂,这是它有害的一面,应当减少和消除。但在一定条件下控制应力使之合理分布,就可以提高零件的机械性能和使用寿命,变有害为有利。分析钢在热处理过程中应力的分布和变化规律,使之合理分布对提高产品质量有着深远的实际意义。例如关于表层残余压应力的合理分布对零件使用寿命的影响问题已经引起了人们的广泛重视。 1 钢的热处理应力 工件在加热和冷却过程中,由于表层和心部的冷却速度和时间的不一致,形成温差,就会导致体积膨胀和收缩不均而产生应力,即热应力。在热应力的作用下,由于表层开始温度低于心部,收缩也大于心部而使心部受拉,当冷却结束时,由于心部最后冷却体积收缩不能自由进行而使表层受压心部受拉。即在热应力的用下最终使工件表层受压而心部受拉。 这种现象受到冷却速度,材料成分和热处理工艺等因素的影响。当冷却速度愈快,含碳量和合金成分愈高,冷却过程中在热应力作用下产生的不均匀塑性变形愈大,最后形成的残余应力就愈大。 另一方面钢在热处理过程中由于组织的变化即奥氏体向马氏体转变时,因比容的增大会伴随工件体积的膨胀,工件各部位先后相变,造成体积长大不一致而产生组织应力。组织应力变化的最终结果是表层受拉应力,心部受压应力,恰好与热应力相反。组织应力的大小与工件在马氏体相变区的冷却速度、形状、材料的化学成分等因素有关。 实践证明,任何工件在热处理过程中,只要有相变,热应力和组织应力都会发生。只不过热应力在组织转变以前就已经产生了,而组织应力则是在组织转变过程中产生的,在整个冷却过程中,热应力与组织应力综合作用的结果,就是工件中实际存在的应力。这两种应力综合作用的结果是十分复杂的,受着许多因素的影响,如成分、形状、热处理工艺等。就其发展过程来说只有两种类型,即热应力和组织应力,作用方向相反时二者抵消,作用方向相同时二者相互迭加。 不管是相互抵消还是相互迭加,两个应力应有一个占主导因素,热应力占主导地位时的作用结果是工件心部受拉,表面受压。组织应力占主导地位时的作用结果是工件心部受压表面受拉。 2 热处理应力对淬火裂纹的影响 存在于淬火件不同部位上能引起应力集中的因素(包括冶金缺陷在内),对淬火裂纹的产生都有促进作用,但只有在拉应力场内(尤其是在最大拉应力下)才会表现出来,若在压应力场内并无促裂作用。 淬火冷却速度是一个能影响淬火质量并决定残余应力的重要因素,也是一个能对

X射线衍射在残余应力分析中的应用

X射线衍射在残余应力分析中的应用 杨国彬 (测101) 摘要 X射线衍射测量残余应力的原理是以测量衍射线位移作为原始数据,所测量的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。 关键词 X射线衍射残余应力 XRD 1引言 X射线衍射在残余应力分析中具有重要的作用。X射线应用在残余应力的分析中,是科技的一项重大突破。其中在:定量分析轴承和内燃机喷射器部件中的残余奥氏体检测输片惰性轮中的残余应力检测汽车发动机部件的残余应力(凸轮轴、连杆、发动机轴、均衡器)检测由于全回火引起的残余应力(家用电器、结构部件)检测气体传导时所存在的工作压力检测大幅度拉伸结构件中的工作应力通过检测应力来测量工件喷丸和轧制的效率检测铸件的残余应力(机械工具铸铁件和汽车铸铝部件)检测焊接引起的应力(激光和电焊)研究铝合金汽车轮廓中的残余应力和应力阻抗的关系优化切削去除的工作参数以提高机械部件的应力阻抗检测螺旋式和叶式弹簧的残余应力研究加上工作载荷后的临界区域(武器和航空)等很多领域都有贡献。 2应用举例 (1)DD3镍基单晶高温合金喷丸层残余应力的X射线衍射分析 1试样制备与测试方法 试验材料为DD3镍基单晶高温合金其化学成分质量分数%为9.6Co8.9Cr6.6W4.3Al2.9Ti3.4Ta2.1Mo将其进行1250℃×4h空冷+870℃×32h空冷的热处理后其组成相为固溶体相和′相晶体结构为立方晶系采用线切割加工出块状试样尺寸为20mm×10mm×4mm单晶111晶向为试样的表面法线方向即单晶111面与试样表面平行对试样原始线切割面进行磨削加工磨削深度超过0.5mm然后进行喷丸处理采用直径为0.2mm的陶瓷丸喷丸强度为0.15mmA型试片确保覆盖率在200%以上使用DmaxrC型X射线衍射仪铜靶K辐射测定331衍射晶面单晶弹性柔度系数S11=7.685×10-12m2N-1S12=-3.067×10-12m2N-1S44=7.752×10-12m2N-1X射线弹性常数K=-519Nmm-2结合电化学腐蚀技术进行剥层分别测试喷丸试样不同层深处单晶组分与多晶组分中的残余应力5 由图1可见试样表面法线z轴为晶体n1n2n3方向试样表面某特定方向x轴即晶体w1w2w3方向空间OP方向是hkl晶面的法线方向。

abaqus热残余应力分析实例

利用Abaqus的Moldflow接口进行翘曲分析和残余应力分析 Abaqus关键特征和优势 1.力学性质、有限元网格以及残余应力数据都能从Moldflow很简便地传递到Abaqus 2.包含了成型工艺残余应力的Abaqus分析使得注塑模具产品的仿真更加精确 分析方法 对一个注塑模具产品的翘曲和应力分析的过程来说,一开始是利用Moldflow对注塑成型过程进行仿真。Moldflow的分析结果包括材料性质的描述以及固化零件中的残余应力分布。Abaqus的Moldflow接口此时用来将这些数据转换成Abaqus可以应用的格式。特别强调的是,接口产生的文件包含了塑料的网格信息、残余应力结果以及材料的性质。这些数据会在接下来的Abaqus分析中用来进行翘曲和残余应力影响的建模。椅子和手机外壳塑模的离散化模型如图1所示。对于这两个模型,Moldflow分析在模型厚度上分了21层并使用了壳体网格元素。翘曲的仿真运用Abaqus/Standard的静态分析功能分析完成。 图1:椅子和手机外壳模型的网格 结果和讨论 运用Abaqus/Standard进行翘曲分析后,椅子模型和手机外壳模型的变形如图2及图3所示。

图2:椅子模型的翘曲位移[米]分布云图 图3:手机外壳模型的翘曲位移[米]分布云图 由Abaqus/Standard翘曲分析所得到的椅子模型和手机外壳模型的Mises应力分布云图如图4及图5所示。很明显可以看出,由于翘曲引起了变形,原来零件中所储存的Mises 应力大小降低了。

图4:椅子模型的Mises应力[帕]分布分布—翘曲前[左]和翘曲后[后] 图5:手机外壳模型的Mises应力[帕]分布—翘曲前[左]和翘曲后[后] 结论 Abaqus为进行细致的结构分析提供了强大的能力。Moldflow为注塑模具产品提供了运算残余应力和材料性质的能力。Abaqus的Moldflow接口通过提供Moldflow分析结果向Abaqus分析过程传送的方法,使得更加精确、更加高效的设计过程得以实现。

齿轮材料许用应力选用参考规范

齿轮材料许用应力选用参考规范 不言而喻,如何选用材料许用应力,是齿轮强度设计的关键,安全系数取的太低往往带来使用安全风险,安全系数取的太高则必然造成材料和能源浪费。上世纪尤其80年代之前一些钢种如45#、40Cr、Q235(A3)、Q345(16Mn) 的许用应力数据比较全,很多设计手册中都有,但齿轮材料(如20CrMnTi、20CrNi3、20CrNiMo、20CrNiMo 等)的许用应力数据,往往在设计手册中是找不到的。本文根据机械设计的基本原则和材料标准中强度数据,演算出齿轮材料弯曲许用应力、疲劳许用应力和接触许用应力数据,供齿轮设计人员参考使用。 一、许用应力选择依据 1、许用弯曲应力—用于齿根强度计算 根据设计手册,静载荷拉应力安全系数:低强度钢n s=1.4‐1.8;高强钢n s=1.7‐2.2;以屈服强度为基数。 齿轮材料屈服强度数据可从GB/T699‐1999、GB/T1591‐2008、GB/T3077‐1999标准中选取。 受弯曲应力比拉应力状况会好一些,许用应力可以提高15‐20%。 2、许用弯曲疲劳应力—用于齿根疲劳强度计算 疲劳载荷安全系数:低强度钢n‐1=1.5‐1.8;高强钢n s=1.8‐2.5。 弯曲疲劳强度极限σ‐1=0.27(σs+σb),σs和σb数据可从GB/T699‐1999、 GB/T1591‐2008、GB/T3077‐1999标准中选取。 3、许用接触应力—用于齿面接触强度计算 许用接触应力不但与齿轮本身材料硬度有关,与其配对的齿轮硬度也有关联,下列数据是将齿轮副当同一材料看待。 齿轮硬度根据齿轮材料及其热处理方法来确定,多数数据可以从GB/T5216‐2004标准选取。 许用应力数值是材料布式硬度的0.59‐0.69,随着硬度提高,比例也增高。

残余应力检测方法概述.

第1 页共 2页 残余应力检测方法概述 目前国际上普遍使用的残余应力检测方法种类十分繁多,为便于分类,人们往往根据测试过程中被测样品的破坏与否将测试方法分为:应力松弛法(样品将被破坏和无损检测法(样品不被破坏两类。以下我们简单归纳了现阶段较为常用的一些残余应力检测方法。 一、常见的残余应力检测方法: 1. 应力松弛法 (1 盲孔法 该方法最早由Mather 于1934年提出,其基本原理就是通过孔附近的应变变化,用弹性力学来分析小孔位置的应力,孔的位置和尺寸会影响最终的应力数值。由于这类设备操作起来非常简单,近年来被广泛使用。 (2 切条法 Ralakoutsky 在1888年提出了采用该方法测量材料的残余应力。在使用这种方法时需要沿特定方向将试件切出一条,然后通过测量试件切割位置的应变来计算残余应力。 (3 剥层法 该方法是通过物理或化学的方法去除试件的 一层并测量其去除后的曲率,根据测定的试件表面曲率变化就能计算出残余应力。该方法常用于形状简单的试件,且测试过程快捷。 2. 无损检测方法 (1 X 射线衍射法 X 射线方法是根据测量试件的晶体面间距变化来确定试件的应变,进而通过弹性力学方程推导计算得到残余应力,目前最被广泛使用的是Machearauch 于1961提

出的sin2ψ方法。日本最早研制成功了基于该方法的X 射线残余应力分析仪,为该方法的推广做出了巨大的贡献。 (2 中子衍射法。 中子衍射方法的原理和X 射线方法本质上是一样的,都是根据材料的晶体面间距变化来求得应变,并根据弹性力学方程计算残余应力。但中子散射能量更高,可以穿透的深度更大,当然中子衍射的成本也是最昂贵的。 (3 超声波法。 该方法的物理和实验依据是S.Oka 于1940年发现的声双折射现象,通过测定声折射所导致的声速和频谱变化反推出作用在试件上的应力。试件的晶体颗粒及取向会影响数据的准确度,尽管超声波方法也属无损检测方法,但其仍需进一步完善。二、最新的残余应力检测方法 cos α方法早在1978年就由S.Taira 等人提出, 但真正应用于残余应力测试设备中还是近几年的事情。日本Pulstec 公司于2012年研制出了世界上首款基于cos α方法的X 射线残余应力分析仪,图1是设备图片(型号:μ-x360n 。 第2 页共 2页

ASME规范规范材料材料性能许用应力

ASME规范规范材料材料性能许用应力 ASME锅炉压力容器规范每三年改版一次,2004版规范在去年的8月已经公布。笔者对照上一版本(含增补),在《ASME在中国》2004 期上撰文《关于2004年版ASME规范第II卷的A篇和D篇的翻译及与2001年版差异的说明》,向读者介绍了第II卷的A篇《铁基材料》新版本的总体变动情况,本文将从6个方面具体介绍第II卷的D篇《材料性能》。 笔者在翻译2004版第II卷的D篇的过程中,与2001年版相比,发现第II卷的D篇在各卷册中变动最大。 通常了解规范各卷内容变更的方法是查阅卷前的“变更一览表”,而第II卷D篇新改版不提供“变更一览表”,只有在后2年发布规范“增补”时才能见到。尽管第II卷D篇每次增补变动量也不小,但总体上仅仅是页数的变化、各应力表格中钢种的增有减,以及对个别钢材的应力值的调整。而2004版D篇的变动已经远远超出这种程度,本人认为,造成2004版第II卷D篇发生很大变动的主要原因有以下几点: 1) 2001版的II卷D篇出了2种单位制的版本,即美国习惯单位版本和公制单位版本。在公制单位版本中,无论是规格尺寸或厚度、长度尺寸,还有最大许用应力值S和设计应力强度值Sm、各个温度下材料的抗拉强度和屈服强度值,以及对于材料的物理性能数据,都采用公制单位(SI单位)。首先,温度值不再使用华氏温度℉,而改变为摄氏温度℃;应力值或强度值不再使用psi或ksi,而改用MPa。因此,在2004版第II卷D篇的名称上还特地示出为:“PART-D ---- PROPERTIES(Metric)”。在长达近百年的ASME 规范的出版历程中,出版使用国际单位(SI)制的材料性能数据还是首次。 2) 2004年版第II卷的D篇第一次针对规范第XII卷《运输罐的建造和连续使用规则》,给出了在设计锅炉及压力容器中所须引用到的规范规定材料的最大许用应力值S以及在规范产品上使用这些材料的过程中需要引用的“注解”。这是由于从2004版开始,第XII卷从原来由美国交通部管理转由ASME管理。 3) 在D篇三个分篇中的第一分篇和第二分篇之前,都新增加了一份“前言”。在新增加的“前言”中不仅概述了分篇中的内容组成,还对如何应用作了提示。 4) 对规范本文之后附加的附录,按“强制性”和“非强制性”进行区分。强制性附录按阿拉伯数字排列,而非强制性附录按英文字母排列。2001版原有的附录6在2004版中改为非强制性附录A。在附录7《材料的多重性标志》之后,新增加了附录9《公式中使用的标准单位》。 5) 新增加了非强制性附录-B,《在应力表格和在力学性能和物理性能表格中查找材料》。 6)新增加了非强制性附录-C,《在锅炉及压力容器规范中使用美国习惯单位和国际单位制的导则》,对于“单位换算”上的规则作出了明确的说明。 此外还将在设计锅炉及压力容器的过程中,所须引用到的规范规定材料的最大许用应力值S和设计应力强度值Sm,材料的各种物理特性数据以及受外压或压缩载荷作用下确定部件壳体厚度用的线算图都收在第II卷的D篇中,这些都是锅炉及压力容器设计的重要依据。下面针对上述6个方面的变动作进一步的说明: 一、关于由原英制单位改用公制单位(SI单位)的说明: 这里,以近年来在锅炉及压力容器的设计中广泛应用的、公称成分为“9Cr-1Mo-V”的SA-213 T91的无缝管子为例加以说明。 在2001版的D篇中第一分篇的应力表-“表1A”中,对于该材料在不同温度下的许用应力值,读者可从2001版D篇的中译本第38页到41页的第30行查知。按华氏温度从900℉至1200℉的温度区间、并以ksi为单位所给出的许用应力值,如下:

弹簧常用材料及其许用应力

表1 弹簧常用材料及其许用应力 表2 弹簧钢丝的拉伸强度极限σB(MPa) 表3 常用旋绕比C值 表4 普通圆柱螺旋弹簧尺寸系列 表5 导杆(导套)与弹簧间的间隙 表6 通圆柱螺旋压缩及拉伸弹簧的结构尺寸 注:①弹簧按载荷性质分为三类: I类一受变载荷作用次数在106以上的弹簧; II类一受变载荷作用次数在103~105及冲击载荷的弹簧; III类一受变载荷作用次数在103下的弹簧。 ②碳素弹簧钢丝的组别见表2。 ③弹簧材料的拉伸强度极限,查表2。

注:表中σB均为下限值。

1.1~ 2.2 7~144~9

表6 通圆柱螺旋压缩及拉伸弹簧的结构尺寸 参数名称及代号 计算公式 备注压缩弹簧拉伸弹簧 中径D2D2=Cd按表4取标准值内径D1D1=D2-d 外径D D=D2+d 旋绕比C C=D2/d 压缩弹簧长细比b b=H0/D2b在1~5.3的范围内选取 自由高度或长度H0 H0≈pn+(1.5~2)d (两端并紧,磨平) H0≈pn+(3~3.5)d (两端并紧,不磨平) H0=nd+钩环轴向长度 工作高度或长度 H1,H2,…,H n Hn=H0-λn H n=H0+λnλn--工作变形量有效圈数n根据所要求的变形量计算n≥2 总圈数n1 n1=n+(2~2.5)(冷卷) n1=n+(1.5~2) (YII型热 卷) n1=n 拉伸弹簧n1尾数为 1/4,1/2,3/4整圈。推荐用1/2 圈 节距p p=(0.28~0.5)D2p=d 轴向间距δδ=p-d 展开长度L L=πD2n1/cosαL≈πD2n+钩环展开长度 螺旋角αα=arctg(p/πD2) 对压缩螺旋弹簧,推荐 α=5°~9° 质量ms ms=γ为材料的密度,对各种钢,γ=7700kg/;对铍青铜,γ=8100kg/

材料的许用应力和安全系数

第四节 许用应力·安全系数·强度条件 由脆性材料制成的构件,在拉力作用下,当变形很小时就会突然断裂,脆性材料断裂时的应力即强度极限σb ;塑性材料制成的构件,在拉断之前已出现塑性变形,在不考虑塑性变形力学设计方法的情况下,考虑到构件不能保持原有的形状和尺寸,故认为它已不能正常工作,塑性材料到达屈服时的应力即屈服极限σs 。脆性材料的强度极限σb 、塑性材料屈服极限σs 称为构件失效的极限应力。为保证构件具有足够的强度,构件在外力作用下的最大工作应力必须小于材料的极限应力。在强度计算中,把材料的极限应力除以一个大于1的系数n (称为安全系数),作为构件工作时所允许的最大应力,称为材料的许用应力,以[σ]表示。对于脆性材料,许用应力 (5-8) 对于塑性材料,许用应力 (5-9) 其中、分别为脆性材料、塑性材料对应的安全系数。 安全系数的确定除了要考虑载荷变化,构件加工精度不同,计算差异,工作环境的变化等因素外,还要考虑材料的性能差异(塑性材料或脆性材料)及材质的均匀性,以及构件在设备中的重要性,损坏后造成后果的严重程度。 安全系数的选取,必须体现既安全又经济的设计思想,通常由国家有关部门制订,公布在有关的规范中供设计时参考,一般在静载下,对塑性材料可取;脆性材料均匀性差,且断裂突然发生,有更大的危险性,所以取,甚至取到5~9。 为了保证构件在外力作用下安全可靠地工作,必须使构件的最大工作应力小于材料的许用应力,即 (5-10) 上式就是杆件受轴向拉伸或压缩时的强度条件。根据这一强度条件,可以进行杆件如下三方面的计算。 1.强度校核 已知杆件的尺寸、所受载荷和材料的许用应力,直接应用(5-10)式,验算杆件是否满足强度条件。 2.截面设计 已知杆件所受载荷和材料的许用应力,将公式(5-10)改成,由强度条件确定杆件所需的横截面面积。 3.许用载荷的确定 已知杆件的横截面尺寸和材料的许用应力,由强度条件确定杆件所能承受的最大轴力,最后通过静力学平衡方程算出杆件所能承担的最大许可载荷。 例5-4 一结构包括钢杆1和铜杆2,如图5-21a 所示,A 、B 、C 处为铰链连接。在b b n σσ= ][s s n σσ= ][b n s n 0.2~5.1=s n 0.5~0.2=b n ][max max σσ≤=A N ][σN A ≥ ][max σA N ≤

接触应力

一、概述 两个物体相互压紧时,在接触区附近产生的应力和变形,称为接触应力和接触变形。接触应力和接触变形具有明显的局部性,随着离开接触处的距离增加而迅速减小。材料在接触处的变形受到各方向的限制,接触区附近处在三向应力状态。在齿轮、滚动轴承、凸轮和机车车轮等机械零件的强度计算中,接触应力具有重要意义。 接触问题最先是由赫兹(H、Hertz)解决的,他得出了两个接触体之间由于法向力引起接触表面的应力和变形,其他研究者先后研究了接触面下的应力和切向力引起的接触问题等。 通常的接触问题计算,是建立在以下假设基础上的,即 1.接触区处于弹性应力状态。 2.接触面尺寸比物体接触点处的曲率半径小得多。 计算结果表明,接触面上的主应力大于接触面下的主应力,但最大切应力通常发生在接触面下某处 由于接触应力具有高度局部性和三轴性,在固定接触状态下,实际应力强度可能很高而没有引起明显的损伤。但接触应力往往具有周期性,可能引疲劳破坏、点蚀或表面剥落,因此,在确定接触许用应力时要考虑接触和线接触。当用接触面上最大应力建立强度条件时,许用应力与接触类型有关,点接触的许用应力是线接触的许用应力的1.3~1.4倍。 二、弹性接触应力与变形 1.符号说明 E1,E2——两接触体的弹性模量 v1,,v2——两接触体的泊松比 a——接触椭圆的长半轴 b——接触椭圆的短半轴 k=b/a=cosθ R1,R1’——物体1表面在接触点处的主曲率半径。R1和R1所在的平面相互垂直。若曲率中心位于物体内,则半径为正,若曲率中心位于物体外,则半径为负。 R2, R2’——同上,但属物体2的 ψ——两接触体相应主曲率平面间的夹角 k(z/b)=cotυ——接触表面下到Z轴上要计算应力的一点相对深度 Z1——任一物体中从表面到Z轴产生最大切应力点的深度

相关主题
文本预览
相关文档 最新文档