当前位置:文档之家› 一阶齐次线性微分方程组解的一个结论-2019年精选文档

一阶齐次线性微分方程组解的一个结论-2019年精选文档

一阶齐次线性微分方程组解的一个结论-2019年精选文档
一阶齐次线性微分方程组解的一个结论-2019年精选文档

一阶齐次线性微分方程组解的一个结论

1 预备知识

在实际问题中,我们将会看到稍微复杂的物理系统(例如两个或两个以上回路电流变化规律,几个互相作用的质点的运动等等)的数学模型会导出多于一个微分方程的方程组。通过某些简化的假设,在相当广泛的问题里,这种方程组可以化为一阶线性微分方程组。本文主要给出了一个一阶齐线性微分方程组解的伏朗斯基行列式的结论。为讨论问题的方便,引入以下定义。

定义1 对于线性微分方程组

(1)

其中A(t)是区间a≤x≤b上的已知n×n连续矩阵,它的元素为aij(t),i,j=1,2,…,n。f (t)是区间a≤x≤b上的已知n 维连续列向量。如果f (t)≠0,则方程组(1)称为非齐线性的;如果f (t)=0,则方程组的形式为

(2)

(2)称为齐线性的。

本文主要讨论齐线性微分方程组(2)的问题。

定义2 设有n个定义在区间a≤x≤b上的向量函数

由这n个向量函数构成的行列式

称为这些向量函数的伏朗斯基行列式。

定理 1

2 一阶齐线性微分方程组(2)解的伏朗斯基行列式的结论

定理2 考虑一阶齐线性微分方程组(2),其中A(t)是区间

a≤x≤b上的已知n×n连续矩阵,它的元素为

aij(t),i,j=1,2,…,n。

a.如果x1(t),x2(t),…xn(t)是方程组(2)的任意n个解,那么他们的伏朗斯基行列式W[x1(t),x2(t),…xn(t)]≡W(t)满足下面的一阶线性微分方程

W′=[a11(t)+a22(t)+…+ann(t)]W (6)

b.解上面的一阶线性微分方程,有下式

成立。

证明 a.设

因为根据定理1

而由已知x1(t),x2(t),…xn(t)是方程组(2)的任意n个解,故

所以(8)式等于

根据行列式的性质

即满足(6)式。

b.将上面的一阶线性微分方程(6)变量分离

积分求解得

结论b.得证

3 总结

本文结合微分方程和矩阵代数的有关理论,给出的一阶齐线

性微分方程组(2)解的伏朗斯基行列式具有的两个结论,这在线性方程组的解的结构中占有重要地位。

一阶线性微分方程组

第4章 一阶线性微分方程组 一 内容提要 1. 基本概念 一阶微分方程组:形如 ??? ????? ???===) ,,,,( ),,,,(),,,,(2121222111 n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy (3.1) 的方程组,(其中n y y y ,,,21 是关于x 的未知函数)叫做一阶微分方程组。 若存在一组函数)(,),(),(21x y x y x y n 使得在[a,b]上有恒等式 ),,2,1))((,),(),(,() (21n i x y x y x y x f dx x dy n i i ==成立,则 )(,),(),(21x y x y x y n 称为一阶微分方程组(3.1)的一个解 含有n 任意常数n C C C ,,,21 的解 ?????? ?===) ,,,,( ),,,,(),,,,(21321222111n n n n C C C x y C C C x y C C C x y ??? 称为(3.1)通解。如果通解满方程组 ???????=Φ=Φ=Φ0 ),,,,,,,,( 0),,,,,,,,(0),,,,,,,,(21212121221211n n n n n n n C C C y y y x C C C y y y x C C C y y y x 则称这个方程组为(3.1)的通积分。 满足初始条件,)(,,)(,)(0020021001n n y x y y x y y x y === 的解,叫做初值问题的解。 令n 维向量函数 Y )(x =? ??? ?? ??????)( )()(21x y x y x y n ,F (x ,Y )=????????????),,,,( ),,,,(),,,,(21212 211n n n n y y y x f y y y x f y y y x f

高阶线性微分方程常用解法介绍

高阶线性微分方程常用解法简介 关键词:高阶线性微分方程 求解方法 在微分方程的理论中,线性微分方程是非常值得重视的一部分内容,这不仅 因为线性微分方程的一般理论已被研究的十分清楚,而且线性微分方程是研究非线性微分方程的基础,它在物理、力学和工程技术、自然科学中也有着广泛应用。下面对高阶线性微分方程解法做一些简单介绍. 讨论如下n 阶线性微分方程:1111()()()()n n n n n n d x d x dx a t a t a t x f t dt dt dt ---++++= (1),其中()i a t (i=1,2,3,,n )及f(t)都是区间a t b ≤≤上的连续函数,如果 ()0f t ≡,则方程(1)变为 1111()()()0n n n n n n d x d x dx a t a t a t x dt dt dt ---++++= (2),称为n 阶齐次线性微分方程,而称一般方程(1)为n 阶非齐次线性微分方程,简称非齐次线性微分方程,并且把方程(2)叫做对应于方程(1)的齐次线性微分方程. 1.欧拉待定指数函数法 此方法又叫特征根法,用于求常系数齐次线性微分方程的基本解组。形如 111121[]0,(3),n n n n n n n d x d x dx L x a a a x dt dt dt ---≡++++=其中a a a 为常数,称为n 阶常系数齐次线性微分方程。 111111111111[]()()()n t n t t t t n n n n n n n t t n n n n n n n d e d e de L e a a a e dt dt dt a a a e F e F a a a n λλλλλλλλλλλλλλλλ---------≡++++=++++≡≡++++其中=0(4)是的次多项式. ()F λ为特征方程,它的根为特征根. 1.1特征根是单根的情形 设12,,,n λλλ是特征方程111()0n n n n F a a a λλλλ--≡++++=的n 个彼此不相等的根,则应相应地方程(3)有如下n 个解:12,,,.n t t t e e e λλλ(5)我们指出这n 个解在区间a t b ≤≤上线性无关,从而组成方程的基本解组. 如果(1,2,,)i i n λ=均为实数,则(5)是方程(3)的n 个线性无关的实值 解,而方程(3)的通解可表示为1212,n t t t n x c e c e c e λλλ=+++其中12,,,n c c c 为任意常数. 如果特征方程有复根,则因方程的系数是实常数,复根将称对共轭的出现.设1i λαβ=+是一特征根,则2i λαβ=-也是特征根,因而于这对共轭复根

二阶常系数齐次线性微分方程求解方法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数 非齐次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将y e rx 代入方程 y py qy 0 得 (r 2pr q )e rx 0 由此可见 只要r 满足代数方程r 2pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2pr q 0叫做微分方程y py qy 0的特征方程 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111 =++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关的实数形式的解 函数y 1e (i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e (i )x e x (cos x i sin x ) y 1y 22e x cos x )(21cos 21y y x e x +=βα y 1y 2 2ie x sin x )(21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为 y e x (C 1cos x C 2sin x )

第三章一阶线性微分方程组第二讲一阶线性微分方程组的一般概念及理论

第二讲 一阶线性微分方程组的一般概念与 一阶线性齐次方程组的一般理论(4课时) 一、 目的与要求: 了解一阶线性微分方程组的一般概念与一阶线性齐次方程组的一般理论, 掌握一阶线性齐次方程组的通解结构, 理解基本解矩阵, Wronsky 行列式等概念. 二、重点:一阶线性齐次方程组的通解结构, 基本解矩阵, Wronsky 行列式. 三、难点:基本解矩阵, Wronsky 行列式. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1. 一阶线性微分方程组的一般概念 如果在一阶微分方程组(3.1)中, 函数12(,,,,)(1,2,,)i n f x y y y i n =, 关于12,,,n y y y 是线性的, 即(3.1)可以写成 1111122112211222221122()()()()()()()()()()()() n n n n n n n nn n n dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx dy a x y a x y a x y f x dx ?=++ ++???=++++?????=++++? ?

(3.6) 则称(3.6)为一阶线性微分方程组. 我们总假设(3.6)的系数()(,1,2,,)ij a x i j n = 及()(1,2,,)i f x i n = 在某个区间I R ? 上连续. 为了方便, 可以把(3.6)写成向量形式. 为此, 记 1112121 22212()()()()()()()()()()n n n n nn a x a x a x a x a x a x A x a x a x a x ??????=?????? 及 12()()()()n f x f x F x f x ???? ??=?????? 根据第13讲的记号, (3.6)就可以写成向量形式 ()()dY A x Y F x dx =+ (3.7) 如果在I 上, ()0F x ≡,方程组(3.7)变成 ()dY A x Y dx = (3.8)

一阶线性偏微分方程

第七章 一阶线性偏微分方程 研究对象 一阶线性齐次偏微分方程 0),,,(),,,() ,,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X 1基本概念 1) 一阶线性齐次偏微分方程 形如 0),,,(),,,(),,,(2122121211=??++??+??n n n n n x u x x x X x u x x x X x u x x x X (7.1) 的方程,称为一阶线性齐次偏微分方程,其中n x x x ,,,21 是自变量,u 是n x x x ,,,21 的未知函数,n X X X ,,,21 是域n R D ?内的已知函数,并设n X X X ,,,21 在域D 内不同时为零。 2) 一阶拟线性偏微分方程 形如 );,,,();,,,();,,,(21211211z x x x Z x z z x x x Y x z z x x x Y n n n n n =??++?? (7.2) 的方程,称为一阶拟线性偏微分方程,其中Z Y Y Y n ;,,,21 是1+n 个变元z x x x n ;,,,21 的已知函数。n Y Y Y ,,,21 在其定义域1+?'n R D 内不同时为零。 所谓“拟线性”是指方程仅对未知函数的各个一阶偏导数是线性的,以下总设n Y Y Y ,,,21 和Z 在域D '内连续可微。 3) 特征方程组 常微分方程组 n n X dx X dx X dx === 2211 (7.3) 称为一阶线性齐次偏微分方程(7.1)的特征方程组。 常微分方程组

齐次微分方程

1 第二讲一阶微分方程 【教学内容】 齐次微分方程、一阶线性微分方程 【教学目的】 理解齐次微分方程的概念,掌握齐次微分方程、一阶线性微分方程的解法。 【教学重点与难点】 齐次微分方程、一阶线性微分方程的解法 【教学过程】 、齐次微分方程: 形如 凹f (-)的微分方程;叫做齐次微分方程 dx x u ■y 原方程便化为可分离变量的微分方程来求解。 x 此方程是可分离变量的微分方程。按可分离变量微分方程的解法,求出方程的通解,再将变量 为y ,所得函 数就是原方程的通解。 x 解:方程可化为 1 C)2 X 2(乂) x 分离变量,则有 u 1 u 2 两边积分,得 例1、 求微分方程(x )dx 2xydy ,满足初始条件y x 1 0的特解。 它是齐次方程。令u ,代入整理后,有 du dx 2xu 对它进行求解时,只要作变换 于是有 dy y ux,亠 u dx du dx du x 一 dx f(u) u x pl ,从而原方程可化为 u x —— f (u ), dx u 还原 dy dx 2 x_ 2xy du 2x dx

(2)ln(1 u 2) (2)ln x (1 )ln c cx(1 u 2) 1 将u y 代入上式,于是所求方程的通解为 x x 2 二、一阶线性微分方程 形如 的方程称为一阶线性微分方程,其中 P (x )、Qx )都是连续函数。 当Qx ) = 0时,方程 y P (x)y 0 称为一阶线性齐次微分方程; 当Qx )工0,方程称为一阶线性非齐次微分方程。 1. 一阶线性齐次微分方程的解法 将方程 P(x)y 0 分离变量得 两边积分得 方程的通解为 求微分方程 y 2xy 0的通解。 c(x 2 y 2 ) x 2 把初始条件y 0代入上式,求出c 1,故所求方程的特解为 y P (x)y Q(x) dy P(x)dx In y P(x)dx InC Ce P (x )dx (C 为任意常数) 解法1 (分离变量法)

二阶非齐次线性微分方程的解法.

目 录 待定系数法 常数变异法 幂级数法 特征根法 升阶法 降阶法 关键词:微分方程,特解,通解, 二阶齐次线性微分方程 常系数微分方程 待定系数法 解决常系数齐次线性微分方程[]21220, (1) d x dx L x a a x dt dt ≡++= 12,. a a 这里是常数 特征方程212()0F a a λλλ=++= (1.1) (1)特征根是单根的情形 设 12,,,n λλλ 是特征方程的 (1.1)的2个彼此不相等的根,则相应的方程 (1)有如 下2个解: 12,t t e e λλ (1.2) 如果(1,2)i i λ=均为实数,则 (1.2)是方程 (1)的2个线性无关的实值解,而方程 (1)的通解可表示为 1212t t x c e c e λλ=+ 如果方程有复根,则因方程的系数是实系数,复根将成对共轭出现。设 i λαβ=+是一特征根,则i λαβ=-也是特征根,因而与这对共轭复根对应,方程 (1)有两个复值解 (i)t (cos t sin ),t e e i t αβαββ+=+

(i)t (cos t sin ).t e e i t αβαββ-=- 它们的实部和虚部也是方程的解。这样一来,对应于特征方程的一对共轭复根 i λαβ=±,我们可求得方程 (1)的两个实值解 cos ,sin .t t e t e t ααββ (2)特征根有重跟的情形 若10λ=特征方程的 k 重零根,对应于方程 (1)的k 个线性无关的解21 1,t,t ,k t - 。 若这个 k 重零根10, λ≠设特征根为12,,,,m λλλ 其重数为 1212,,,k (k 2)m m k k k k ++= 。方程 (1)的解为 11112222111,t ,t ;,t ,t ;;,t ,t ;m m m m t t k t t t k t t t k t e e e e e e e e e λλλλλλλλλ--- 对于特征方程有复重根的情况,譬如假设i λαβ=+是k 重特征根,则i λαβ=- 也是k 重特征根,可以得到方程 (1)的2k 个实值解 2121cos ,cos ,cos ,,cos ,sin ,sin ,sin ,,sin .t t t k t t t t k t e t te t t e t t e t e t te t t e t t e t ααααααααββββββββ-- 例1 求方程 220d x x dt -=的通解。 解 特征方程 210λ-=的根为121,1λλ==-有两个实根,均是单根,故方程的通 解为 12,t t x c e c e -=+ 这里12,c c 是任意常数。 例2 求解方程 220d x x dt +=的通解。 解 特征方程 210λ+=的根为12,i i λλ==-有两个复根, 均是单根,故方程的通解 为 12sin cos ,x c t c t =+

一阶常系数线性齐次微分方程组的求解

一阶常系数线性齐次微分方程组的求解 【模型准备】一只虫子在平面直角坐标系内爬行. 开始时位于点P 0(1, 0)处. 如果知道虫子在点P (x , y )处沿x 轴正向的速率为4x - 5y , 沿y 轴正向的速率为2x - 3y . 如何确定虫子爬行的轨迹的参数方程? 图31 虫子爬行的轨迹 【模型假设】设t 时刻虫子所处位置的坐标为(x (t ), y (t )). 【模型构成】由已知条件和上述假设可知 d 45,d d 23,d x x y t y x y t ?=-????=-??而且(x (0), y (0)) = (1, 0). 现要由此得出虫子爬行的轨迹的参数方程. 【模型求解】令A =4523-?? ?-?? , 则|λE -A | =4523λλ--+= (λ+1)(λ-2). 可见A 的特征值为λ1 = -1, λ2 = 2. (-E -A )x = 0的一个基础解系为: ξ1 = (1, 1)T ; (2E -A )x = 0的一个基础解系为: ξ2 = (5, 2)T . 令P = (ξ1, ξ2), 则P -1AP =1002-?? ??? . 记X =x y ?? ???, Y =u v ?? ??? , 并且作线性变换X = PY , 则Y = P -1X , d d t Y = P -1d d t X = P -1AX = P -1APY =1002-?? ??? Y , 即 d d d d u t v t ?? ???=1002-?? ???u v ?? ??? , 故u = c 1e -t , v = c 2e 2t , 即Y =122t t c e c e -?? ??? . 因而 12c c ?? ??? = Y |t =0 = P -1X |t =0 =2/35/31/31/3-?? ?-??10?? ???=2/31/3-?? ???. 于是 x y O 1 何去何从?

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌 握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵 1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n == det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0n n n n nn a a a a a a A E a a a λ λλλ ---= =-

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵 A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλ 这时 12 1 00 n T AT λλλ-????? ?=?????? 方程组(3.20)变为 11122 200n n n dz dx z dz z dx z dz dx λλλ?????????????? ????????= ???????????????? ?????? (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=???????? 220010(),,()0001n x x n Z x e Z x e λλ???????????? ????==???????????????? 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ?? ????==?????? (1,2,,)i n =

一阶线性非齐次微分方程

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 []y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 【例1】求方程 dy dx y x x -+=+21 132() 的通解。 解:] 23)1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23)1([22)1(ln )1(ln dx e x c e x x +-+??++?= =+?++-?()[()]x c x dx 1121 2 =+?++()[()]x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

(整理)一阶线性偏微分方程.

第七章 一阶线性偏微分方程 例7-1 求方程组 ()()()yz B A Cdz xz A C Bdy yz C B Adx -=-=- 通积分,其中C B A ,,为互不 相等的常数。 解 由第一个等式可得 xyz ydy A C B xyz xdx C B A -=-, 即有 0=---ydy A C B xdx C B A , 两边积分得方程组的一个首次积分 122,C y A C B x C B A z y x Φ=---= ),(。 由第二个等式可得 xyz zdz B A C xyz ydy A C B -=-, 即有 0=---zdz B A C ydy A C B , 两边积分得方程组的另一个首次积分 222,C z B A C y A C B z y x Ψ=---= ),(。 由于,雅可比矩阵 ? ???? ?????------=????? ???? ????ψ??ψ??ψ ??Φ??Φ ??Φ ?=?ψΦ?z B A C y A C B y A C B x C B A y y x z y x z y x 002),,(),( 的秩为2,这两个首次积分相互独立,于是原方程组的通积分为 122C y A C B x C B A =--- 222C z B A C y A C B =--- 。

评注:借助于方程组的首次积分求解方程组的方法称为首次积分法。要得到通积分需要求得n 个独立的首次积分,n 为组成方程组的方程个数。用雅可比矩阵的秩来验证首次积分的独立性。 例7-2 求方程组 () () ???????-+--=-+-=11d 222 2y x y x dt dy y x x y dt x 的通解。 解 由原方程组可得 )1)((2222-++-=+y x y x dt dy y dt dx x 即 dt y x y x y x d )1)((2)(2 2 2 2 2 2 -++-=+ 这个方程关于变量t 和2 2 y x +是可以分离的,因此易求得它的通积分为 122 2221),,(C e y x y x t y x t =+-+=Φ 这是原方程组的一个首次积分。 再次利用方程组,得到 )(22y x dt dx y dt dy x +-=-, 即有 1arctan -=?? ? ?? x y dt d 由此得到原方程组的另一个首次积分 2arctan ),,(C t x y t y x =+=ψ 。 由于,雅可比矩阵为 ()( ) ???? ? ?????? ?++-++=????????? ????ψ??ψ ??Φ??Φ ?=?ψΦ?2222 222 222 2222),(),(y x x y x y e y x y e y x x y x y x y x t t ,

一阶偏微分方程基本知识

一阶偏微分方程基本知识 这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。 1一阶常微分方程组的首次积分 1.1首次积分的定义 从第三章我们知道,n 阶常微分方程 ()()() 1,,'',',-=n n y y y x f y , ( 1.1) 在变换 ( ) 1'12,,,,n n y y y y y y -=== ( 1.2) 之下,等价于下面的一阶微分方程组 ()()()1 112221212,,,,,,,,,,,,,,. n n n n n dy f x y y y dx dy f x y y y dx dy f x y y y dx ?=?? ?=???? ?=? ? ( 1.3) 在第三章中,已经介绍过方程组( 1.3)通解的概念和求法。但是除了常 系数线性方程组外,求一般的( 1.3)的解是极其困难的。然而在某些情况下,可以使用所谓“可积组合”法求通积分,下面先通过例子说明“可积组合”法,然后介绍一阶常微分方程组“首次积分”的概念和性质,以及用首次积分方法来求解方程组( 1.3)的问题。先看几个例子。 例1 求解微分方程组 ()()22221,1.dx dy y x x y x y x y dt dt =-+-=--+- ( 1.4) 解:将第一式的两端同乘x ,第二式的两端同乘y ,然后相加,得到 ()() 12222-++-=+y x y x dt dy y dt dx x , ()()()2222221 12 d x y x y x y dt +=-++-。 这个微分方程关于变量t 和()22x y +是可以分离,因此不难求得其解为 122 2221C e y x y x t =+-+, ( 1.5) 1C 为积分常数。( 1.5)叫做( 1.4)的首次积分。

一阶齐次线性微分方程组解的一个结论-2019年精选文档

一阶齐次线性微分方程组解的一个结论 1 预备知识 在实际问题中,我们将会看到稍微复杂的物理系统(例如两个或两个以上回路电流变化规律,几个互相作用的质点的运动等等)的数学模型会导出多于一个微分方程的方程组。通过某些简化的假设,在相当广泛的问题里,这种方程组可以化为一阶线性微分方程组。本文主要给出了一个一阶齐线性微分方程组解的伏朗斯基行列式的结论。为讨论问题的方便,引入以下定义。 定义1 对于线性微分方程组 (1) 其中A(t)是区间a≤x≤b上的已知n×n连续矩阵,它的元素为aij(t),i,j=1,2,…,n。f (t)是区间a≤x≤b上的已知n 维连续列向量。如果f (t)≠0,则方程组(1)称为非齐线性的;如果f (t)=0,则方程组的形式为 (2) (2)称为齐线性的。 本文主要讨论齐线性微分方程组(2)的问题。 定义2 设有n个定义在区间a≤x≤b上的向量函数 由这n个向量函数构成的行列式 称为这些向量函数的伏朗斯基行列式。 定理 1

2 一阶齐线性微分方程组(2)解的伏朗斯基行列式的结论 定理2 考虑一阶齐线性微分方程组(2),其中A(t)是区间 a≤x≤b上的已知n×n连续矩阵,它的元素为 aij(t),i,j=1,2,…,n。 a.如果x1(t),x2(t),…xn(t)是方程组(2)的任意n个解,那么他们的伏朗斯基行列式W[x1(t),x2(t),…xn(t)]≡W(t)满足下面的一阶线性微分方程 W′=[a11(t)+a22(t)+…+ann(t)]W (6) b.解上面的一阶线性微分方程,有下式 成立。 证明 a.设 因为根据定理1 而由已知x1(t),x2(t),…xn(t)是方程组(2)的任意n个解,故 所以(8)式等于 根据行列式的性质 即满足(6)式。 b.将上面的一阶线性微分方程(6)变量分离 积分求解得 结论b.得证 3 总结 本文结合微分方程和矩阵代数的有关理论,给出的一阶齐线

.高阶微分方程与微分方程组

§4 高阶微分方程与微分方程组 一、 高阶微分方程与微分方程组的互化 已给一个n 阶方程 ()()() y f x y y y y n n ='''-,,,,, 1 设y 1=y ,y 2=y',y 3=y",…,y n =y (n -1),那末解上面n 阶微分方程就相当于解下面n 个一阶微分方程的方程组 ()????? ?? ??????====-n n n n y y y x f x y y x y y x y y x y ,,,,d d d d d d d d 2113221 式中y 1,y 2,…,y n 看作自变量x 的n 个未知函数. 反过来,在许多情况下,已给n 个一阶微分方程的方程组也可以化为一个n 阶微分方程.比如,两个一阶微分方程的方程组 () ()?????==21222111 ,,d d ,,d d y y x f x y y y x f x y (1) 将方程(1)对x 求导数 221 11112 12d d f y f f y f x f x y ??+??+??= 记作 ()212 1 2,,d d y y x F x y = (2) 从方程(1)中解出y 2 ()y y x y y 2211=',, 代入方程(2)的右边,就得到一个二阶微分方程 ()1 121 2,,d d y y x x y '=Φ 这里函数()1 1,,y y x 'Φ由函数f 1,f 2所确定,因而是已知的.所以两个一阶微分方程组可以化为一个二阶微分方程. 二、 高阶微分方程的几种可积类型及其解法 1. y (n ) = f (x ) 将方程写成 ()()x f y x n =-1d d 积分后得到

高阶齐次线性微分方程

第七章常微分方程7.8 高阶齐次线性微分方程 数学与统计学院 赵小艳

1 2 高阶线性微分方程的概念 1 主要内容 3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关 高阶齐次线性微分方程通解的结构

1 2 高阶线性微分方程的概念 1 主要内容 3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关 高阶齐次线性微分方程通解的结构

解 受力分析 1 高阶线性微分方程的概念 例1 (弹簧的机械振动) 如图,弹簧下挂一物体.设在垂直方向有一随时间变化的外力 作用在物体上,物体将受外力驱使而上下振动,求物体的振动规律. pt H t f sin )(1= 以物体的平衡位置为坐标原点,x 轴的方向垂直 向下. x x o )(1t f ;sin )()1(1pt H t f =外力;)2(kx f -=弹性力v f μ-=0)3(介质阻力,ma F =由x kx t f x m d d μ--=)(2可得.t x d d μ-= 设振动开始时刻为0,t 时刻物体离开平衡位 置的位移为x (t ).

,ma F =由x kx t f x m d d μ--=)(2 可得t t 2d d 物体自由振动的微分方程 .0,000====t t t x x d d 还应满足初始条件:

一般地,称 )()()(2122t F x t P t x t P t x =++d d d d 为二阶线性微分方程, ,0)(时当≡t F 称为二阶齐次线性微分方程, ,0)(时当≠t F 称为二阶非齐次线性微分方程. )()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- n 阶线性(微分)方程 ,0)(时当≡t F n 阶齐次线性微分方程, t t 2d d .0,000====t t t x x d d 还应满足初始条件:物体自由振动的微分方程

第三章 一阶线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程 式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx (3.20)

其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1 T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2, ,),ij T t i j n == det 0T ≠,将方程组 (3.20)化为 1 dZ T ATZ dx -= (3.22) 我们知道,约当标准型 1 T AT -的形式与矩阵A 的特征方程 11121212221 2 det()0 n n n n nn a a a a a a A E a a a λλλλ ---= =- 的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根.

阶线性微分方程组第一讲一阶微分方程组及解的存在唯一性定理

第一讲 一阶微分方程组及解的存在惟一性定理(2课时) 一、 目的与要求: 了解高阶微分方程与一阶微分方程组的 等价关系, 理解用向量和矩阵来研 究一阶微分方程组的作用, 了解微分方程组解的存在唯一性定理. 二、重点:一阶微分方程组的向量和矩阵表示及解的存在唯一性定理. 三、难点:向量和矩阵列的收敛性的定义, 二者的范数定义及其相关性质. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 课题引入 在前两章里,我们研究了含有一个未知函数的常微分方程的解法及其解的性质.但是,在很多实际和理论问题中,还要求我们去求解含有多个未知函数的微分方程组,或者研究它们的解的性质. 例如,已知在空间运动的质点(,,)P x y z 的速度与时间t 及该点的坐标的关系为(,,)x y z v v v v

123(,,,)(,,,) (,,,)x y z v f t x y z v f t x y z v f t x y z =??=??=? 且质点在时刻0t 经过点000(,,)x y z ,求该质点的运动轨迹。 因为,x y dx dy v v dt dt ==和z dz v dt =, 所以这个问题其实就是 求一阶微分方程组 123(,,,)(,,,) (,,,)x f t x y z y f t x y z z f t x y z =??=??=? 的满足初始条件 00(),x t x = 00(),y t y = 00()z t z = 的解(),(),()x t y t z t . 另外,在n 阶微分方程 (1.12) ()(1)(,,,,)n n y f x y y y -'= 中,令(1)121,,,n n y y y y y y --'''===就可以把它化成等价的一阶微分方程组

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02 =++q p λλ的特征根为12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? …(1) 1)当12λλ≠且为实数时,由(1)式得原方程的通解为

浅谈一阶线性微分方程组的一般理论知识及解法

浅谈一阶线性微分方程组的一般理论知识及解法 王焕 赤峰学院数学学院,赤峰024000 摘要:一阶线性微分方程组是一类特殊的微分方程组。这类微分方程组的理论研究结果比较完整,而且它们在实际和理论问题中都占有很重要的位置。然而,在很多实际和理论问题中,常要求我们去求解多个未知函数的微分方程组,或者研究它们的解的性质。那么,首先让我们谈一谈它的基本理论知识,从两个方面进行阐述,第一个方面是一阶线性齐次方程组及一阶线性非齐次方程组,第二个方面是常系数线性微分方程组;然后再从三个方面简要的叙述它解的求法,其中,着重强调常数变易法。 关键词:一阶线性微分方程组 一阶线性齐次方程组 一阶线性非齐次方程组 常数变易法 一阶线性微分方程组的基本理论知识 一、定义 1.一阶线性微分方程组: 含有n 个未知函数,,2,1...,n y y y 的一阶微分方程组的一般形式为: ???????????===),...,,,(......),...,,,() ,...,,,(2121222111n n n n n y y y x f dx dy y y y x f dx dy y y y x f dx dy 若函数),...,2,1)(...,,,(21n i y y y x f n i =关于,,2,1...,n y y y 是线性的,即 ???????????++++=++++=++++=)()(...)()(......)()(...)()() ()(...)()(2211222221212112121111x f y x a y x a y x a dx dy x f y x a y x a y x a dx dy x f y x a y x a y x a dx dy n n nn n n n n n n n (1) 则称上式(1)为一阶线性微分方程组。

相关主题
文本预览
相关文档 最新文档