当前位置:文档之家› 单片机按键抖动与防抖

单片机按键抖动与防抖

单片机按键抖动与防抖

单片机按键抖动与防抖

按键也是机械装置,在按下或放开的一瞬间会产生抖动,如下图:

消除方法有两种:软件除抖和硬件除抖,其中硬件除抖是应用了电容对高频信号短路的原理。

软件除抖是检测出键闭合后执行一个延时程序,产生5ms~10ms的延时,让前沿抖动消失后再一次检测键的状态,如果仍保持闭合状态电平,则确认为真正有键按下。

基于51单片机的USB键盘设计与实现

三江学院 本科生毕业设计(论文)题目基于51单片机的USB键盘设计与实现高职院院(系)电气工程及其自动化专业 学生姓名梁邱一学号 G105071013 指导教师孙传峰职称讲师 指导教师工作单位三江学院 起讫日期 2013年12月10日至2014年4月12日

摘要 随着计算机技术的不断更新和多媒体技术的快速发展,传统的计算机外设接口因为存在许多缺点已经不能适应计算机的发展需要。比起传统的AT,PS/2,串口,通用串行总线USB,具有速度快,使用方便灵活,易于扩展,支持即插即用,成本低廉等一系列优点,得到了广泛的应用。 本论文阐述了51系列单片机和USB的相关内容,详细介绍了系统的一些功能设计,包括硬件设计和软件设计。在程序调试期间用简单的串口通信电路,通过串口调试助手掌握了USB指令的传输过程,这对整个方案的设计起到了很大的指导作用。论文以单片机最小系统配合模拟键盘组成的USB键盘硬件系统,通过对D12芯片的学习与探索,在其基本命令接口的支持下,结合硬件进行相应的固件程序设计,使其在USB协议下,实现USB模块与PC的数据通信,完成USB键盘的功能模拟。 总结论文研究工作有阐述USB总线的原理、对本设计的系统要求作出了分析、根据要求选定元件和具体编程方案、针对系统所要实现的功能对相关芯片作了详细介绍以及在硬件部分设计了原理图。 关键词:USB;D12;PC

Abstract With the rapid development of computer technology and multimedia technology constantly updated, traditional computer peripheral interface because there are many shortcomings have been unable to meet the development needs of the https://www.doczj.com/doc/c35653344.html,pared to traditional AT, PS / 2, serial, Universal Serial Bus USB, with fast, flexible and easy to use, easy to expand, support Plug and Play, a series of advantages, such as low cost, has been widely used. This paper describes the 51 series and USB related content, detailing some of the features of the system design, including hardware and software design.During debugging a simple serial communication circuit, through the serial port debugging assistant master USB transfer instructions, which designed the entire program has played a significant role in guiding.Thesis smallest single-chip system consisting of analog keyboard with a USB keyboard hardware system, by learning and exploration D12 chips, with the support of its basic command interface, in conjunction with the corresponding hardware firmware design, making it in the USB protocol, USB module data communication with the PC, the USB keyboard to complete the functional simulation. This paper summarizes research work has elaborated the principle of the USB bus, the system is designed to require the analysis, components and solutions based on the specific requirements of the selected programming for the system to achieve the function of the relevant chips are described in detail in the hardware part of the design as well as the principle of Figure. Keywords:USB;D12;PC

单片机矩阵式键盘连接方法及工作原理

矩阵式键盘的连接方法和工作原理 什么是矩阵式键盘?当键盘中按键数量较多时,为了减少I/O 口线的占用,通常将按键排列成矩 阵形式。在矩阵式键盘中,每条水平线和垂直线在交叉处不直接连通,而是通过一个按键加以连接。这样做有什么好处呢?大家看下面的电路图,一个并行口可以构成4*4=16 个按键,比之直 接将端口线用于键盘多出了一倍,而且线数越多,区别就越明显。比如再多加一条线就可以构成20 键 的键盘,而直接用端口线则只能多出一个键(9 键)。由此可见,在需要的按键数量比较多时,采用矩 阵法来连接键盘是非常合理的。 矩阵式结构的键盘显然比独立式键盘复杂一些,识别也要复杂一些,在上图中,列线通过电阻接 电源,并将行线所接的单片机4 个I/O 口作为输出端,而列线所接的I/O 口则作为输入端。这样,当按 键没有被按下时,所有的输出端都是高电平,代表无键按下,行线输出是低电平;一旦有键按下,则输 入线就会被拉低,这样,通过读入输入线的状态就可得知是否有键按下了,具体的识别及编程方法如下 所述: 二.矩阵式键盘的按键识别方法 确定矩阵式键盘上任何一个键被按下通常采用“行扫描法”或者“行反转法”。行扫描法又称为 逐行(或列)扫描查询法,它是一种最常用的多按键识别方法。因此我们就以“行扫描法”为例介绍矩 阵式键盘的工作原理: 1.判断键盘中有无键按下 将全部行线X0-X3 置低电平,然后检测列线的状态,只要有一列的电平为低,则表示键盘中有键 被按下,而且闭合的键位于低电平线与4 根行线相交叉的4 个按键之中;若所有列线均为高电平,则表 示键盘中无键按下。 2.判断闭合键所在的位置 在确认有键按下后,即可进入确定具体闭合键的过程。其方法是:依次将行线置为低电平(即在 置某根行线为低电平时,其它线为高电平),当确定某根行线为低电平后,再逐行检测各列线的电平状 态,若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。 下面给出一个具体的例子: 单片机的P1 口用作键盘I/O 口,键盘的列线接到P1 口的低4 位,键盘的行线接到P1 口的高4

键盘消抖电路的研究与分析

判断是否有键按下;简单硬件消抖则 是采用电容来平掉信号的毛刺。但是对稳定性要求比较高的应用则需要采用相对复杂的集成电路来实现。 1 简单键盘消抖方法 1.1 软件延时消抖 按键抖动时间的长短由按键的机械特性决定,一般为5ms~10ms,按键稳定闭合时间的长短则是由操作人员的按键动作决定的,一般为零点几秒至数秒,如图1所示。 利用软件延时消除键盘抖动所产生的毛刺信号时需设置一个定时器中断,每中断一次则读取键盘接口的信号数据,如果与上次读取的数据不一致,说明当前读取的是前沿抖动数据,将当前的数据保留,等待下次定时器中断。如果当前读取的数据和前次读取数据相同则说明读取的是稳定状态下的数据,则确认为真正有键按下。当检测到按键释放后,需要延时5ms~10ms的时间,待后沿抖动消失后才能转入该键的处理程序。 软件延时并不需要增加新的硬件,但采用这种方式来设计,一般通过软件指令或者定时器的方式来设定延时的时间,采用通用处理器,由于运行速度不一致,需要将软件做相应的修改,比较麻烦。 1.2 简单硬件消抖 采用简单的硬件延时消抖是在键盘数据线接入单片机的引脚的地方并入一小电容,利用电容的充放电原理来实现消除因键盘的抖动所产生的毛刺。如图2所示,键盘按键信号key通过由R2,C1构成的RC振荡电路,过滤到毛刺,到达MCU的引脚上。 基金项目:武汉科技大学校基金资助项目(2006XY26) 键盘消抖电路的研究与分析 邢远秀1 陈姚节2 1、武汉科技大学理学院 4300812、武汉科技大学计算机学院 430081 键盘是计算机和工业控制等领域不可缺少的输入设备,通过它可以实现人机对话,完成各种功能操作。但是,通常的按键所用开关为机械弹性开关,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开,因而在闭合及断开的瞬间均伴随有一连串的抖动,键抖动会引起一次按键被误读多次,为了确保对按键的一次闭合仅作一次处理,必须去除按键抖动。常见的消抖方法采用软件或硬件来实现:软件消抖主要是采用延时多次读取键盘接口数据,通过比较前后两次读取键盘端口的数据来 RC振荡电路实现键盘消抖的成本相对较低,工作不是很稳定,可能出现差错(即产生抖动信号),这只适合对消除抖动要求不高的场合。 2 集成电路消抖 集成电路实现键盘消抖主要是采用双组可再触发单稳态多谐振荡器-74HC123,它可把按键所产生的小脉冲信号转换成大方波信号并送到处理器引脚进行计数。 2.1 74HC123工作原理 74HC123包括两个独立的单稳态触发 表1 74HC123功能表 图3 74HC123管脚与内部结构 图2 RC消抖电路原理图 图1 按键波形图

基于单片机的键盘和LED数码管工作原理

基于单片机的键盘和LED数码管工作原理 摘要:键盘和显示器是微机最常见的输入输出设备。本文介绍键盘和LED显示器的基本工作原理,并给出在8051基础上的电路结构及C语言代码。 关键字:键盘,LED,单片机 键盘是微型计算机系统中最基本、最常见的输入设备。在各种工业过程的计算机控制和监视系统中,广泛应用发光二极管向用户提供提示。由发光二极管可以构成7段/8段LED显示器,用于显示工作状态、参数数值和故障位置。一.键盘的工作原理 键盘实际上是一组按键开关的集合,平时按键开关总是处于断开状态,当按下键时它才闭合。 (一)键盘的基本介绍 1.键盘的功能 键盘接口必须具有4个基本功能: 1.去抖动 2.防串键 3.识别被按键并产生与之对应的键码 4.释放键 而键码产生后如何去实现按键的特定功能,是操作系统和应用程序的任务2.键盘的分类 根据按键开关的排列方式,键盘可分为线性键盘和矩阵键盘。 线性键盘:硬件连接和接口程序都很简单,只适用于按键少的场合,因为线性键盘有多少按键,就需要有多少根连线与微机输入端口相连。 矩阵键盘:将按键排成n行m列,每个按键占据行列的一个交点,需要的外连接线数目是m+n,而容许的最大按键数是m*n,显然可以减少微机接口的连线,是一般微机常采用的键盘结构。 3.键盘与单片机的连接方式 矩阵键盘的连接方法有多种。可直接连接于单片机的I/O口线;可利用扩展的并行I/O口连接;也可利用可编程的键盘、显示接口芯片(如8297)进行连接等等。其中,利用扩展的并行I/O口连接方便灵活,在单片机应用系统中比较常用。下图就是通过8255A芯片扩展的并行I/O口连接的矩阵键盘。

按键消抖与时间按键

按键消抖与时间按键 这篇文章写给正在学51单片机的或者刚入门51单片机准备进阶的的朋友,我们来着重讨论一下按键消抖和时间按键这两项。 我们常用的按键大多都是机械的,机械开关就会出现机械振动,这个由物理学或者实验可以推出来,抖动会在单片机上面出现重复扫描次数,次数多少与单片机的时钟晶振有关,时钟晶振越高单片机执行速度越快,重复次数就越多 整个按键数百ms 按下瞬间,抖动时间大概10ms 弹起瞬间,抖动大概10ms 按键一次出现的电平变化 (上面的时间都是老师说的和书上现成的,没有实际测试,而且不同的按键应该也会有差异,作为学习研究确实不应该,找个时间锅锅会测出这个时间供大家参考,嘿嘿) 由图我们可以看出,按下去瞬间会出现抖动,弹起来也会出现抖动,明显是个阻尼振动,按键扫描程序是按顺序执行的; 首先提出三个问题大家思考一下 1.为什么要消除抖动 2.如何消抖 3.是不是按键都要消抖,不是的话,哪些需要消抖,哪些不需要消抖 4.消抖的时间是不是必须10ms 5.按键消抖的方式是不是一定像书上的那样,如何消抖更节省CPU,且更简单 按键如果不消除抖动,那么单片机检测到的低电平的次数就不止一次,那我们按键一次,单片机会检测到多次,比如我们把按某个按键设置按一次成某个变量加1,结果按一次就加了很多次,这样我们就不能精确的通过按键来调整我们想要的参数,所以我们消除抖动的目的就是要实现按一次按键让单片机读出一次按键操作 消抖分硬件和软件消抖, 硬件消抖有《模拟电子技术》上提到用三态门实现,当然还有周立功那个7920(管理数码管和按键的芯片),当然还有很多硬件电路以及一些按键有自带消抖电路,但是如果要做产

第13讲51单片机按键电路

标题:键盘接口电路 教学目标与要求: 1.键盘去抖动和连接、控制方式 2.独立式按键及其接口电路 3.矩阵式键盘及其接口电路 授课时数:2 教学重点:.矩阵式键盘及其接口电路 教学内容及过程: 一、键盘接口概述 1、按键开关去抖动问题 机械式按键再按下或释放时,由于机械弹性作用的影响,通常伴随有一定时间的触点机械抖动,然后其触点才稳定下来。其抖动过程如图9-11所示,抖动时间的长短与开关的机械特性有关,一般为5 10 ms 在触点抖动期间检测按键的通与断状态,可能导致判断出错,即按键一次按下或释放被错误地认为是多次操作,这种情况是不允许出现的。为了克服按键触点机械抖动所致的检测误判,必须采取去抖动措施。这一点可从硬件、软件两方面予以考虑。在键数较少时,可采用硬件去抖,而当键数较多时,采用软件去抖。在硬件上可采用在键输出端加R-S触发器(双稳态触发器)或单稳态触发器构成去抖动电路。图9-12是一种由R-S触发器构成的去抖动电路,当触发器一旦翻转,触点抖动不会对其产生任何影响。 软件上采取的措施是:在检测到有按键按下时,执行一个10 ms左右(具体时间应视所使用的按键进行调整)的延时程序后,再确认该键电平是否仍保持闭合状态电平,若仍保持闭合状态电平,则确认该键处于闭合状态。同理,在检测到该键释放后,也应采用相同的步 骤进行确认,从而可消除抖动的影响。

2.编制键盘程序 一个完善的键盘控制程序应具备以下功能: (1) 检测有无按键按下,并采取硬件或软件措施,消除键盘按键机械触点抖动的影响。 (2) 有可靠的逻辑处理办法。每次只处理一个按键,其间对任何按键的操作对系统不产生影响,且无论一次按键时间有多长,系统仅执行一次按键功能程序。 (3) 准确输出按键值(或键号),以满足跳转指令要求。 二、独立式按键 单片机控制系统中,往往只需要几个功能键,此时,可采用独立式按键结构。 1. 独立式按键结构 独立式按键是直接用I/O口线构成的单个按键电路,其特点是每个按键单独占用一根I/O口线,每个按键的工作不会影响其它I/O口线的状态。独立式按键的典型应用如图7.4所示。 独立式按键电路配置灵活,软件结构简单,但每个按键必须占用一根I/O口线,因此,在按键较多时,I/O口线浪费较大,不宜采用。 2.矩阵式键盘 I/O端线分为行线和列线,按键跨接在行线和列线上,按键按下时,行线与列线发生短路。特点: ①占用I/O端线较少; ②软件结构教复杂。 适用于按键较多的场合。 3.键盘扫描控制方式 ⑴程序控制扫描方式 键处理程序固定在主程序的某个程序段。 特点:对CPU工作影响小,但应考虑键盘处理程序的运行间隔周期不能太长,否则会影响对键输入响应的及时性。 ⑵定时控制扫描方式 利用定时/计数器每隔一段时间产生定时中断,CPU响应中断后对键盘进行扫描。 特点:与程序控制扫描方式的区别是,在扫描间隔时间内,前者用CPU工作程序填充,后者用定时/计数器定时控制。定时控制扫描方式也应考虑定时时间不能太长,否则会影响对键输入响应的及时性。 ⑶中断控制方式 中断控制方式是利用外部中断源,响应键输入信号。 特点:克服了前两种控制方式可能产生的空扫描和不能及时响应键输入的缺点,既能及时处理键输入,又能提高CPU运行效率,但要占用一个宝贵的中断资源。 三、独立式按键及其接口电路 1、按键直接与I/O口连接

按键开关消抖程序

按键开关消抖程序 实践中,单片机端口在连接开关器件时都要考虑消抖的问题,或在硬件上 增加延迟,或是增加软件延迟查询的功能模块。这里,我们考虑这样一个检测 电路:单片机连接一个开关和两个LED。程序是这样的,如果开关的消抖正确, 就点亮LED1,否则就闪亮LED2。按下开关,点亮LED1,释放开关,LED1 即熄灭。我们加入20 毫秒的消抖延迟时间。当检测到开关为低电平时,单片 机在延迟20 毫秒后再次检测开关的状态。如果此时开关状态为高,则LED2 就闪亮,如为低则点亮LED1。源代码: led1bitP2.0led2bitP2.1switch1bitP1.0ORG 0000hsetb switch1//initialize switch 1 as inputsetb led1//Turn OFF LED1setb led2//Turn OFF LED2 wait:jb switch1,wait// Wait till switch1 has been pressedcall debounce_delayjb switch1,c1_wait//switch low even after debouncing period//switch has been succesfully debouncedclr led1//Turn ON LED1jnb switch1,$//wait till switch has been releasedsetb led1//Turn OFF LED1ajmp wait c1_wait://Switch PIN high after debounce period so error in debouncingcpl led2ajmp wait debounce_delay://Subroutine for generating 20ms delaymov r7,#245l1_debounce_delay:mov r6,#40djnz r6,$djnz r7,l1_debounce_delayret END tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!

第六课按键的硬件消抖

51单片机进阶篇 ---按键的硬件消抖 本文作者:Cepark 更新时间:2010/07/20 作者博客:https://www.doczj.com/doc/c35653344.html,

按键的硬件消抖 在上一节课中,我们介绍了使用软件延时的方法来进行消抖从而进行按键的检测,软件延时的优点是硬件电路简单,但是程序相对来讲会复杂,而且一般的延时函数是使用计数延时,这会增加CPU的负担。硬件消抖电路可以简化程序的编写,但是需要额外的器件支持。两种方法各有利弊,在不同的情况下根据不同的情况来选择使用哪一种消抖方法,这一节课我们主要介绍一下常见的硬件消抖电路。 1、RS触发器构成的消抖电路的主要原理 用R-S触发器形成消抖电路时单片机外围电路设计中的常用手段,它可以减少单片机软件对按键动作的延时和计算。要使用R-S触发器形成的消抖电路,首先用了解R-S触发器的基本工作原理图和工作特点。 R-S触发器的基本构成如图所示,它是由两个与非门交叉耦合而成,S和R是信号的输 Q既表示触发器的状态,又是触发器的输出端。 入端,低电平有效,Q和 在启动过程中,S端一旦下降到开门电平,Q端电平就会上升,反馈到门B的输入端, Q端的电平下降,反馈到门A的输入端,进一步促使门A截止,促使B由截止转向导通, Q的电平进一步下降,这样的过程,是Q端电平进一步上升,Q端电平上升的结果又会使 的门A很快截止、门B很快导通,触发器在极短的时间内完成由截止到导通的转换。通过R 段的复位时也有类似的正反馈过程发生,从而完成按键开关的消抖功能。 典型的硬件消抖方法是在单片机和检测管脚之间加入由74LS02或者其他的门电路组成的R-S触发器消抖电路。如下所示。

单片机与4x4键盘去抖松手检测程序

单片机与4x4键盘去抖松手检测程序 刚写的一个4*4 键盘,去抖 松手检测程序。项目中要用4*4 键盘,扫描的程序有。但是去抖,和松手检测的程序没有,那么为了提高效率,可靠性,以及更加合理化。到网上找了一些关于”状态机“的资料,按照它的思路写了一个,写了半天,写好一个,经过特发帖纪录一下。 //对按键扫描的值进行处理去抖松手检测 uint8_t key_scan(void) { static uint8_t key_state = 0; static uint8_t key_num_flag1=0; uint8_t temp_key_num=0; uint8_t return_key_num=0; temp_key_num=KeyMap();//读取4*4 键盘返回的按键值不要去抖 switch(key_state)//检测状态

case key_state_0: if(temp_key_num!=0) //如果按键返回不是0 说明有按键按下 { key_num_flag1=temp_key_num; //记录下第一次按键按下的值 key_state=key_state_1; //进入下一个状态去抖 } break; case key_state_1: if(temp_key_num!=0) //如果按键返回不是0 说明按键是按下的 { if(key_num_flag1==temp_key_num)//判断是否和上次记录按键值一样。 {

return_key_num=temp_key_num; // 按键仍按下,赋值给返回按键值 key_state = key_state_2; // 状态转换到键释放态 } else { key_state=key_state_0; //回到初始状态 } } else ///没有按键按下 {

4×4矩阵键盘原理及其在单片机中的简单应用(基Proteus仿真)

4×4矩阵键盘原理及其在单片机中的简单应用 基于Proteus仿真 1、4×4矩阵键盘的工作原理 如下图所示,4×4矩阵键盘由4条行线和4条列线组成,行线接P3.0-P3.3,列线接P3.4-P3.7,按键位于每条行线和列线的交叉点上。

按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。 第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码。 第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。 第三步,将第一步得到的列码和第二步得到的行码拼合成被按键的位置码,即Y0Y1Y2Y3X0X1X2X3(因为行线和列线各有一条为低电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。 也就是说,当某个键按下时,该键两端所对应的行线和列线为低电平,其余行线和列线为高电平。比如,当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y0Y1Y2Y3X0X1X2X3为01110111,即0X77。当5键按下时,行线X1和列线Y1为低电平,其余行列线为高电平,于是可得到5键的位置码Y0Y1Y2Y3X0X1X2X3为10111011,即0XBB。全部矩阵键盘的位置码如下: 2、4×4矩阵键盘在单片机的简单应用举例(一) 如下图所示,运行程序时,按下任一按键,数码管会显示它在矩阵键盘上的序号0~F,并且蜂鸣器发出声音,模拟按键的声音。此处采用线反转法识别按键。 C程序如下:

关于单片机按键的抖动与消抖

关于单片机按键的抖动与消抖 在单片机的程序中,如果涉及到按键,一般都会看到几行注释着消抖 的代码。比如下面这一段:if((KeyV|0xc3)==0xff){//无键按下return 0; } mDelay(10);//延时,去键抖KeyV=P3; if((KeyV|0xc3)==0xff){//无键按下return 0; } 关于其作用与目的,有如下解释:按键在按下时会产生电平的变化,通常是由高电平变为低电平,而且这一过程也不是瞬间完成的,按键按下之后, 电平会有一段不稳定变化的时间。一般情况下,我们的程序读取这个电平变化 并做相关的动作。但由于机械按键的局限性,当系统受到外力而产生抖动或其 它动作时,也可能使系统内部产生电平变化(通常这种变化持续的时间非常短),这种现象称之为按键的抖动。这种抖动显然不是我们期望出现的,一旦程序中没有针对它进行特殊处理,这种隐患很可能导致系统执行我们不希望出现 的动作。进而可能酿成一场悲剧。避免按键抖动的操作就称之为消抖。目前,单片机的消抖主要分为软件消抖和硬件消抖。其中,软件消抖增加软件资源,但不增加硬件成本;硬件消抖反之。现在普遍采用的是软件消抖的方式。软件消抖具体的操作思路是:当监听到按键被按下时,不立刻执行相关的操作,而进行一定时间的延时(通常是50ms),之后再次检测按键是否被按下,如果 此时按键仍然被按下,则判定按键确实被按下了(因为不论是异常情况导致的 抖动还是正常情况下按键被按下产生的电平变化都会在这一段时间内过去,紧 接着的电平将会是稳定的),然后进行按键被按下之后所需要的操作,否则判 定按键未被按下,继续监听按键状态。实际上,以上所说的软件消抖的方法在 真正的软件中应用的不多,只是在练习的时候使用。真正的应用上,会在可能 产生抖动的那一段时间内等间隔多次监听按键状态(电流状态),等到数次 (可以是连续5 次)电流平稳了才确定按键被按下。按键被放开时采取同样操

一种软件去除键抖动的方法

一种软件去除键抖动的方法 一种软件去除键抖动的方法 摘要:单片机控制系统中大多使用控制键来实现控制功能。消除按键瞬间的抖动是设计者必须要考虑的问题。本文介绍一种很实用的软件去抖动方法,它借助于单片机内的定时中断资源,只要运算一下逻辑表达就完成了去抖动。这个方法效率高,不耗机时且易实现。文中使用的逻辑表达式由简单卡诺图和真值表推出,使该方法的机理容易理解。文中还提供用C51单片机编程语言编写的实用例程。关键词:单片机键处理控制系统去抖动键盘概述在单片机控制系统中,通过按键实现控制功能是很常见的。对按键处理的重要环节是去抖动,包括去除按下和抬起瞬间的抖动。去抖动的方法有很多种,如使用R-S触发器的硬件方法、运用不同算法的各种软件方法等。硬件方法会增加成本和体积,对于按键较多的矩阵式键盘,会用硬件方法;软件方法用的比较普遍,但有一种加固定延时的去抖动法效率最低,它以无谓地耗费机时来实现去抖动。此处介绍的是一种软件方法。简单说来是一种运算法,配合定时中断读取按键,通过运算逻辑表达式:Keradyn=KtempKinput+Kreadyn-1(Ktemp⊙Kinput)(1) Ktemp=Kinput(2) 可以获得消除抖动的按键消息。这种方法效率高,不需耗时的循环等待,而且算法简单、使用方便。一、基本原理由于按键的按下与抬起都会有10~20ms的抖动毛刺存在,因此,为了获取稳定的按键信息,须要避开这段抖动期。设置3个变量Kready、Ktemp和Kinput,并设置定时中断周期为20ms。在定时中断服务程序中读取按键,并把读取的数据存于变量Kinput中。变量Kready中是所需要的稳定的按键信息;Ktemp是中间变量,它的值是上一次的Kinput。根据当前按键的状态,考虑到Kready中是20ms抖动后的有效键信息,则Kready、Ktemp和Kinput之间,在不同时刻的状态关系如表1所列。表 1 时刻KreadyKtempKinput1000200130104001511161117110810191101000011000 时刻1为没有键按下的初始状态;时刻2的Kinput为1,但时刻3的Kinput又变为0,说明时刻2的Kinput为1并不是有键按下,可能只是干扰,所以Kreqdy为0;时刻4同时刻2的情况类似,但是时刻4和时刻5时Kinput都为1,说明有按键按下,在时刻5时Kready为1;虽然时刻7时Kinput为0,但时刻5、6、

单片机4×4矩阵键盘设计方案教学文案

1、设计原理 (1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。 (2)键盘中对应按键的序号排列如图14.1所示。 2、参考电路 图14.2 4×4矩阵式键盘识别电路原理图

3、电路硬件说明 (1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。 (2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。 4、程序设计内容 (1)4×4矩阵键盘识别处理。 (2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。矩阵的行线和列线分别通过两并行接口和CPU通信。键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。 5、程序流程图(如图14.3所示)

6、汇编源程序 ;;;;;;;;;;定义单元;;;;;;;;;; COUNT EQU 30H ;;;;;;;;;;入口地址;;;;;;;;;; ORG 0000H LJMP START ORG 0003H RETI ORG 000BH

键盘基本工作原理

PS/2协议,键盘基本工作原理,键盘模拟器 upsdn首页> 嵌入式开发> 电路与通信系统 摘要:先简要介绍普通PC机的键盘,然后分析PS/2协议,最后实现了一个键盘仿真器,可利用其开发真正的键盘. PC机键盘简介 随着IBM PC机的发展,键盘也分为XT, AT, PS/2键盘以至于后来的USB键盘. PC系列机使用的键盘有83键、84键、101键、102键和104键等多种。XT和AT机的标准键盘分别为83键和84键,而286机以上微机的键盘则普遍使用101键、102键或104键。83键键盘是最早使用的一种PC机键盘,其键号与扫描码是一致的。这个扫描码被直接发送到主机箱并转换为ASCII码;随着高档PC机的出现,键盘功能和按键数目得到了扩充,键盘排列也发生了变化,产生的扫描码与83键键盘的扫描码不同。为了保持PC系列微机的向上兼容性,需将84/101/102/104键键盘的扫描码转换为83键键盘的扫描码,一般将前者叫作行列位置扫描码,而将后者称为系统扫描码。显然,对于83键键盘,这两种扫描码是相同的。 键盘是由一组排列成矩阵方式的按键开关组成,通常有编码键盘和非编码键盘两种类型,IBM系列个人微型计算机的键盘属于非编码类型。微机键盘主要由单片机、译码器和键开关矩阵三大部分组成。其中单片机采用了INTEL8048单片微处理器控制,这是一个40引脚的芯片,内部集成了8位CPU、1024×8位的ROM、64×8位的RAM、8位的定时器/计数器等器件。由于键盘排列成矩阵格式,被按键的识别和行列位置扫描码的产生,是由键盘内部的单片机通过译码器来实现的。单片机在周期性扫描行、列的同时,读回扫描信号线结果,判断是否有键按下,并计算按键的位置以获得扫描码。当有键按下时,键盘分两次将位置扫描码发送到键盘接口;按下一次,叫接通扫描码;释放时再发一次,叫断开扫描码。因此可以用硬件或软件的方法对键盘的行、列分别进行扫视,去查找按下的键,输出扫描位置码,通过查表转换为ASCII码返回。 键盘是与主机箱分开的一个独立装置,通过一根5芯电缆与主机箱连接,系统主板上的键盘接口按照键盘代码串行传送的应答约定,接受键盘发送来的扫描码;键盘在扫描过程中,7位计数器循环计数。当高5位(D6一D2)状态为全“0”时,经译码器在O列线上输出一个“0”,其余均为“1”;而计数器的低二位(D1D0)通过4选1多路选择器控制0—3行的扫描。计数器计一个数则扫描一行,计4个数全部行线扫描一遍,同时由计数器内部向D2进位,使另一列线1 变低,行线再扫描一遍。只要没有键按下,多路选择器就一直输出高电平,则时钟一直使计数器循环计数,对键盘轮番扫描。当有一个键被按下时,若扫描到该键所在的行和列时,多路选择器就会输出一个低电平,去封锁时钟门,使计数器停止计数。这时计数器输出的数据就是被按键的位置码(即扫描码)。8048利用程序读取这个键码后,在最高位添上一个“O”,组成一个字节的数据,然后从P22引脚以串行方式输出。在8048检测到键按下后,还要继续对键盘扫描检测,以发现该键是否释放。当检测到释放时,8048在刚才读出的7位位置码的前面(最高位)加上一个“1”,作为“释放扫描码”,也从P22引脚串行送出去,以便和“按下扫描码”相

如何设计按键消抖

在使用单片机搭建有人机交互的系统时需要用到键盘,因为单片机工作时间都是纳秒与毫秒级别,但是我们人体的反应时间最少要0.2秒,之间差距很大,现实过程中也会不小心碰到按键,正常的按下按键应该是持续数十秒的稳定。一、按键电路常用的非编码键盘,每个在使用单片机搭建有人机交互的系统时需要用到键盘,因为单片机工作时间都是纳秒与毫秒级别,但是我们人体的反应时间最少要0.2秒,之间差距很大,现实过程中也会不小心碰到按键,正常的按下按键应该是持续数十秒的稳定。 一、按键电路 常用的非编码键盘,每个键都是一个常开开关电路。 计数器输入脉冲最好不要直接接普通的按键开关,因为记数器的记数速度非常快,按键、触点等接触时会有多次接通和断开的现象。我们感觉不到,可是记数器却都记录了下来。例如,虽然只按了1下,记数器可能记了3下。因此,使用按键的记数电路都会增加单稳态电路避免记数错误。 二、按键消抖 通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,电压信号小型如下图。由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而在闭合及断开的瞬间均伴随有一连串的抖动,如下图。抖动时间的长短由按键的机械特性决定,一般为5ms~10ms。这是一个很重要的时间参数,在很多场合都要用到。

按键稳定闭合时间的长短则是由操作人员的按键动作决定的,一般为零点几秒至数秒。键抖动会引起一次按键被误读多次。为确保CPU对键的一次闭合仅作一次处理,必须去除键抖动。在键闭合稳定时读取键的状态,并且必须判别到键释放稳定后再作处理。按键的抖动,可用硬件或软件两种方法。 三、硬件消抖 在键数较少时可用硬件方法消除键抖动。下图所示的RS触发器为常用的硬件去抖。消抖电路如下 图中两个“与非”门构成一个RS触发器。当按键未按下时,输出为1;当键按下时,输出为0。此时即使用按键的机械性能,使按键因弹性抖动而产生瞬时断开(抖动跳开B),中要按键不返回原始状态A,双稳态电路的状态不改变,输出

基于单片机的键盘和LED数码管工作原理

摘要:键盘和显示器是微机最常见的输入输出设备。本文介绍键盘和LED显示器的基本工作原理,并给出在8051基础上的电路结构及C语言代码。 关键字:键盘,LED,单片机 键盘是微型计算机系统中最基本、最常见的输入设备。在各种工业过程的计算机控制和监视系统中,广泛应用发光二极管向用户提供提示。由发光二极管可以构成7段/8段LED显示器,用于显示工作状态、参数数值和故障位置。 一.键盘的工作原理 键盘实际上是一组按键开关的集合,平时按键开关总是处于断开状态,当按下键时它才闭合。 (一)键盘的基本介绍 1.键盘的功能 键盘接口必须具有4个基本功能: 1.去抖动 2.防串键 3.识别被按键并产生与之对应的键码 4.释放键 而键码产生后如何去实现按键的特定功能,是操作系统和应用程序的任务2.键盘的分类 根据按键开关的排列方式,键盘可分为线性键盘和矩阵键盘。 线性键盘:硬件连接和接口程序都很简单,只适用于按键少的场合,因为线性键盘有多少按键,就需要有多少根连线与微机输入端口相连。 矩阵键盘:将按键排成n行m列,每个按键占据行列的一个交点,需要的外连接线数目是m+n,而容许的最大按键数是m*n,显然可以减少微机接口的连线,是一般微机常采用的键盘结构。 3.键盘与单片机的连接方式 矩阵键盘的连接方法有多种。可直接连接于单片机的I/O口线;可利用扩展的并行I/O口连接;也可利用可编程的键盘、显示接口芯片(如8297)进行连接等等。其中,利用扩展的并行I/O口连接方便灵活,在单片机应用系统中比较常用。下图就是通过8255A芯片扩展的并行I/O口连接的矩阵键盘。 图 1 微处理器和键盘接口接线示意

单片机定时器在按键消抖和键音输出中的应用

228 ?电子技术与软件工程 Electronic Technology & Software Engineering 单片机技术 ? SCM Technology 【关键词】单片机 定时器 扫描 溢出 键盘输入和键音输出是单片机系统中人机对话的常见部分。一般情况下,按键按下时易产生抖动干扰,进而使系统误动作,程序员处理此问题时通常会在检测到有键被按下时,加入一个延时,延时过后再检测同一按键是否仍处于被按状态?若是,就判定此键确实被按下,接着就开始执行此键的功能;若不是,就判定为干扰,并忽略延时前的检测结果。通常情况下,两次检测之间所加入的延时需要约100mS 才能达到比较理想的消抖效果,而CPU 是依用户程序从头到尾扫描执行程序代码,如果在长达100mS 的时间里,CPU 仅仅 单片机定时器在按键消抖和键音输出中的应用 文/徐连喜 完成一次延时的功能,那么此时段内其它任务都将被搁置,这对于那些实时控制要求较高的场所(例如数码管动态扫描显示)是绝对不允许的。基于实时控制所遇到的另外一个问题就是键音输出问题,当CPU 判定某个键被按下时,通过某个IO 端口输出键音,用户就会有更加贴切的人机对话体验,要让人清晰地听到清脆的键音,声音的频率一般控制在1KHz 左右,而且时间不能太短,约100mS 较适宜,依照前述的用户程序的运行规则,此时若用常规的IO 端口取反、延时、再取反来输出键音,显然不能满足用户程序的实时控制要求。为此,本文详述了新的思路,巧妙地利用2个定时器分别去控制按键消抖和键音输出,经实物验证, CPU 不仅能轻松处理按键消抖和键音输出, 同时还能完成数码管的动态扫描及各个IO 端口的实时控制,取得了理想的控制效果。 1 单片机应用系统硬件框图 如图1所示。 2 键盘输入硬件电路 如图2所示。 键盘硬件电路,采用4X4矩阵键盘,用8个I/O 口就能得到16个键值,可实现 0~9 共 << 下转229页 图 1:单片机应用系统硬件框图 图 2:键盘输入硬件电路 图 3:键音输出硬件电路 图4:矩阵键盘扫描子程序 图5:按键消抖(T0中断)子程序 图6:键音(T1中断)子程序

单片机4x4矩阵式键盘的设计与仿真

课程设计报告 (单片机原理和应用) 题目名称4x4矩阵式键盘专业班级 学生姓名 学号 指导教师

4x4矩阵式键盘的设计与仿真 1、设计原理: 矩阵式键盘工作原理 矩阵式键盘使用于按键数量较多的场合,它由行线与列线组成,按键位于行、列的交叉点上,行、列线分别列接到按键开关的两端。行线通过上拉电阻接到+5V上。无键按下时,行线处于低电平状态,而当有按键按下时,行线电平状态将由与此行线相连的列线电平一样为高电平。这是识别矩阵键盘按键是否被按下的关键所在。一个4x4的行列可以构成一个16按键的键盘。 本次以扫描法来识别按键。在扫描法中分两步处理按键,首先是判断有无键按下,让所有的列线置高电平,检查各行线电平是否有变化,如行线有一个为高,则有键按下。当判断有键按下时,使列线依次变低,其余各列为高电平,读行线,进而判断出具体哪个键被按下。 下表为7段共阴极段码表: 显示字符共阴极段码显示字符共阴极段码 “0”3FH“8”7FH “1”06H“9”6FH “2”5BH“A”77H “3”4FH“b”7CH “4”66H“C”39H “5”6DH“d”5EH “6”7DH“E”79H “7”07H“F”71H “灭“00H 实验环境 Keil uVision3 proteus 7 功能设计描述 由4x4组成16个按钮矩阵式键盘 按键成功会在7段LED显示该按键的键号 主要知识点 Keil uVision3的使用及调试 proteus 7的使用及调试 键盘接口、LED 显示接口、模拟电路的相关知识

开始 有键按下吗 延时50ms 确定有键按下吗 确定按键位置 返回 键释放了吗 键值→p2 N N N Y Y Y 2、实现及编程 程序框图 电路原理图 程序内容 4x4行列式键盘识别

4×4矩阵键盘的工作原理与编程

ME300B单片机学习开发系统应用之三 ---4×4矩阵键盘的工作原理与编程 本文介绍如何在ME300B型51/AVR单片机学习开发系统上使用数码管显示4×4矩阵键盘的键值。 一、硬件工作原理的简单介绍 该实验使用ME300B上的8位数码管显示电路和4×4矩阵键盘电路。现将这二部分的电路工作原理进行简单的介绍: 1、4×4矩阵键盘的工作原理 矩阵键盘又称为行列式键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。在行线和列线的每一个交叉点上,设置一个按键。这样键盘中按键的个数是4×4个。这种行列式键盘结构能够有效地提高单片机系统中I/O口的利用率。 K2 P15K3 P16 2、数码管动态扫描显示电路

所以,在调整显示的时间间隔时,即要考虑到显示时数码管的亮度,又要数码管显示时不产生闪烁现象。 在ME300B单片机开发系统中使用数码管来显示信息时,要将JP2的2、3端短接。见图3 二、演示程序的编程方法 1、4×4矩阵键盘的编程方法: 1.1、先读取键盘的状态,得到按键的特征编码。 先从P1口的高四位输出低电平,低四位输出高电平,从P1口的低四位读取键盘状态。再从P1口的低四位输出低电平,高四位输出高电平,从P1口的高四位读取键盘状态。将两次读取结果组合起来就可以得到当前按键的特征编码。使用上述方法我们得到16个键的特征编码。 举例说明如何得到按键的特征编码: 假设“1”键被按下,找其按键的特征编码。 从P1口的高四位输出低电平,即P1.4-P1.7为输出口。低四位输出高电平,即P1.0-P1.3为输入口。读P1口的低四位状态为“1101”,其值为“0DH”。 再从P1口的高四位输出高电平,即P1.4-P1.7为输入口。低四位输出低电平,即P10-P13为输出口,读P1口的高四位状态为“1110”,其值为“E0H”。 将两次读出的P0口状态值进行逻辑或运算就得到其按键的特征编码为“EDH”。 用同样的方法可以得到其它15个按键的特征编码。

相关主题
文本预览
相关文档 最新文档