当前位置:文档之家› 第二章第七节 直纹二次曲面

第二章第七节 直纹二次曲面

第2章结构的几何构造分析.

第2章结构的几何构造分析 §2-1几何构造分析的几个概念 (自由度计算公式) §2-2平面几何不变体系的组成规律 ▲几何构造分析目的: Q 判别体系可否作为结构 b )为结构计算打下基础 UmVflMITV Off BCMNCM Mh<3 TaCHHOLCXlV 第二章结构的几何构造分析 (不考虑材料的变形) §2-1几何构造分析的几个概念 一、两类体系 ■**' i■- - ——L - — - ___ ~二=一? ----------- P Z Z 几何可变体系 体系在荷《作用下? 其几何形状和位S 都不能改变? 体系受到很小的作用力, 其几何形状或位S 都可以改 几何不变体系

▲刚片一所有的《几何形状不变体系”均可视为刚片. (可以是杆.由杆组成的结构.支撑结构的地基) 二、自由度 1?定义:用来确定体系位£所需舷立(最少)坐标的数目. 2.举例 y Yl 平面动点:w=2 ( XI, yl ) 规律:体系有《个独立的运动方式,就有《个自由度. 三、约束(联系) 1?定义:阻止或限制体系运动的装置(减少自由度的装置). 2?约束类型(链杆、刚接、单较、复胶、固定端、平行支《杆零) ■ X 平面刚片:W=3 (xU yU卩)

1)链杆(支杆) 1个链杆=1个约束。链杆 可以是曲的. 折的杆,只要保持两姣间 $巨不变. 2 )刚性连接 1个刚接=3个约束 W=3X2—3=3 3)单较 1个单较=2个约束=2个的单链杆。 W=3X2—2=4 瞬枝——在运动中瞬枝的位置不定,这 是瞬较和实较的区别.通常我们研究的是 扌旨定位置处的瞬时运动,因此,瞬枝 和实咬所起的作用是相同的,都是相对 转动中心. 两根不共线的链杆相当 于一个单镀.

二次型理论起源于解析几何中的化二次曲线和二次曲面方

第八章 二次型 二次型理论起源于解析几何中的化二次曲线和二次曲面方程为标准形的问题,这一理论在数理统计、物理、力学及现代控制理论等诸多领域都有很重要的应用. 本章主要介绍二次型的基本概念,讨论化二次型为标准形及正定二次型的判定等问题. §8.1 二次型及其矩阵表示 在解析几何中,我们曾经学过二次曲线及二次曲面的分类,以平面二次曲线为例,一条二次曲线可以由一个二元二次方程给出: 2 2 0ax bxy cy dx ey f +++++= (1.1) 要区分(1.1)式是哪一种曲线(椭圆、双曲线、抛物线或其退化形式),我们通常分两步来做:首先将坐标轴旋转一个角度以消去xy 项, 再作坐标的平移以消去一次项. 这里的关键是消去 xy 项,通常的坐标变换公式为: cos sin sin cos x x y y x y θθθθ''=-??''=+? (1.2) 从线性空间与线性变换的角度看,(1.2)式表示平面上的一个线性变换.因此二次曲线分类的关键是给出一个线性变换,使(1.1)式中的二次项只含有平方项.这种情形也在空间二次曲面的分类时出现,类似的问题在数学的其它分支、物理、力学中也会遇到. 为了讨论问题的方便,只考虑二次齐次多项式. 定义8.1.1 设f 是数域P 上的n 元二次齐次多项式: 212111121211222223232222 1,111,1(,, ,)22222n n n n n n n n n n n n nn n f x x x a x a x x a x x a x a x x a x x a x a x x a x -----=++ ++++++ +++ (1.3) 称为数域P 上的n 元二次型,简称二次型. 如果数域P 为实数域R ,则称f 为实二次型; 如果数域P 为复数域C ,则称f 为复二次型; 如果二次型中只含有平方项,即 222121122(,, ,)n n n f x x x d x d x d x =+++ 称为标准形式的二次型,简称为标准形. 说明: 在这个定义中,非平方项系数用2ij a 主要是为了以后矩阵表示的方便. 例8.1.2 下列多项式都是二次型: 22 2 2 2 (,)33(,,)22343f x y x xy y f x y z x xy xz y yz z =++=+-++- 下列多项式都不是二次型:

数学建模里面的公式超级全的

导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

巧构几何图形 证明代数问题

巧构几何图形证明代数问题 ——兼谈构造法 习题已知a,b,c,d为正数,a^2+b^2=c^2+d^2,ac=bd,求证a=d,b=c. 分析注意到条件a^2+b^2=c^2+d^2,如果把a,b;c,d分别看成两个直角三角形的直角边,那么a^2+b^2,c^2+d^2分别表示这两个直角三角形的斜边的平方。故可构造如下图形1。 ac=bd,即 BC*AD=AB*CD ∴BC/AB=CD/AD 又∠B=∠D=90 ?? ∴Rt⊿ABC 相似于Rt⊿ADC 但为公共斜边,故 Rt⊿ABC?Rt⊿ADC ∴AB=AD,BC=CD,即b=c,a=d. 评注把正数与线段的长联系起来,给代数等式附以几何意义,从而利用图形的特点巧妙地解决了上述习题。其证法十分简捷,独具风格,耐人寻味!其高明之处就在于选择了恰当的图形!这种思考方法的关键是把数和形结合起来以互相利用!对代数等式可以这样做,对不等式也可以。 应用 【例1】已知a,b是两个不相等的正实数,求证(a+b)/2 >ab

[证明] 以a+b为边长作正方形,然后过a,b的连接点作正方形各边的垂线(如图2),于是大正方形的面积为(a+b)^2,四个矩形的面积都是ab,这样得 (a+b)^2>4ab ab>0 ∴a+b>2ab 即(a+b)/2>ab 【例2】已知0<θ<∏/2,求证1AB ∴sinθ+cosθ>1(三角形两边之和大于第三边) 又⊿ABC的面积=(1/2)BC*AC≤(1/2)AB*CO=(1/4)AB^2(三角形面积不大于一边与这边上中线积的一半) ∴2BC*AC≤AB^2 又BC^2+AC^2≤AB^2 ∴(BC+AC)^2≤2AB^2,BC+AC≤2AB,即sinθ+cosθ≤2

结构的几何构造分析概念

结构的几何构造分析概念 1-1 1、几何组成分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。 几何可变体系:不考虑材料应变条件下,体系的位置和形状可以改变的体系。几何不变体系:不考虑材料应变条件下,体系的位置和形状保持不变的体系。 2、自由度:描述几何体系运动时,所需独立坐标的数目。 平面内一个动点A,其位置要由两个坐标 x 和 y 来确定,所以一个点的自由度等于2。平面内一个刚片,其位置要由两个坐标 x 、y 和AB 线的倾角α来确定,所以一个刚片在平面内的自由度等于3。 3、刚片:平面体系作几何组成分析时,不考虑材料应变,所以认为构件没有变形。可以把一根杆、巳知是几何不变的某个部分、地基等看作一个平面刚体,简称刚片。 4、约束:如果体系有了自由度,必须消除,消除的办法是增加约束。约束有三种: 5、多余约束:减少体系独立运动参数的装置称为约束,被约束的物体称为对象。使体系减少一个独立运动参数的装置称为一个约束。例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n 个刚片的复刚性节点相当于n—1个单刚性节点。如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。

6、瞬变体系及常变体系:常变体系概念:体系可发生大量的变形,位移。区别于瞬变体系:瞬变体系概念:体系可发生微小的变形,位移。 7、瞬铰:两刚片间以两链杆相连,其两链杆约束相当(等效)于两链杆交点处一简单铰的约束,这个铰称为瞬铰或虚铰。 2-2平面杆件体系的计算自由度 1、体系是由部件(刚片或结点)加上约束组成的。 2、刚片内部:是否有多余约束。内部有多余约束时应把它变成内部无多余约束的刚片,而它的附加约束则在计算体系的约束总数时应当考虑进去。 3、复铰:连接两个以上刚片的铰结点。连接n个刚片的铰相当于(n-1)个单铰。 4、单链杆:连接两个铰结点的链杆。 5、连接两个以上铰结点的链杆。 连接 n 个铰结点的复链杆相当于(2n-3)个单链杆。 6、平面体系的计算自由度 W :W=3m-(2n+r) m:钢片数 n:单绞数 r:支座链杆数上面的公式是通用的。 W=2J-(b+r) J:结点个数 b:链杆数 r:支座链杆数上面的公式用于完全由铰接的连杆组成的结构体系。 7、自由度与几何体系构造特点: 静定结构的受力分析

10三维空间中二次方程与二次曲面解读

三维空间中二次方程与二次曲面 张晓青(2010073060029) 指导教师:李厚彪 【摘要】 利用正交变换可以将二次型化为标准型,在三维空间中一个二次方程对应着一种 二次曲面.在研究二次方程的几何意义时,先将二次方程进行正交变换进而研究所得到的标准型对应的几何图形,可以证明所得的几何图形是一个与原几何图形相同但位于特殊位置的图形,具有一定的对称性,为研究带来方便.这种正交变换法适用于一般情况具有探究价值,本文基于教材,进一步讨论正交变换后不同的标准型与几何图形的关系,并附有图解. 【关键词】正交表换 二次方程 二次曲面 1 引 言 教材第六章二次型与二次曲面的几何应用中告诉我们不同的标准型的参数对应17种不同的几何图形,那么它们究竟是什么样的曲面图形呢?接下来我们一一讨论. 2.正 文 如果线性变换=X CY 中的系数举矩阵C 是正交矩阵,则称这个线性变换为正交变换 对n 维实向量T 12(,,,)n a a a =α,T 12(,,,)n b b b =β,设A 为n 阶正交矩阵,作正交变 换 =X A α,=Y A β, 则 T T T T (,)(,)()()(,).=====X Y A αA βA αA βαΑA βαβαβ 即,正交变换保持向量内积不变,因为也就保持向量的长度与夹角不变.于是在正交变换下,几何图形的形状不会发生改变. 设 222 12311122233312121313 2323112233(,,)222? f x x x a x a x a x a x x a x x a x x b x b x b x c =+++++++++ (1.1) 则方程123(,,)0f x x x =在几何空间中表示一个二次曲面. 令11 121321 222331 32 33a a a a a a a a a ?? ? = ? ???A ,123x x x ?? ?= ? ???X ,123b b b ?? ?= ? ??? b 则(1.1)式可记为 T T ()f c =++X X AX b X (1.2) 下面,令T ()g =X X AX 1. 作正交变换=X CY ,其中T 123(,,)y y y =Y ,则 223'' '112233112233()f y y y b y b y b y c λλλ=++++++X (1.3)

强大!!高等数学公式超级集合!

daodhaklhdsjdasjdklahskldh 高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x +==+-=+=, , ,  a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

构造几何图形解决代数问题

构造几何图形解决代数问题 摘要 数与行是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。因此,数形结合的思想方法是数学教学内容的主线之一。数形结合的应用大致可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”。本课题调查研究中主要研究“以形助数”的情形。 关键词 数形结合 解题 以形助数 教学 1.“以形助数”的思想应用 1.1解决集合问题:在集合运算中常常借助于数轴、Venn 图处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例:已知集合A=[0,4],B=[-2,3],求A B 。 分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚地知道结果。如下图,由图我们不难得出A B=[0,3] 例:(2009湖南卷文)某班共30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 分析:如下图,设所求人数为x ,则只喜爱乒乓球运动的人数为10(15)5,155308x x x x --=-+-=-?=故。 B=[-2,3] A=[0,4]

评价:通过上面两个典型例题的学习,我们基本了解了构造几何图形在代数问题中的简单应用,将抽象的集合问题形象地用图形表现出来,形象生动便于思考,找出问题中条件间的相互关系进而方便快捷地解答。 1.2解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图像的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 例:(2009山东理)若函数 ()(01)x f x a x a a a a =-->≠且有两个零点,则实数的取值范围是 分析:设函数(0,1)x y a a a =>≠且和函数y x a =+,则函数 ()(01)x f x a x a a a =-->≠且有两个零点,就是函数(0,1)x y a a a =>≠且与函数y x a =+有两个交点,由图象可知当01a <<时两函数只有一个交点,不符合,当1a >时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点,所以一定有两个交点,所以实数a 的取值范围是1a >

构造几何图形巧解向量问题

运用向量几何运算巧解几个高考题 向量是高中数学中重要的数学概念和数学工具之一,它用代数的方法来研究几何问题,是数形结合的一个典范,体现了解析几何的本质。代数几何化、几何代数化等多角度思维是平面向量命题的特点,这就说明了平面几何和平面向量交汇点的将是高考试题命制的焦点和热点。 例1. 已知向量e a ≠,1=e ,对任意R t ∈,恒有e a e t a -≥-,则( ) (A) e a ⊥ (B) )(e a a -⊥ (C) )(e a e -⊥ (D) )()(e a e a -⊥+ 参考答案:R t ∈ ,恒有e a e t a -≥-,等价于22e a e t a -≥-恒成立,即 22)()(e a e t a -≥-恒成立,展开整理得0)12(22≥-?+?-e a t e a t ?R t ∈恒成立,则 0)12(4)2(2≤-?-?-=?e a e a ,整理得0)1(2≤-?e a ,1=?∴e a ,)(e a e -⊥∴,所以选(C)。 妙解:如下图作a OA =,e OB =,e t OC =, 则 e a -= e t a -=,又因为?R t ∈,恒有e a e t a -≥- ≤,则必有 OC AB ⊥,即)(e a e -⊥。 例2.设向量a ,b ,c 满足0 =++c b a ,c b a ⊥-)(,b a ⊥,若1=a ,则222c b a ++的值是 。 参考答案: )(,)(b a c c b a +-=⊥-,)()(b a b a --⊥-∴, 0)()(=+?-∴b a b a ,022=-∴b a ,1==∴b a ,又),(b a c +-=0=?b a 22)(2222=?++=+-=∴b a b a b a c ,4222=++∴c b a 。 妙解:如下图作a BD AB ==,b BC =,c CA =, b a ⊥,BC AB ⊥∴,又 CD BC BD b a =-=- ,又c b a ⊥-)(, C A

二次型与二次曲面

第七章 二次型与二次曲面 二次型的定义 定义:n 个变量n ,x ,,x x 21的二次齐次多项式 ()ji ij n i n j j i ij n a a ,x x a ,x ,,x x Q ==∑∑==11 21 称为n 元二次型或二次形式。当系数ij a 取实数时,称为实二次型;ij a 取复数时,称为复二次型。 例:()32212 13213x x x x x ,x ,x x Q +-= 例:()233221213212x x x x x x x ,x ,x x Q ++-= ()() () ????? ???????????????????=++++++++++++===∑∑==n nn n n n n n n nn n n n n n n n n ji ij n i n j j i ij n x x x a a a a a a a a a ,x ,,x x x a x x a x x a x x a x a x x a x x a x x a x a a a ,x x a ,x ,,x x Q 21212222111211212 22112222 221221112112211111 21 令()()T ij T n A A a ,A ,x ,,x x x ===则,21 ,且二次型可表示为 ()Ax x ,x ,,x x Q T n = 21, 称A 为二次型的矩阵。

()x x x x x x x ,x ,x x Q T ??????? ? ? ?--=+-=02 302302102113322121321 例:写出下列二次型对应的矩阵,假设A 为实对称矩阵,且 r (A )=n . ()∑∑ ===n i n j j i ij n x x |A| A ,x ,,x x Q 11 21 矩阵的相合 设n n ,β,,ββ,,α, ,αα 2121是n 维线性空间V 的两组基,这两组基的过渡矩阵为P ,即 ()()P ,α, ,αα,β,,ββn n 2121= 设向量V ∈α在两组基下的坐标分别为 ()()T n T n ,y ,,y y ,y ,x ,,x x x 2121== 则有坐标变换公式(也称可逆的线性替换): x P y Py x 1 -==或。 则 ()()() y AP P y APy Py Ax x αQ T T T T === 称同一个二次函数()αQ 在不同基下所对应的两个二次型 Ax x T 和()By y y AP P y T T T =是等价的。 定义:给定两个n 阶方阵A 和B ,如果存在可逆矩阵P ,使得B =P T AP ,则称B 与A 相合(或合同)。

ZEMAX光学设计超级学习手册-第1章

第1章ZEMAX入门 ZEMAX是一款使用光线追迹的方法来模拟折射、反射、衍射、偏振的各种序列和非序列光学系统的光学设计和仿真软件。ZEMAX有3种版本:ZEMAX-SE(标准版)、ZEMAX-XE(扩展版)、ZEMAX-EE(工程版),其中ZEMAX-EE的功能最为全面。 ZEMAX的界面设计得比较简洁方便,稍加练习就能很快地进行交互设计使用。ZEMAX的大部分功能通过都能选择弹出或下拉式菜单来实现,键盘快捷键可以用来引导或略过菜单,直接运行。本章将要讲述ZEMAX中的有关约定的解释,界面功能的习惯用法,以及一些常用窗口操作的快捷键。一旦学会了在整个软件中通用的、简单的习惯用法,ZEMAX用起来就很容易了。 学习目标: (1)了解界面主窗口菜单的各项功能。 (2)熟练运用快捷工具栏。 (3)熟练掌握大量光学行业中约定的解释,如优化、公差分析等。 (4)熟练掌握各对话窗口的操作,如镜头数据、波长数据等。 1.1 ZEMAX的启动与退出 安装ZEMAX软件后,系统自动在桌面上产生了ZEMAX快捷图标。同时,“开始”菜单中也自动添加了ZEMAX命令。下面讲解ZEMAX的启动与退出。 1.ZEMAX安装成功后,需要启动ZEMAX,才能使用该软件进行设计工作。ZEMAX 的启动有4种方式。 (1)选择“开始”菜单命令启动。 选择“开始→ZEMAX”命令,启动ZEMAX,如图1-1所示。 (2)选择桌面快捷方式图标。 安装完成,系统会在桌面上自动创建ZEMAX的快捷方式图标,双击图标便可启动ZEMAX,如图1-2所示;右键单击快捷方式图标后单击“打开”也可以启动,如图1-3所示。 如果桌面上没有快捷方式图标,可以从“开始”菜单中找到相应的程序命令发送到桌面快捷方式,如图1-4所示。

构造法之构造几何图形

构造法之构造几何图形 构造法就是根据题设条件或结论所具有的特征和性质,构造满足条件或结论的数学对象,并借助该对象来解决数学问题的思想方法。构造法是一种富有创造性的数学思想方法。运用构造法解决问题,关键在于构造什么和怎么构造。充分地挖掘题设与结论的内在联系,把问题与某个熟知的概念、公式、定理、图形联系起来,进行构造,往往能促使问题转化,使问题中原来蕴涵不清的关系和性质清晰地展现出来,从而恰当地构造数学模型,进而谋求解决题目的途径。下面摘一些典型例题,分成几个专题,方便大家学习。 例1:已知,则x 的取值范围是() A 1≤x≤5 B x≤1 C1<x <5 D x≥5 分析:根据绝对值的几何意义可知:表示数轴上到1与 5的距离之和等于4的所有点所表示的数。如图3,只要表示数 的点落在1和5之间(包括1和5),那么它到1与5的距离之和都等于4,所以1≤ x≤5,故选A 。 例2.求)40()4(4122≤≤-+++x x x 的最小值. 分析:本题单纯用代数方法处理,简直无从下手,注意式中的特征,构造直角三角形,转化为在直线上求一点,使它到两定点的距离之和最小. 解:如图3,作AB=4,AC ⊥AB ,BD ⊥AB ,且AC=1,BD=2,P 为AB 上一点,设AP=x ,则2 2 )4(4,1x PD x PC -+=+=,问题转化为找出P 点的位置,使PC+PD 最小.如图4,作C 关于AB 的对称点C ′,连结C ′D 交AB 于P ,由⊿PAC ′ ∽⊿PBD ,得214=-x x ,求得3 4 =x ,所以22)4(41x x -+++的最小值是5. 例3: 已知x,y,z ∈(0,1),求证: x(1-y)+y(1-z)+z(1-x)<1 证:构造边长为1的正△ABC ,D ,E ,F 为边上三点, D D 图3 A B C B P 图4 A C ′ C

常见的空间曲面与方程

常见的空间曲面与方程 常见的空间曲面有平面、柱面、锥面、旋转曲面和二次曲面。 1. 平面 空间中平面的一般方程为 0a x b y c z d +++= 其中,,a b c 均为常数,且,,a b c 不全为零。 例如,1x y z ++=(图8-6(a )),0x =(图8-6(b ))均表示空间中的平面, z yoz 平面(x =0) y y x 图8-6(a ) 图8-6 (b) 图8-6 2. 柱面 与给定直线L 平行的动直线l 沿着某给定的曲线C 移动所得到空间曲面,称为柱面, l 为母线,C 为准线。 如图8-7所示 图8-7 图8-8

例如,222x y R +=表示空间中母线平行于z 轴,准线是xoy 平面上的圆222x y R +=的 圆柱面的方程,简称圆柱面图(8-8)。 3. 二次曲面 三元二次方程 222 1231 2 31230a x a y a z b x y b y z b z x c x c y c z d +++ ++++++= 所表示的曲面称为二次曲面,其中,,(1,2,3),i i i a b c i d =均为常数,且,,i i i a b c 不全为0. 二次曲面有以下几种标准形式,它们分别为: 球面: 图8-9 椭球面:222 2221(,,0)x y z a b c a b c ++=>图8-10 图8-9 图8-10 单叶双曲面:222 2221(,,0)x y z a b c a b c -+=>图8-11 双叶双曲面:222 2221(,,0)x y z a b c a b c +-=->图8-12 2222(0)x y z R R + += >x z

结构力学 第二章 结构的几何组成分析

第二章 结构的几何组成分析 李亚智 航空学院·航空结构工程系

2.1 概述 结构要能承受各种可能的载荷,其几何组成要稳固。即受力结构各元件之间不发生相对刚体移动,以维持原来的几何形状。 在任意载荷作用下,若不考虑元件变形,结构保 持其原有几何形状不变的特性称为几何不变性。 在载荷作用下的系统可分为三类。 2.1.1 几何可变系统 特点: 不能承载,只能称作“机构”。 2 1 3 4 P 2’3’

2.1.2 几何不变系统 特点:能承载,元件变形引起几何形状的微小变化,可以称为结构。 2.1.3 瞬时几何可变系统 特点:先发生明显的几何变形,而后几何不变。 P 213 4 2’ 3’ 2’3’ P 2 1 34 5 ∞ →=2321N N 1 2 3 P 内力巨大,不能作为结构。 N 21 N 23 P 2

由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。

2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。

1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A ' x y A y A x A z A z A ' O

几何图形解题时中点的运用

有关中点的联想 一 常见的联想路径 1 中线倍长 2作直角三角形斜边的中线 3 构造中位线 4 构造中心对称全等三角形 二 熟悉下列基本图形 三 探究训练 1 如图 四边形ABCD 中 AB=CD=4,M,N 分别为BC AD 的中点∠BAC=900∠ACD=300 ,求MN 的长 2 如图,∠B =∠C =90°,M 是BC 的中点,DM 平分∠ADC , 求证:AM 平分∠DAB . M B

3已知AD 为△ABC 的角平分线, AC >AB 在AC 上截取CE=AB,M,N 分别为BC,AE 的中点,求证: M N ∥AD 4如图 以△ABC 的AB AC 边为斜边向外作Rt △ABD 和Rt △ACE 且使∠ABD=∠ACE,M 是BC 的中点,求证: DM=ME B C A D E N M M B C A D E

5 如图 在四边形ABCD 中,AB=CD, ∠B ≠∠C,N,M 分别是AD,BC 的中点,BA,CD 的延长线分别交直线MN 于点E.F 求证:∠BEM=∠CFM 6 P 是线段AB 上的一点,在AB 的同侧作△APC 和△BPD ,使PC=PA,PD=PB,∠APC=∠BPD ,连结CD ,点E,F,G,H 分别是AC,AB,BD,CD 的中点,顺次连接E,F,G,H. (1)猜想四边形EFGH 的形状,直接回答,不必说明理由; (2)当点P 在线段AB 的上方时,如图2,在△APB 的外部作△APC 和△BPD ,其他条件不变,(1)中的结论还成立吗?说明理由; (3)如图3中,若∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH 的形状,并说明理由. P B

二次型的几何分类及其应用

二次型的几何分类及其应用 田金慧 内容摘要:通过对二次型的基本概念与基本理论的阐述,重点讨论了二次型的五种分类:正定二次型、半正定二次型、负定二次型、半负定二次型和不定二次型,通过具体的实例给出了分类问题的几何描述。其次,分析并列举了二次型相关理论在实际中的一些应用,其中包括二次型标准型在二次曲面分类上的应用,由此得到了十七种二次曲面标准方程,并对典型方程给出了图形描述;同时包括二次型正定性用于求解多元函数极值问题的应用实例;还包括以实例展示半正定二次型用于不等式证明的步骤和方法。最后,作为二次型理论应用广泛的例证,阐述了它在统计学中关于统计距离、参数估计量的自由度求解以及量子物理中关于耦合谐振子问题的应用。 在问题的研究中,采用理论分析与实例应用相结合,充分发挥数学应用软件的优势,将二次型(实)理论的内涵形象、直观、清晰地给予展现。 关键词:二次型;几何描述;正定性;实际应用 1导言 在数学的学习和应用中,二次型的理论是十分重要的,它不仅是代数中的重要理论,更是连接代数与几何的有力桥梁。事实上,二次型的理论就起源于解析几何中二次曲线、二次曲面方程的化简问题。学习和理解二次型的理论不但可以对数学中的代数定理有深刻地理解,也可以对几何有更为形象的认识。 因此,掌握二次型理论的有关应用问题是十分必要的。 但是,在现有的教材中,都只是对二次型理论的代数性质进行了一定的介绍,

并没有对它的几何意义加以阐述;即使有一些书籍对它的几何性质稍有涉及,但也只是点到为止,并没有给出形象的表示,关于二次型可能的应用问题更是很少提及,然而在数学的很多分支以及一些其他学科中都或多或少地涉及到二次型有关理论的应用,如解析几何、统计学和量子物理等。 本文以二次型分类为切入点,以几何描述为主线,充分发挥数学软件的优势,将二次型有关理论的内涵加以展现。 当然,这里所讨论的二次型理论只是其中的基础,关于它的深入研究请参阅参考文献[1]。 2 二次型及其标准型 所谓二次型就是一个二次齐次多项式。 定义2.1 在数域F 上,含有n 个变量12,, ,n x x x 的二次齐次函数 22 212111222(,, ,)n nn n f x x x a x a x a x =++ + n n x x a x x a 11211222+++ +n n n n x x a 112--+ (1) 称为n 元二次型,简称二次型【2】。 当ij a 为复数时,),,,(21n x x x f 称为复二次型;当ij a 为实数时,),,,(21n x x x f 称为实二次型。本文仅讨论实二次型。 若取ij ji a a =,则i j ji j i ij j i ij x x a x x a x x a +=2于是(1)式可写成 12,1 (,, ,)n T n ij i j i j f x x x a x x X AX ===∑ (2) 其中,11 12121 2221 2 n n n n nn a a a a a a A a a a ?? ? ?= ? ? ???,12 n x x X x ?? ? ?= ? ? ??? ,A 为实对称矩阵,称为二次型f 的矩阵

二次型理论起源于解析几何中的化二次曲线和二次曲面方.

第八章二次型 二次型理论起源于解析几何中的化二次曲线和二次曲面方程为标准形的问题,这一理论 在数理统计、物理、力学及现代控制理论等诸多领域都有很重要的应用?本章主要介绍二次 型的基本概念,讨论化二次型为标准形及正定二次型的判定等问题 § 8.1二次型及其矩阵表示 在解析几何中,我们曾经学过二次曲线及二次曲面的分类,以平面二次曲线为例,一条二次曲线可以由一个二元二次方程给出: 2 2 ax bxy cy dx ey f 0 (1.1) 要区分(1.1)式是哪一种曲线(椭圆、双曲线、抛物线或其退化形式),我们通常分两步来做:首先将坐标轴旋转一个角度以消去xy项,再作坐标的平移以消去一次项.这里的关键是消去 xy项,通常的坐标变换公式为: x x cos y sin (1.2) y x sin y cos 从线性空间与线性变换的角度看,(1.2)式表示平面上的一个线性变换.因此二次曲线分类的关 键是给出一个线性变换,使(1.1)式中的二次项只含有平方项.这种情形也在空间二次曲面的分类时出现,类似的问题在数学的其它分支、物理、力学中也会遇到.为了讨论问题的方便,只 考虑二次齐次多项式. 定义8.1.1设f是数域P上的n元二次齐次多项式: 2 f (X1,X2 ,L ,X n) 印必242X1X2 L 2a1n X1X n 2 a22X2 2a23X2X3 L 2a2n X2X n (1.3) 1 2 2 2 L a n 1,n 1 x n 1 2a n 1,n x n 1 x n a nn x n 称为数域P上的n元二次型,简称二次型.如果数域P为实数域R,则称f为实二次型;如果 数域P为复数域C,则称f为复二次型;如果二次型中只含有平方项,即 2 2 2 f(X1,X2丄,X n) d j X1 d2X2 L d n X n 称为标准形式的二次型,简称为标准形. 说明:在这个定义中,非平方项系数用2a j主要是为了以后矩阵表示的方便 例8.1.2下列多项式都是二次型: 2 2 f (x, y) x 3xy 3y f (x, y,z) 2x22xy 3xz y24yz ,3z2 F列多项式都不是二次型

第二章-结构的几何构造分析(龙驭球第三版)

第2章结构的几何构造分析 本章内容:§2-1 几何构造分析的几个概念 §2-2 平面几何不变体系的组成规律 §2-3 平面杆件体系的计算自由度 §2-4 在求解器中输入平面结构体系(略) §2-5 用求解器进行几何构造分析(略) §2-6 小结 主要内容: 第三讲 §2-1 几何构造分析的几个概念 1. 几何不变体系和几何可变体系 一般结构必须是几何不变体系 几何不变体系—在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系—在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 2. 自由度 平面内一点有两种独立运动方式,即一点在平面内有两个自由度。 一个刚片在平面内有三种独立运动方式,即一个刚片在平面内有三个自由度。 自由度个数=体系运动时可以独立改变的坐标数 3. 约束 一个支杆相当于一个约束,如图(a);一个铰相当于两个约束,如图(b);一个刚性结合相当于三个约束,如图(c)

4. 多余约束 如果在一个体系中增加一个约束,而体系的自由度并不减少,此约束称为多余约束。 有一根链杆是多余约束 5. 瞬变体系 特点:从微小运动的角度看,这是一个可变体系;经微小位移后又成为几何不变体系;在任一瞬变体系中必然存在多余约束。 可变体系 瞬变体系:可产生微小位移 常变体系:可发生大位移 6. 瞬铰 O为两根链杆轴线的交点,刚片I可发生以O为中心的微小转动,O点称为瞬时转动中心。 两根链杆所起的约束作用相当于在链杆交点处的一个铰所起的约束作用,这个铰称为瞬铰。 7. 无穷远处的瞬铰

两根平行的链杆把刚片I与基础相连接,则两根链杆的交点在无穷远处。两根链杆所起的约束作用相当于无穷远处的瞬铰所起的作用。 无穷远处的含义 (1)每一个方向有一个∞点; (2)不同方向有不同的∞点; (3)各∞点都在同一直线上,此直线称为∞线; (4)各有限点都不在线∞上。 §2-2 平面几何不变体系的组成规律 1. 三个点之间的连接方式 规律1 不共线的三个点用三个链杆两两相连,则所组成的铰接三角形体系是一个几何不变的整体,且没有多余约束。 2. 一个点与一个刚片之间的连接方式 规律2 一个刚片与一个点用两根链杆相连,且三个铰不在一直线上,则组成几何不变的整体,且没有多余约束。 3. 两个刚片之间的连接方式 规律3 两个刚片用一个铰和一根链杆相连,且三个铰不在一直线上,则组成几何不变的整体,且没有多余约束。

高数下册常用常见知识点

高等数学下册常用常见知识点 第八章 空间解析几何与向量代数 (一) 向量及其线性运算 1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面; 2、 线性运算:加减法、数乘; 3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式; 4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=± , ),,(z y x a a a a λλλλ= ; 5、 ; 6、 7、 向量的模、方向角、投影: 1) 向量的模: 2 22z y x r ++= ; 2) 两点间的距离公式: 2 12212212)()()(z z y y x x B A -+-+-= 3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,, 4) 方向余弦:r z r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα 5) 投影:?cos Pr a a j u =,其中?为向量a 与u 的夹角。 | (二) (三) 数量积,向量积 1、 数量积:θcos b a b a =? 1)2 a a a =? 2)?⊥b a 0=?b a z z y y x x b a b a b a b a ++=? 2、 向量积:b a c ?=

大小:θsin b a ,方向:c b a ,,符合右手规则 1)0 =?a a 2)b a //? =?b a z y x z y x b b b a a a k j i b a =? 运算律:反交换律 b a a b ?-=? (四) 曲面及其方程 1、 ] 2、 曲面方程的概念: ),,(:=z y x f S 3、 旋转曲面:(旋转后方程如何写) yoz 面上曲线0),(:=z y f C , 绕y 轴旋转一周: 0),(22=+±z x y f 绕 z 轴旋转一周: 0),(22=+±z y x f 4、 柱面:(特点) 0),(=y x F 表示母线平行于z 轴,准线为?????==0 0),(z y x F 的柱面 5、 @ 6、 二次曲面(会画简图) 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 2222=++c z b y a x

用几何图形巧解向量问题

一、教材分析 1.教材地位与作用 本节是在复习完必修4第2章平面向量的概念、运算、坐标及应用整章知识后的一堂专题研讨课.教材一直坚持从数和形两个方面建构和研究向量.如向量的几何表示,三角形,平行四边行法则让向量具备形的特征,而向量的坐标表示,和坐标运算又让向量具备数的特征.所以我们在研究向量问题或用向量解决问题时,应具备数形结合思想.本节课让学生感受到数形结合在解题中的魅力,体会向量的工具性,因此本节课既是对前面所学的向量知识的巩固也为以后学生运用向量来解决数学问题奠定了基础,起到了承上启下的作用. 2.教材处理 由于向量的坐标表示为我们用代数方法研究几何问题提供可能,通常学生在处理向量问题时多选择数而忽略形.为了提高学生的综合解题能力,因此在复习完本章(向量)基本知识后,结合我校文科学生实际,特增加了本节课,目的是为学生提供一个借助几何图形处理向量问题的思考方向,逐步培养学生形成数形结合的思想. 二、教学目标 根据上面对教材的分析,依据教学大纲的要求和新课程的教学理念并结合学生的认知水平和思维特点,确定本节课的教学目标: 知识目标:能根据向量的线性运算及相关条件构造恰当的几何图形,解决向量有关问题. 情感目标:感受到数形结合在解题中的魅力,体会向量的工具性. 能力目标:提高运用数形结合思想、转化思想解决问题的能力. 三、教学重点和难点 根据本节课的作用制定了教学重点是:通过平面几何图形性质与向量运算法则的有机结合,构造恰当的几何图形解决向量问题;渗透数形结合思想,转化思想;提高学生的构造能力和对所学知识的整合能力. 根据学生的实际情况制定了教学难点是:如何构造恰当的几何图形. 四、教学手段和主要教学方法及学法 教学方法:采用引导对比法、启发式探索讨论相结合的教学方法. 教学手段:运用学案、借助几何画板和实物投影来辅助教学. 通过探究、启发、引导学生对于用数的方法和形的方法来解向量问题形成对比,体会到用形的好处,培养用图的意识;采用启发式讲解、互动式讨论及操作的授课方式,培养学生的分析与解决问题的能力;借助几何画板、实物投影的辅助教学,达到增加课堂容量、提高课堂效率的目的,营造生动活泼的课堂教学氛围.

相关主题
文本预览
相关文档 最新文档