当前位置:文档之家› 纳滤膜介绍

纳滤膜介绍

纳滤膜介绍
纳滤膜介绍

纳滤膜介绍

纳滤膜:是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜。它是一种特殊而又很有前途的分离膜品种,它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。

纳滤膜材质:聚酰胺材质

纳滤膜:能截留纳米级(0.001微米)的物质。纳滤膜的操作区间介于超滤和反

渗透之间,其截留有机物的分子量约为200-800MW左右,截留溶解盐类的能力为20%-98%之间,对可溶性单价离子的去除率低于高价离子,纳滤一般用于去除地表水中的有机物和色素、地下水中的硬度及镭,且部分去除溶解盐,在食品和医药生产中有用物质的提取、浓缩。纳滤膜的运行压力一般3.5-30bar。(1帕是1帕斯卡的简称,就是一平方米受到一牛顿的压力。1BAR=1公斤/平方米BAR是压强单位,公斤是重量单位可看作力单位,力单位除以面积单位就是压强单位。)

纳滤膜家用饮水机的主要应用范围

(1)、咸水除盐沿海地区的自来水往往带有咸味。如:上海市南汇区就是如此。其盐分不高,约几百~2千mg/l,但常饮此水易患高血压,冠心病,此水泡茶不香,烹调无味。需进行深度处理。

(2)、井水脱硬许多地区的自来水,以深井水为水源,故水的硬度较高。烧开水时壶面、壶低常有白,灰等色结垢或沉淀。人们常饮此水易得心脏病,脑血管合肾结石等疾病。好茶叶品不出美味,变得淡而苦涩。有时井水还出现有毒金属汞、镉、砷等,自来水厂工艺亦无法解决,需进行深度处理。

(3)、除微生物在河水中有许多病菌、隐球菌属孢子,氯气消毒不能完全杀死。在美国为此曾发生事故造成40万人感染痢疾病,所以美国以此事故为契机,开始采用过滤膜技术。在我国农村,小镇水厂中,往往管理不严,往往容易造成出水带菌,也须深度处理。

(4)、提高水质我国自来水厂的水源,常常受工业废水,生活污水和农药、化肥污染,水厂出水水质不能保证,需进行深度处理。

使用纳滤膜注意事项

1 PH值大于10时,连续运行的最高温度为35℃,当进水中含有游离氯或其它氧化性物质时,由于其氧化性能会严重损环膜的性能能,因此建议用户在预处理中除去游离氯或其它氧化性物质。

2 膜元件在出厂前都经过通水测试,并真空封装于1.0%(重量)浓度的亚硫酸氢钠和20ppm浓度的异噻唑啉酮保护液中。在严寒地区,保护液中添有10%(重量)浓度的甘油作为防冻液。为防止在短期储藏、运输及系统停机时微生物的滋长,建议用1.0%(重量)的亚硫酸氢钠(食品级)保护液(用RO产水配制)对膜元件进行浸泡处理。

3 膜元件在未投入使用前尽量不要拆封,一旦拆封应始终维持湿润状态。

4 膜元件进水应逐渐加压,到正常运行状态的时间应不少于30-60秒,膜元件进水流速应逐渐增加,到规定值的时间应不少于15-20秒

5 初次使用应先将系统产水进行排放,排放时间至少达到一小时

6 膜元件至少需使用六小时后方可用甲醛进行消毒。如在六小时内使用甲醛,可能会导致通量损失。

7 任何时候产水背压不得超过0.03MPa。每支压力容器的最大允许压降为50psi(0.34MPa)。1bar≈14.5psi1psi=6.895kPa=0.06895bar 欧美等国家习惯使用psi作单位

8 请用户使用与膜元件不兼容的化学药剂、润滑剂或保护液等.

GE纳滤膜元件使用注意事项

GE纳滤膜元件使用注意事项 膜元件的储存 GE纳滤膜元件在装入压力容器前,不可以打开密封包装,应放在阴凉干燥处,避免阳光直射。 不可受冻结冰。 膜元件的安装 ge纯水机在安装膜元件前,应保证系统已经完成清洁工作。 膜元件在装入系统时,要适当润滑O型圈和浓水密封圈,可使用硅基胶或50%甘油水溶液,禁止使 用油、油脂、凡士林或石油类化合物。 在将膜元件逐一装入压力容器时,在压力容器端板处通过加入垫圈的方法消除间隙,以防止在系统 启动和停机时膜元件在压力容器中蹿动,同时可降低膜元件外连接处渗漏的可能性。 新膜的冲洗 新系统在安装膜元件后要进行彻底冲洗,将系统中残留的杂质、溶剂和保护液完全清洗干净。 产水用于饮用时,需至少冲洗24小时。

系统的启动与运行 在系统启动之前,浓水阀门应保持完全开启。系统启动后可逐渐缓慢关闭浓水阀门,使系统达到设定的回收率。浓水阀关闭时严禁启动设备。 在系统运行期间,任何时候(包括系统的预启动、常规操作、冲洗及化学清洗)都不可关闭产水管路上的阀门。 在高压运行之前,通过软启动机构或变频调速进行低压冲洗以排出空气。 特别注意 保证给水浊度<1.0 NTU或SDI15<5,给水温度<45℃,进水中不含可能对膜造成物理及化学损伤的有害物质。 任何时候膜元件进水中的余氯含量不得超过0.05mg/L,否则将会导致膜元件不可恢复的氧化损坏。 维护保养 在正常运行一段时间后,膜元件会受到给水中可能存在的悬浮物或难溶物的污染。在标准条件下系统性能下降10%,或显然发生结垢或污堵时,应及时进行清洗。定期地进行水冲洗和化学加药清洗可恢复膜元件的性能,延长膜元件的使用寿命。

纳滤膜的结构以及原理

一纳滤膜原理及现代工业应用 纳滤膜的定义 透过物大小在1-10nm,膜表面分离层可能拥有纳米级(10nm以下)的孔结构,故习惯上称之为"纳滤膜"又叫"纳米膜"、"纳米管"。 纳滤膜工作原理 纳滤是在压力差推动力作用下,盐及小分子物质透过纳滤膜,而截留大分子物质的一种液液分离方法,又称低压反渗透。纳滤膜截留分子量范围为200-1000MWCO,介于超滤和反渗透之间,主要应用于溶液中大分子物质的浓缩和纯化。 纳滤膜概述 1. 纳滤系统多采用错流过滤的方式。错流方式避免

了在死端过滤过程中产生的堵塞现象:料液流经膜的表面,在压力的作用下液体及小分子物质透过纳滤膜,而不溶性物质和大分子物质则被截留; 2. 料液具有足够的流速可将被膜截留的物质从膜表面剥离,连续不断的剥离降低了膜的污染程度,因而可在较长的时间内维持较高的膜渗透通量。 3. 错流过滤是最有效、最可靠、最可以创造经济效益的膜分离手段。 4. 错流过程同时避免了在死端过滤(如板框压滤机、鼓式真空过滤机)过程中依靠滤饼层进行过滤的情况,分离发生在膜表面而不是滤饼层中,因而滤液质量在整个过程中是均一而稳定的。滤液的质量取决于膜本身,使生产过程完全处于有效的控制之中。 卷式纳滤膜的结构 卷式纳滤膜组件设计简单,填充密度大,内部结构为多个“膜袋”卷在一多孔中心管外形成,膜袋三边粘封,另一边粘封于多孔中心管上,膜袋内以多孔支撑材料形成透过物流道。膜袋与膜袋间以网状材料形成料液流道,料液平行于中心收集管流动,进入膜袋内的透过物,旋转着流向中心收集管,并由中心收集管流出。 二、系统操作规程

A. 系统启动前的准备工作 检查物料的供应是否正常。 检查所有的电器设备连接和接地是否完好。 检查所有的仪表是否完好。 检查所有的管道、阀门是否完好。 检查所有的泵的润滑。 进料前保证系统内充满水。 启动系统电源,点动所有的泵,检查泵的旋转方向是否正确。 B. 系统运行程序 1、打开系统进料管路阀门:进料罐底阀,保安泵进出口阀,过滤器进出口阀,输送泵泵进出口阀; 打开纳滤系统内相关阀门:循环泵出料阀,膜设备进料阀,膜设备出料阀,膜设备滤出液阀,打开浓缩液出口阀; 膜运行模式切换成恒流量模式; 启动保安泵泵,使系统保持相应压力,用料液充满膜系统。 打开输送泵进出阀,启动输送泵。 启动循环泵(依次1#,2#,3#,且待前一组到达相应流量再启动下一组泵),缓慢调节浓缩液出口阀,以达到需要的压力以及浓缩倍数。

GE纳滤膜 DL8040F介绍

GE纳滤膜DL8040F介绍 纳滤膜是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜。它是一种特殊而又很有前途的分离膜品种,它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。 详细描述:截留分子量为150-300道尔顿(中性有机分子),其优先截留二价和多价阴离子,对单价离子的截留率则与料液的组成和浓度相关。标准测试条件下,对硫酸镁截留率96%,是高通量的纳滤膜。 edi超纯水系统产品应用:酸净化,抗生素浓缩,酒精净化,有机物脱除,乳清脱盐,清洁剂去除,葡萄糖净化,染料浓缩、脱盐,重金属去除,电镀废水回收,多聚糖脱盐,糖类分馏,垃圾渗透液处理

备注: 1.GE公司纳滤膜可提供两种进水流道:(1)28mil菱形流道 (2)47mil平行流道。 2.GE公司个别纳滤膜元件的产水误差为15%。 3.GE公司可特别提供卫生级纳滤膜及连续工作温度最高为90℃的耐高温纳滤膜(DurthermTM NF)。 挥发性有机物(VOC)的去除 对饮用水中痕量挥发性有机物具有较高的去除率。 管道直饮水中的应用 纳滤可以截留二价以上的离子和其他颗粒,所透过的只有水分子和一些一价的离子(如钠、钾、氯离子)。纳滤可以用于生产直饮水,出水中仍保留一定的离子,并可降低处理费用。 应用领域 纳滤膜的应用范围很广泛,主要包括以下一些方面: 1、地下水除硬度; 2、地表水除有机物、色度; 3、油水分离; 4、乙二醇回收;

通用纳滤膜安装与调试注意事项

通用纳滤膜安装与调试注意事项

通用纳滤膜安装与调试注意事项 纳滤膜元件安装要求十分严格,如果安装不当会对膜元件造成损坏,那么我们应该如何正确安装纳滤膜元件呢?下面为大家详细说明纳滤膜元件安装顺序: 1、通常纳滤膜元件置于1%浓度的亚硫酸氢钠溶液中保存,首先应用纯水充分冲洗。 2、纳滤膜元件的给水侧有一个浓水密封圈、注意密封圈的安装方向是口朝上游张开。浓水密封圈的功能是保证原水全部流到膜元件内不发生旁流。原水自身流速会使浓水密封圈的开口朝压力容器内壁紧压密封。若密封圈的安装方向相反,原水不能密闭,造成一部分原水流到膜元件外侧,使膜表面流速降低,导致纳滤膜结垢,从而缩短膜的使用寿命。 3、确认O型圈安装在连接配件指定位置上。安装时要注意O型圈及连接件表面没有划伤或附着物。要注意不要将O型圈扭曲安装。若连接件发生泄漏,原水就会进入到产水中,会导致产水水质下降。安装在集水管上时,O型圈和集水管的表面用纯水、蒸馏水或甘油沾湿以便于安装。

4、卸下压力容器两侧的端板安装膜元件。将适配器安装在第一支膜元件的集水管浓水侧。然后将膜元件沿原水水流方向推进,装入压力容器内。 多支纳滤膜元件连续安装时,前一支膜元件完全进入膜壳之前,就要准备下一支膜元件与连接件连接。同时要注意不要让膜元件与压力容器边缘接触,以防产生擦伤,尽量平行推入压力容器中。 5、确认压力容器的适配器连接后,将浓水侧端板与膜壳连接。 6、完成浓水侧端板的安装后,应再次从进水侧向浓水侧推动膜元件,保证其完全紧密连接。然后再进行进水侧端板的安装,安装进水侧端板时应注意测量端板与适配器之间的间隙。如果有间隙,安装内径大于适配器外径的厚度为1/4寸- 1/寸的塑料垫片,直至使端板不能完全安装到位,此时取下一支垫片后再安装好端板即可。 以上就是为大家说明的纳滤膜元件安装顺序,希望对大家有所帮助。纳滤膜元件安装时一定要按照正确顺序安装,确保纳滤膜元件在安装时不会受到任何损伤。

纳滤膜的定义及应用

纳滤膜的定义及应用 资料来源:https://www.doczj.com/doc/c33126161.html,2012-4-13 纳滤( NF ) 膜早期称为松散反渗透( Loose RO ) 膜,是80年代初继典型的反渗透( RO ) 复合膜之后开发出来的。其准确定义到目前为止,学术界还没有一个统一的解释,这里暂表达为: NF膜介于RO与UF膜之间,对NaCL的脱除率在90%以下,RO膜几乎对所有的溶质都有很高的脱除率,但NF膜只对特定的溶质具有高脱除率;NF膜主要去除直径为1个纳米( nm ) 左右的溶质粒子,截留分子量为100~1000,在饮用水领域主要用于脱除三卤甲烷中间体、异味、色度、农药、合成洗涤剂,可溶性有机物,Ca、Mg等硬度成分及蒸发残留物质。 纳滤膜的应用 1、软化水处理 对苦咸水进行软化、脱盐是纳滤膜应用的最大市场。在美国目前已有超过40万吨/日规模的纳滤膜装置在运转,大型装置多数分布在佛罗里达半岛,其中最大的两套装置规模分别为3.8万吨/日( 1989年) 和3.6万吨/日( 1992年)。 2、饮用水中有害物质的脱除 传统的饮用水处理主要通过絮凝、沉降、砂滤和加氯消毒来去除水中的悬浮物和细菌,而对各种溶解性化学物质的脱除作用很低。随着水源的环境污染加剧和各国饮水标准的提高,可脱除各种有机物和有害化学物质的"饮用水深度处理"日益受到人们的重视。目前的深度处理方法主要有活性碳吸附、臭氧处理和膜分离。膜分离中的微滤(NF)和超滤(UF)因不能脱除各种低分子物质,故单独使用时不能称之深度处理。纳滤膜由于本身的性能特点,故十分适用于此用途的应用。美国食品与医药局曾用大型装置证实了纳滤膜脱除有机物、合成化学物的实际效果。日本也曾于1991~1996年组织国家攻关项目"MAC21"(Membrane Aqua Century21)开发膜法水净化系统。该项目的前三年侧重于微滤/超滤膜的固液分离,后三年重点开发以纳滤膜为核心,以脱除砂滤法不能脱除的溶解性微量有机污染物为目的的饮水深度净化系统。大量工业装置的运行实践表明,纳滤膜可用于脱除河水及地下水中含有三卤甲烷中间体THM(加氯消毒时的副产物为致癌物质)、低分子有机物、农药、异味物质、硝酸盐、硫酸盐、氟、硼、砷等有害物质。 3、中水、废水处理 中水一般指将大型建筑物(宾馆、写字楼、商场等)中排出的生活污水处理后用于厕所冲洗等非饮用再利用水,在中水领域的膜利用,日本作了很多的工作。纳滤膜在各种工业废水的应用也很多实例,如造纸漂白废水处理等。生活废水中,纳滤膜与生物处理(活性污泥)相结合也已进入实用阶段。 4、食品、饮料、制药行业

纳滤膜水处理设备的主要部件说明

纳滤膜水处理设备的主要部件说明 纳滤膜水处理设备是陶氏纳滤膜为主要组件,主要是以略宽松的结构,类似于陶氏8040反渗透膜水处理设备.纳滤膜被膜可以进行电吸附,高F离子的电性等可以删除,与纳滤孔径、大分子不能通过,自由水分子的一部分氯化钠,一部分钙镁离子更小。包含多水处理器的优势,避免二次污染,可以构建一个健康的饮水方式。 陶氏纳滤膜可在低压(相对反渗透)下,对自来水进行软化和适度脱盐,而且还可脱除各种有、无机物质,(尤其是致癌物质),微生物和溶解有机物,可称之为"多面手",因而日益受到青睐。 陶氏纳滤膜在饮用水制备中的作用 (1)、以地表水为水源的自来水,经纳滤机后,可除去水中、色度、异味、三氯甲烷前体物(加氯消毒时的副产物,为致癌物质),农药,化肥和总有机炭, (2)、以地下水为水源的自来水,经纳滤机后,可除去水中硬度成份,硫化物,硫酸盐,硝酸盐,氟化物,硼化物,砷化物等有害物质。 (3)、自来水深度处理,经纳滤机后,可除去水中盐份,细菌、病毒和热源。 陶氏纳滤膜元件水处理设备的主要应用范围 (1)、咸水除盐沿海地区的自来水往往带有咸味。如:上海市南汇区就是如此。其盐分不高,约几百~2千mg/l,但常饮此水易患高血压,冠心病,此水泡茶不香,烹调无味。需进行深度处理。 (2)、井水脱硬许多地区的自来水,以深井水为水源,故水的硬度较高。烧开水时壶面、壶低常有白,灰等色结垢或沉淀。人们常饮此水易得心脏病,脑血管合肾结石等疾病。好茶叶品不出美味,变得淡而苦涩。有时井水还出现有毒金属汞、镉、砷等,自来水厂工艺亦无法解决,需进行深度处理。 (3)、除微生物在河水中有许多病菌、隐球菌属孢子,氯气消毒不能完全杀死。在美国为此曾发生事故造成40万人感染痢疾病,所以美国以此事故为契机,开始采用过滤陶氏膜技术。 (4)、提高水质我国自来水厂的水源,常常受工业废水,生活污水和农药、化肥污染,水厂出水水质不能保证,需进行深度处理。 随着水环境污染日益恶化和改善国家饮用水标准,陶氏纳滤膜应该去除各种有机物和有害化学物质“饮用水深度处理”是越来越被人们关注。深度处理方法目前主要有:活性炭吸附、臭氧氧化、膜分离。

对于纳滤膜分离技术的探讨

对于纳滤膜分离技术的探讨 摘要:本文主要介绍了纳滤膜分离技术的原理,特点。阐述了当前纳滤在国内外的发展情况以及介绍了有关纳滤膜的具体应用并对今后纳滤技术发展进行了展望。 关键词:纳滤膜;反渗透;纳滤分离;纳滤技术;应用前景 正文: 纳滤膜的研究始于20世纪70年代,是由反透膜发展起来的,早期称为“疏松的反渗透膜”,将介于反渗透和超滤之间的膜分离技术称为“杂化过滤”。直到20世纪90年代,才统一称为纳滤。纳滤技术是为了适应工业软化水的需求及降低成本而发展起来的一种新型的压力驱动膜过程。纳滤膜的截留分子量在200~2000 之间,膜孔径约为1 nm左右,适宜分离大小约为1 nm的溶解组分,故称为“纳滤”。纳滤膜分离在常温下进行,无相变,无化学反应,不破坏生物活性,能有效的截留二价及高价离子、分子量高于200 的有机小分子,而使大部分一价无机盐透过,可分离同类氨基酸和蛋白质,实现高分子量和低分子量有机物的分离,且其成本比传统工艺还要低。因而被广泛应用于超纯水制备、食品、化工、医药、生化、环保、冶金等领域的各种浓缩和分离过程。我国从20世纪80年代后期就开始了纳滤膜的研制,在实验室中相继开发了CA-CTA纳滤膜S-PES涂层纳滤膜和芳香聚酰胺复合纳滤膜,并对其性能的表征及污染机理等方面进行了试验研究,取得了一些初步的成果。但与国外相比,我国纳滤膜的研制技术和应用开发都还处于起步阶段。

纳滤的原理: 纳滤是介于反渗透和超滤之间的一种膜分离技术,它可以除去直径为1 nm 左右的颗粒,截留相对分子质量界限为200~1000,对一价盐的脱除率低于90%,对二价盐的脱除率高于90%由此可认为纳滤膜的孔径接近于反渗透膜,可称为无孔膜。纳滤膜大多为荷电膜,纳滤的原理为溶解—扩散模式,对溶质的分离由化学势梯度和电势梯度共同控制。 纳滤膜的特点 由于纳滤膜特殊的孔径范围和制备时的特殊处理( 如复合化、荷电化等) ,使其具有较特殊的分离性能。纳滤膜的一个很大特征是膜表面或膜中存在带电基团,因此纳滤膜分离具有两个特性,即筛分效应和电荷效应。分子量大于膜的截留分子量的物质,将被膜截留,反之则透过,这就是膜的筛分效应; 膜的电荷效应又称为Donnan效应,是指离子与膜所带电荷的静电相互作用。对不带电荷的分子的过滤主要是靠位阻效应即筛分效应,纳滤膜表面分离层可以由聚电解质构成,膜表面带有一定的电荷,大多数纳滤膜的表面带有负电荷,它们通过静电相互作用,阻碍多价离子的渗透,这是纳滤膜在较低压力下仍具有较高脱盐性能的重要原因。因此,作为一种新型的分离膜,同传统的膜分离过程相比,纳滤膜具有以下的特点:(1)具有纳米级孔径;(2)操作压力低;(3)较好的耐压密性和较强的抗污染能力;(4)可取代传统处理过程中的多个步骤,因而比较经济。纳滤技术填补了超

超滤纳滤膜处理系统要点

技术协议 ****污水处理有限公司污水处理及中水回用工程 超滤及纳滤设备 供货与安装 买方: 卖方: 2009年12月28日

综合污水处理厂及中水回用工程 超滤、纳滤设备技术规格书 买方: 卖方: 一、工程概述 本工程是将回用水中的一部分(2万吨/天)水进入膜过滤系统进一步处理,使出水水质达到文化纸的用水标准的中水回用水处理系统。根据综合污水处理厂提供的原水水质及产水要求,结合我公司多年的中水处理经验,制定本方案。 二、设计依据 1)进水水质、水量 本中水回用标段的进水水质为: PH:7~8,COD≤100mg/L,BOD5≤30mg/L,色度≤50倍,SS≤10mg/L,电导率≤7000μs/cm,Cl-≤1200mg/L,Na≤800mg/L,硅酸根≤19.0mg/L,磷酸根≤11.9 mg/L,硬度≤20mmol/L, 碱度≤9.6mmol/L。 进水水量为:20000m3/d。 2)出水水质 本中水回用标段需要达到的水质标准为: PH:7~8,COD≤30mg/L,BOD5≤10mg/L,色度≤2倍,SS≤5mg/L,电导率≤2000μs/cm,Cl-≤300mg/L,硬度≤1mmol/L,碱度≤5mmol/L,3)回收率

本中水回用的回收率不低于60%。 三、工艺流程及主要设备功能阐述 3.1工艺流程描述 工艺流程框架图 综合污水处理厂的废水经过处理后一部分达标排放,其余部分自流进入UF进水池。废水通过UF进水泵提升进入自清洗过滤器,经过自清洗过滤器去除较大尺寸悬浮固体后进入UF装置。UF 装置可以去除水中的细小悬浮固体、胶体、细菌、少量大分子有机物等,保证后续NF装置的正常运行。UF出水进入中间水箱。中间水箱的水通过提升泵泵入保安过滤器,保安过滤器作为NF装置的保护措施。保安过滤器出水经过高压泵增压后进入NF组件,能够去除水中的大部分有机物、无机盐、色度等,出水完全可以达到水质标准。 由于原水的硬度较高,进过纳滤浓缩后,容易在纳滤膜表面结垢,故在系统中设有酸及阻垢剂添加系统,以确保纳滤系统的有效安全运行。纳滤产水的PH降低,采用添加氢氧化钠进行调节。 3.2设备主要功能

陶氏FILMTECTMNF90-400纳滤膜元件技术全参数

陶氏FILMTECTM NF90-400纳滤膜元件 技术参数 性能特点 陶氏FILMTEC?NF90-400 纳滤元件面积大,产水量高。特别适用于高度脱除盐分,硝酸盐,铁,杀虫剂、除草剂和THM 前躯物等有机化合物。NF90-400膜面积大,所需净驱动压低,使得它在很低的运行压力下就可有效地脱除这些杂质。 产品规范 操作极限

重要信息 在膜系统准备投入运行时,为了防止给水过流或水力冲击对膜元件的破坏,正确启动反渗透水处理系统是十分必要的。遵循正确的启动顺序有助于确保系统运行参数符合设计规范,从而使系统水质和水量达到既定的设计目标。在膜系统初次启动开机程序前,应完成膜系统的预处理系统调试、膜元件的装填、仪表的标定及其他系统检查。如需获取更多信息,请参考标题为“启动顺序”的应用文献(文件号:609-02077)。 操作指南 在启动、停机、清洗或其他过程中,为防止潜在的膜破坏,应避免卷式元件产生任何突然的压力或错流流量变化。启动过程中,我们推荐按照下述过程从静止状态逐渐投入运行状态: ?给水压力应该在30~60 秒的时间范围内逐渐升高。 ?升至设计错流流速值应该在15~20 秒内逐渐到达。 ?第一小时内的产品水应该放掉不用。

通用信息 ?元件一旦润湿,就应该始终保持湿润。 ?如用户没有严格遵循本规范设定的操作限值和导则,有限质保将失效。 ?系统长期停机时,为了防止微生物滋长,建议将膜元件浸入保护液中。标准的保存液含1.5%(重量)的亚硫酸氢钠(食品级)。 ?用户应该对使用不兼容的化学药品和润滑剂对元件造成的影响负责。 ?单根压力容器的?大允许压降是50psi(3.4 bar)。 ?任何时候都要避免产品水侧产生背压。 关键词:陶氏膜,陶氏纳滤膜,陶氏NF90-400膜

纳滤膜处理系统操作手册

纳滤膜处理系统操作手册 开机运行流程: 1.阀门控制: 1#阀(全开)-11#阀(2圈)-12#阀(全开)-9#阀(1圈)-10#阀(全开) 2.电控柜控制: 接通电源选择自动运行模试,电控柜上指示灯: 增压泵-计量泵(阻垢剂加药箱) -循环泵-高压泵。(在选择自动运行模试后对过滤器、增压泵、高压泵、循环泵进行排气)4.浓水和产水排放流量控制: 等到所有泵都打开运行后调节浓水排放阀及调节电控柜上高压泵变频器旋钮(每调节一点停留10秒观测流量),让浓水排放流量达到1.5m3/h,产水排放流量达到4.5m3/h。 注:如高压泵变频器旋钮频率调节到100时,产水流量还没有达到4.5m3/h,则要开大11#阀(每次一圈),开大11#阀之前把高压泵变频器旋钮频率调节到50以下。 系统每次停机及停机后冲洗流程: 1.电控开关调到停 等待四台泵指示灯全灭,灯灭顺序: 高压泵-循环泵-增压泵-计量泵(阻垢剂加药箱) 2.关闭原水箱进水阀门,打开产水箱进水阀(二个),浓水直排阀,浓水手动排放阀。 3.电控开关调节到手动,增压泵开关调节到手机。 4.冲洗10-15(分钟)或者产水箱内水剩2-3格。 5.关闭增压泵后立即关闭所有阀门。 6.关闭电源 清洗(化学)及化学药剂残留冲洗: 清洗时用NaOH及HCI各一次 1.打开2#阀、4#阀、6#阀、7#阀、13#阀,运行模试选择手动,手动打开增压泵,循环10-20分钟。 2.清洗浸泡循环:手动关闭增压泵,立即关上2#阀、6#阀

7#阀,浸泡1小时后。打开2#阀、6#阀7#阀,手动打开增压泵循环。共循环浸泡二次。 3.化学药剂残留清洗: 关闭4#阀,打开2#阀、3#阀、5#阀、6#阀,从产水箱清洗(产水或自来水都可),手动打开增压泵。清洗标准达到取样口出水PH值达和产水箱水样的PH值。 4.清洗完毕后立即关闭所有阀门。 长时间停机保护: 如果长时间停机保护需给纳滤系统注入保护液,注入方法可用化学清洗中的循环步骤来实现。 纳滤处理系统使用注意事项: 1.在开泵前检查进水口阀门和出水口阀门是否有被打开。2.在运行过程中,一定时间后产水流量下降,首先调节电控柜旋钮,在调节到100时还是没有达到产水4.5m3/h明,先将旋钮调节到50以下,然后调节11号阀门,开大1圈左右,然后再调节旋钮,逐渐开大旋钮,看流量是否达到要求,如果还没有达到再执行以下操作,将11号阀门开大一点。 3.进水的PH值一定要为弱酸性,进膜前必须杀菌。 4.在运行时,注意泵和过滤器的排气。 5.运行期间记录一些数据: 1.进水PH值,电导率,COD,温度(进水为MBR出水) 2.产水电导率,COD,温度(其中,进水PH,产水电导率,COD,温度可以由设备上的表读出) 3.进水压力,浓水压力,产水流量,浓水流量(早中晚读数三次)(再调节后也要读数一次并记录) 6.冬天停机前必须作防冻操作,所有阀门必须是闭合状态(纳滤处理系统注入保护液),水箱里的水必须放空。 7.长期停机后第一次开机必须有冲洗操作(可用自来水)。8.原水箱无水停机后电控柜必须进行重启操作,就是将全部按钮打到关闭状态,(变频按钮可以不动),开机按开机操作即可。

陶氏FILMTECTM NF90-400纳滤膜元件技术参数

陶氏FILMTECTM NF90-400纳滤膜元件技术 参数 性能特点 陶氏FILMTEC? NF90-400 纳滤元件面积大,产水量高。特别适用于高度脱除盐分,硝酸盐,铁,杀虫剂、除草剂和THM 前躯物等有机化合物。NF90-400膜面积大,所需净驱动压低,使得它在很低的运行压力下就可有效地脱除这些杂质。 产品规范 操作极限

重要信息 在膜系统准备投入运行时,为了防止给水过流或水力冲击对膜元件的破坏,正确启动反渗透水处理系统是十分必要的。遵循正确的启动顺序有助于确保系统运行参数符合设计规范,从而使系统水质和水量达到既定的设计目标。在膜系统初次启动开机程序前,应完成膜系统的预处理系统调试、膜元件的装填、仪表的标定及其他系统检查。如需获取更多信息,请参考标题为“启动顺序”的应用文献(文件号:609-02077)。 操作指南 在启动、停机、清洗或其他过程中,为防止潜在的膜破坏,应避免卷式元件产生任何突然的压力或错流流量变化。启动过程中,我们推荐按照下述过程从静止状态逐渐投入运行状态: ? 给水压力应该在30~60 秒的时间范围内逐渐升高。 ? 升至设计错流流速值应该在15~20 秒内逐渐到达。 ? 第一小时内的产品水应该放掉不用。 通用信息

? 元件一旦润湿,就应该始终保持湿润。 ? 如用户没有严格遵循本规范设定的操作限值和导则,有限质保将失效。 ? 系统长期停机时,为了防止微生物滋长,建议将膜元件浸入保护液中。标准的保存液含1.5%(重量)的亚硫酸氢钠(食品级)。 ? 用户应该对使用不兼容的化学药品和润滑剂对元件造成的影响负责。 ? 单根压力容器的?大允许压降是50psi(3.4 bar)。 ? 任何时候都要避免产品水侧产生背压。 关键词:陶氏膜,陶氏纳滤膜,陶氏NF90-400膜

纳滤膜元件在饮用水深度净化过程中的应用

纳滤膜元件在饮用水深度净化过程中的应用

纳滤膜元件在饮用水深度净化过程中的应用 随着人们对饮用水安全越来越重视,饮用水深度净化处理备受关注。纳滤膜元件主要是利用膜分离技术的筛分过程,以膜两侧的压力差为驱动力,以纳滤膜为过滤介质,在一定的压力下,当原液流过膜表面时,纳滤膜表面密布的许多细小的微孔只允许水及小分子物质通过而成为透过液,而原液中体积大于膜表面微孔径的物质则被截留在膜的进液侧,成为浓缩液,因而实现对原液的净化、分离和浓缩的目的。纳滤膜元件可有效净化水质,为人们的饮用水安全提供保障。 自来水先进入纳滤膜元件管内,在水压差的作用下,膜表面上密布的许多微孔只允许水分子、有益矿物质和微量元素透过,成为净化水。而细菌、铁锈、胶体、泥沙、悬浮物、大分子有机物等有害物质则被截留在纳滤膜管内,在纳滤膜进行冲洗时排出。纳滤膜使用一段时间后,被截留下来的有害物质会依附在纳滤膜元件的内表面,使纳滤膜元件的产水量逐渐下降,尤其是自来水水质污染严重时,更易引起纳滤膜元件的堵塞,定期对纳滤膜元件进行冲洗可有效恢复膜的产水量。将成束的纳滤膜丝经过浇铸工艺后制成纳滤芯,滤芯由ABS外壳、外壳两端的环氧封头和成束的纳滤膜丝三部分组成。环氧封头填充了膜丝与膜丝之间的空隙,形成原液与透过液之间的隔

离,原液首先进入纳滤膜孔内,经纳滤膜过滤后成为透过液,防止了原液不经过滤直接进入到透过液中。 以上就是为大家介绍的纳滤膜元件在饮用水深度净化过程中的应用,希望对大家有所帮助。纳滤膜元件在饮用水深度净化过程中的有效应用,帮助人们解决了饮用水安全问题,为改善人们生活品质贡献一份力量。

GE纳滤膜日常使用注意事项

GE纳滤膜日常使用注意事项 膜元件的储存 GE纳滤膜在装入压力容器前,不可以打开密封包装,应放在阴凉干燥处,避免阳光直射。 不可受冻结冰。 膜元件的安装 ge纯水机在安装膜元件前,应保证系统已经完成清洁工作。 膜元件在装入系统时,要适当润滑O型圈和浓水密封圈,可使用硅基胶或50%甘油水溶液,禁止使 用油、油脂、凡士林或石油类化合物。 在将膜元件逐一装入压力容器时,在压力容器端板处通过加入垫圈的方法消除间隙,以防止在系统 启动和停机时膜元件在压力容器中蹿动,同时可降低膜元件外连接处渗漏的可能性。 新膜的冲洗 新系统在安装膜元件后要进行彻底冲洗,将系统中残留的杂质、溶剂和保护液完全清洗干净。 产水用于饮用时,需至少冲洗24小时。

系统的启动与运行 在系统启动之前,浓水阀门应保持完全开启。系统启动后可逐渐缓慢关闭浓水阀门,使系统达到设定的回收率。浓水阀关闭时严禁启动设备。 在系统运行期间,任何时候(包括系统的预启动、常规操作、冲洗及化学清洗)都不可关闭产水管路上的阀门。 在高压运行之前,通过软启动机构或变频调速进行低压冲洗以排出空气。 特别注意 保证给水浊度<1.0 NTU或SDI15<5,给水温度<45℃,进水中不含可能对膜造成物理及化学损伤的有害物质。 任何时候膜元件进水中的余氯含量不得超过0.05mg/L,否则将会导致膜元件不可恢复的氧化损坏。 维护保养 在正常运行一段时间后,膜元件会受到给水中可能存在的悬浮物或难溶物的污染。在标准条件下系统性能下降10%,或显然发生结垢或污堵时,应及时进行清洗。定期地进行水冲洗和化学加药清洗可恢复膜元件的性能,延长膜元件的使用寿命。

纳滤膜及其应用

纳滤膜及其应用 摘要:纳滤膜是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能 性的半透膜。它是一种特殊而又很有前途的分离膜品种,它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。纳滤介于反渗透和超滤之间由于其截留的颗粒比超滤小些,其透过率比反渗透大些操作压力也不太高近十几年来发展迅速是当前膜分离技术与开发的热门研究课题之一。本文综述了纳滤膜的特性、分离机理、研究现状及其在各方面的应用。 关键词:纳滤;纳滤膜;分离机理;制备方法;应用 1、纳滤及纳滤膜的概述 纳滤(NF)是20世纪80年代中期发展起来的介于超滤和反渗透之间的、同属于压力驱动的新型膜分离技术,适宜于分离相对分子质量在200 Da以上、分子大小约为1 nm的溶解组分,一般认为其截留相对分子质量在200~1 000之间,对NaCl的截留率一般为40%~90%,对二价或高价离子的截留率高达99%。由于操作压力一般小于1.5 MPa,也被称为低压反渗透膜或疏松的反渗透膜。纳滤膜的孔径通常为1~10 nm,同时它是带电荷的,荷电纳滤膜可通过静电斥力排斥溶液中与膜上所带电荷相同的离子,通过静电引力吸附与所带电荷相反的离子。因此,荷电膜对物质的分离性能主要是基于电荷效应和膜的纳米级微孔的筛分效应。它的过滤范围介于反渗透和超滤之间,推动了膜技术及相关应用领域的发展,并已在石化、生化和医药、食品、造纸、纺织印染等领域及水处理过程中得到广泛应用[1]。 纳滤膜的一个很大特征是膜上或者膜中存在带电基团,因此纳滤膜分离具有两个特性,即筛分效应和电荷效应。分子量大于膜的截留分子量的物质,将被膜截留,反之则透过,这就是膜的筛分效应。膜的电荷效应又称为Do nnan效应,是指离子与膜所带电荷的静电相互作用。纳滤膜表面分离层可以由聚电解质构成,膜表面带有一定的电荷,大多数纳滤膜带有负电荷。它们通过静电相互作用,阻碍多价离子的渗透,这是纳滤膜在很低压力下仍具有较高脱盐性能的重要原因。纳滤膜的特点主要体现在以下几方面[6]: (1) 对不同价态离子截留效果不同,对单价离子的截留率低,对二价和高价离子的截留率明显高于单价离子。对阴离子的截留率按下列顺序递增: NO-3,Cl-,O H-,SO2-4 ,CO2 -3。对阳离子的截留率按下序递增: H+,Na+,K+,Mg2 +,Ca2 +,Cu2 +。 (2) 对离子截留受离子半径影响,在分离同种离子时,离子价态相等,离子半径越小,膜对该离子的截留率越小;离子价数越大,膜对该离子的截留率越高。(3) 对疏水型胶体油、蛋白质和其它有机物有较强的抗污染性,能有效去除许多

工业用纳滤膜安装顺序说明

工业用纳滤膜安装顺序说明

工业用纳滤膜安装顺序说明 纳滤膜元件安装要求十分严格,如果安装不当会对膜元件造成损坏,那么我们应该如何正确安装纳滤膜元件呢?下面为大家详细说明纳滤膜元件安装顺序: 1、通常纳滤膜元件置于1%浓度的亚硫酸氢钠溶液中保存,首先应用纯水充分冲洗。 2、纳滤膜元件的给水侧有一个浓水密封圈、注意密封圈的安装方向是口朝上游张开。浓水密封圈的功能是保证原水全部流到膜元件内不发生旁流。原水自身流速会使浓水密封圈的开口朝压力容器内壁紧压密封。若密封圈的安装方向相反,原水不能密闭,造成一部分原水流到膜元件外侧,使膜表面流速降低,导致纳滤膜结垢,从而缩短膜的使用寿命。 3、确认O型圈安装在连接配件指定位置上。安装时要注意O型圈及连接件表面没有划伤或附着物。要注意不要将O型圈扭曲安装。若连接件发生泄漏,原水就会进入到产水中,会导致产水水质下降。安装在集水管上时,O型圈和集水管的表面用纯水、蒸馏水或甘油沾湿以便于安装。

4、卸下压力容器两侧的端板安装膜元件。将适配器安装在第一支膜元件的集水管浓水侧。然后将膜元件沿原水水流方向推进,装入压力容器内。 多支纳滤膜元件连续安装时,前一支膜元件完全进入膜壳之前,就要准备下一支膜元件与连接件连接。同时要注意不要让膜元件与压力容器边缘接触,以防产生擦伤,尽量平行推入压力容器中。 5、确认压力容器的适配器连接后,将浓水侧端板与膜壳连接。 6、完成浓水侧端板的安装后,应再次从进水侧向浓水侧推动膜元件,保证其完全紧密连接。然后再进行进水侧端板的安装,安装进水侧端板时应注意测量端板与适配器之间的间隙。如果有间隙,安装内径大于适配器外径的厚度为1/4寸- 1/寸的塑料垫片,直至使端板不能完全安装到位,此时取下一支垫片后再安装好端板即可。 以上就是为大家说明的纳滤膜元件安装顺序,希望对大家有所帮助。纳滤膜元件安装时一定要按照正确顺序安装,确保纳滤膜元件在安装时不会受到任何损伤。

反渗透、纳滤膜及其在水处理中的应用

反渗透、纳滤膜及其在水处理中的应用 1. 反渗透及其发展 以高分子分离膜为代表的膜分离技术作为一种新型的流体分离单元操作技术,三十年来取得了令人瞩目的巨大发展。据有关文献估计,今天的分离膜世界市场规模已达到每年20亿美元以上。表1和图1分别给出了按分离原理和按被分离物质的大小区分的分离膜种类,从中可以看出,除了透析膜主要用于医疗用途以外,几乎所有的分离膜技术均可应用石油、天然气及石油化工行业中去。反渗透和纳滤作为主要的水及其它液体分离膜之一,在分离膜领域内占重要地位。 表1 图1 1953年美国佛罗里达大学的Reid等人最早提出反渗透海水淡化,1960年美国加利福尼亚大学的Loeb和Sourirajan研 制出第一张可实用的反渗透膜。从此以后,反渗透膜开发有了 重大突破。膜材料从初期单一的醋酸纤维素非对称膜发展到用

表面聚合技术制成的交联芳香族聚酰胺复合膜。操作压力也扩展到高压( 海水淡化) 膜,中压( 醋酸纤维素) 膜,低压( 复合) 膜和超低压( 复合) 膜。80年代以来,又开发出多种材质的纳滤膜。 膜组件的形式近年来也呈现出多样化的趋势。除了传统的中空纤维式、卷式、管式及板框式以外,又开发出回转平膜、浸渍平膜式等。工业上应用最多的是卷式膜,它占据了绝大多数陆地水脱盐和越来越多的海水淡化市场。中空纤维膜在海水淡化应用中仍占有很高的份额。今天世界上反渗透、纳滤膜水处理装置的能力已达到每天数百万吨。目前世界最大的反渗透苦咸水淡化装置为位于美国亚利桑拿州的日产水量为28万吨的运河水处理厂,最大的反渗透海水化装置,位于沙特阿拉伯,日产水量为12.8万吨。最大的纳滤脱盐软化装置位于美国佛罗里达州,日产水量为3.8万吨。 2. 国内反渗透膜及其应用 我国从60年代中期开始研制反渗透膜,与国外起步时间相距不远,但由于原材料及基础工业条件限制,生产的膜元件性能偏低,生产成本高,还没有形成规模化生产。相比而言,我国的超滤、微滤膜研制虽晚于反渗透,始于70年代,但目前已发展到数百个生产厂。虽然有品种少、质量、性能不够完善等问题,但因价格低廉,不仅有效地阻挡了国外同类产品的大量流入,而且也扩大了应用范围。 国内反渗透应用始于70年代后期,最早多限于电子、半导体纯水,80年代以后逐渐扩大到电力及其它工业,90年代起在饮用水处理方面获得普及,现在反渗透已进入到家庭饮用纯水。最近三年是反渗透应用大发展阶段。根据保守的估计,各种反渗透膜元件1997年国内销售额在1~1.5亿人民币左右。随着国内几条引进行生产线的陆续开工生产,预计今后国产反渗透膜的市场份额会有上升。纵观国内反渗透应用市场,有以下几个特点: 2.1 大型反渗透装置集中于锅炉补给水用途 据不完全统计,我国已建成和在建的100吨/小时以上的反渗透装置已超过50套,但除少数电子等行业以外,大多数都集中于锅炉补给水用途。最早是火力发电厂,后来扩展到炼油、石化、化肥、化工等行业。其中最大规模为600吨/小时,估计本世纪内会出现超过1000吨/小时的超大型反渗透装置。国内在此领域已积累了丰富的设计、施工和运行经验,现国内承建

GE纳滤膜DURASLICK NF 8040简介

GE纳滤膜DURASLICK NF 8040简介 介绍: 纳滤膜是允许溶剂分子或某些低分子量溶质或低价离子透过的一种功能性的半透膜。它是一种特殊而又很有前途的分离膜品种,它因能截留物质的大小约为纳米而得名,它截留有机物的分子量大约为150-500左右,截留溶解性盐的能力为2-98%之间,对单价阴离子盐溶液的脱盐低于高价阴离子盐溶液。被用于去除地表水的有机物和色度,脱除地下水的硬度,部分去除溶解性盐,浓缩果汁以及分离药品中的有用物质等。 详细描述:DuraslickTM是针对易导致污堵的苦咸水而设计的新一代膜元件。Duraslick 采用了新型三层复合膜技术,其中中间层为专利层,该层提高了膜表面的光滑度和氯化钠的去除率。 独立研究表明,edi高纯水设备对于水质较差的进水,Duraslick NF膜元件的脱盐率优于标准聚酚胺卷式膜元件的脱盐率。纳滤系统中使用膜元件,可以减少污堵、降低能耗、延长膜的使用寿命和清洗间隔时间,延长清洗时间间隔也意味着降低了化学药品费用。 操作和设计参数 进水浊度<1NTU,进水SDI<5

膜元件尺寸和重量 备注: 1.产水量和脱盐率的测试条件:MgSO4溶液浓度2,000mg/L,操作压力100psi(690KPa)、温度77℉(25℃)、pH7.5、回收率15%、运行24小时后测试。 2.单支膜元件的通量可能在-15%—+25%的范围内变化。 应用领域 纳滤膜的应用范围很广泛,主要包括以下一些方面: 1、地下水除硬度; 2、地表水除有机物、色度; 3、油水分离; 4、乙二醇回收; 5、硫酸铜回收; 6、有机、无机液体分离、浓缩; 7、染料提纯、浓缩、脱盐;

纳滤操作手册

纳滤、反渗透系统 操作手册

目录

1.纳滤、反渗透膜简介 纳滤NF:纳滤介于反渗透膜和超滤膜之间,约150~1000道尔顿。此外,由于其表面分离层由聚电解质所构成,故对不同价态的粒子存在Donnan效应,对无机盐有一定截留率,约40~90%。纳滤对二价离子的截留率比对一价的高,在渗滤液中优先脱色。 NF的作用:主要是去除超滤单元不能去除的不可降解有机物、部分总氮、色度、二价离子等。 反渗透 RO:反渗透是最精密的膜法液体分离技术,它能阻挡所有溶解性盐及分子量大于100 的有机物,但允许水分子透过,脱盐率一般大于98%。它们广泛用于海水及苦咸水淡化,锅炉给水、工业纯水及电子级超纯水制备,饮用纯净水生产,废水处理及特种分离等过程 RO的作用:实际运行过程中若原水的C/N比不能满足去除总氮的要求,外加碳源有没有及时供给时,因硝酸盐氮的影响 NF出水总氮就不能达标,这时需要有一最后把关单元,一般采用 RO处理单元,RO单元可保证出水总氮、COD等全部指标达标 2. 过滤机理 纳滤、反渗透膜具有以下三种特别的机能。 (1)过滤机能:半透膜中有众多的微孔以便水分子通过。这些微孔的直径为微米,与水分子的直径相当。最小的细菌和病毒的直径分别是和微米。杀虫剂666的直径约为微米。因而,这些污染物和其它生物污染物以及众多的有机污染物均不能通过此半透膜,而与纯水分离。 盐类在水中是以水合离子形式存在的,而这些水合离子的体积一般比水分子大10-25倍,因此,除了以上提及的电排斥机能外,膜也可以通过滤机能除去溶解的盐类。 (2)自我清洗机能:一般的滤水器在除去污染物的同时,也将这些污染物留在了滤水器中。在此后过滤的水都要经过这些污染物,从而对水产生再次污染。同时,细菌也会在滤水器中繁殖,水产生微生物再污染。与此不同,半透膜在净水过程中将污染物全部留在被排除的浓水中,以实现自我清洗机能。因此,所得净水就更加可靠,净水器件的寿命也更长。

纳滤膜原理及使用系统介绍重点

《膜科学与技术》刊3周年专刊创O第3卷1式膜两端加上Ag—Ag1片式电极测量电位差,C碟并提出了相应的理论用于解析实验结果,得管式获还处于起步阶段.在跨膜电位的模型化方面,目前仅有少部分研究者使用非平衡热力学模型[7、SM模型_]1]DP11以及ES模型[。n]等做出了理论研究.而在跨膜电位的组成方面,问题在于对流电位与膜电位所占的比例的影响因素,以及支撑层的对流电位是否能忽略.BnvneE使用微孔聚砜膜作为复合的反渗eaet等透膜的支撑层的替代物,过测量聚砜膜两端的跨通膜电位来判断支撑层的电位对总跨膜电位的贡献.实验表明,撑层贡献低于3,主要是由于支撑支这层的水力阻力相对于分离层要低得多.rscuYaohhk等E从非平衡热力学的角度出发,到了跨膜电n]得位的表达式,提出跨膜电位随透过通量的非线性并关系是由膜电位以及支撑层的对流电位导致的.膜的Zt-电位等相关信息.ea而后由于切向流动电位的获取较为方便,且其解析也相对简单,研究者使用切向流动电位测量解析

得到的膜表面电荷密度作为参数进行分离性能的模型研究_’ 。除了膜的分1。.。。离性能和动电性质研究外,向流动电位也可进行 切膜污染研究.主要是因为当膜受到污染时,面的这表离子会被污染层屏蔽,而得到与干净膜表面不同从的电荷信息.S如DS清洗剂在纳滤膜表面的吸附会造成Zt电位的变化[1污染物的增加会使得膜ea1,1]电荷逐渐被屏蔽,e电位绝对值变小_]Zta_.1 33跨膜电位.膜电位是在零通量的情况下测量的,时膜内此部的溶液浓度分布与实际纳滤过程中溶液的浓度分布是不相同,而纳滤膜的带电性质是与溶液浓度相关的,因此膜电位获得的结果并不能真正反映纳滤Syzk等口坝0zmcyH在分离实验的基础上根据DPSM模型获得了相关参数,理论上预测了跨膜电位随从通量的关系,与实验结果进行了对比,并结果表明支撑层的影响并不能忽略.Tu等_0则通过结合拓展1¨的Nentlnk方程与非平衡热力学,立了双rs-Pac建层模型,而可以直接获取分离层和支撑层的电位从膜在纳滤过程中的性质,而仅能从一种类平衡的角度上研究纳滤膜的荷电性质,纳滤膜的传递机理对研究意义较小.而切向流动电位获取的是膜表面的电荷密度,有研究者指出,膜体内和膜表面的性质是存在差异的口]因此切向流动电位的结果也不能∞,真正反映纳滤过程中纳滤膜的带电性质对溶质的分离性能的影响.膜电位是指在过滤过程中,两侧跨膜产生的电位差,被称为压力诱导电位(rsue也Pesr—idcdptni1E。]是过滤电位(irtnnueoet)n¨或aFlaito信息,从而预测纳滤膜的结构.4结论与展望综上所述,最早用于描述中性溶质在纳滤膜中的分离性能是基于Fry提出的连续流体动力学模er型,最初用于描述离子在纳滤膜中传递过程的模而型是基于非平衡热力学得出的现象学方程.随后一ptni)由于压力差和浓度差的同时作用,膜oet1.a跨电位主要是由三种电位组成的,即对流电位(o—Cnvcinptni)扩散电位(iuinptni1和et

GE纳滤膜 HL2540TF简介

GE纳滤膜HL2540TF简介 GE(通用电气)基础设施集团水处理与工艺过程处理公司是GE最新的增长引擎之,这家世界领先的水净化和流体处理公司是全球唯一提供从膜元件﹑膜处理整机﹑滤芯﹑EDI(连 续电除离子)﹑家用饮用水系统以及控制阀﹑高压泵和仪表等全套高科技纯水产品的制造商。 通用电气纯水膜的过滤范围涵盖整个过滤图谱:从反渗透(RO)﹑纳滤(NF)﹑超滤(UF) ﹑微滤(MF)到微粒过滤。 GE 纳滤膜元件: HL2540FF 、HL2540TF、HL4040FF 、HL4040TF、HL8040F、 HL8040N 、HL8040F-400 详细描述:纳滤介于超滤和反渗透之间。真正的纳滤膜是满足道南效应,并对离子具有选择性截留的过滤膜。纳滤膜对两价或多价离子以及糖类具有极高的截留率,但同时对一价离子具有较低的截留率。主要应用于各种料液的脱盐和浓缩。截留分子量在100~1000 Dalton之间。 水处理设备药剂产品应用:酸净化,抗生素浓缩,酒精净化,有机物脱除,乳清脱盐,清洁剂去除,葡萄糖净化,染料浓缩、脱盐,重金属去除,电镀废水回收,多聚糖脱盐,糖类分馏,垃圾渗透液处理 备注: 1.产水量和脱盐率的测试条件:MgSO4溶液浓度2,000mg/L、操作压力100psi(690KPa)、温度77℉(25℃)、pH7.5、回收率15%、运行24小时后测试。 2.单支膜元件的通量可能在-15%—+25%的范围内变化。 三致物质的去除

研究表明,纳滤膜能够去除水中大部分的有毒有害的有机物和Ames致突变物,使TA98及TA100菌株在各试验剂量下的致突比MR值均小于2 ,Ames试验结果呈阴性。进一步的研究将要考察纳滤技术对饮水中的内分泌干扰物质的截留特性,为安全优质饮水提供依据。 消毒副产物及其前体物的去除 消毒副产物主要包括三卤甲烷(THMs)、卤乙酸(HAAs)和可能的三氯乙醛氢氧化物(CH)。国外的科技工作者在这方面已开展了广泛的研究,纳滤膜对这三种消毒副产物的前体物的平均截留率分别为97%、94%和86%。通过合适的纳滤膜的选用, 可以使得饮用水水质满足更高的安全优质饮水水质标准。此外,纳滤出水是低腐蚀性的,对饮用水管网的使用期和管道金属离子的溶出有正面的影响,有利于保护配水系统的所有材科。试验表明采用必要后处理的纳滤膜系统能够使管网中铅的溶解减少50%,同时使其他溶出的金属离子浓度满足饮水水质标准要求。 近年来随着工业污水及市政污水处理中的深入推广,GE膜卓异的耐污染能力得到了应证。

相关主题
文本预览
相关文档 最新文档