当前位置:文档之家› 铝土矿选矿技术

铝土矿选矿技术

铝土矿选矿技术

书山有路勤为径,学海无涯苦作舟

铝土矿选矿技术

铝土矿选矿起步于上世纪70 年代,刚开始是由中南工业大学、北京矿冶研

究总院等单位联合开发的。因为受研究手段的限制,当时大家只是把目光放到了

矿物的单体解离上,虽然试验室完成了回收率93%、产率90%、选精矿a/s 达到13 以上的骄人成绩铝土矿选矿起步于上世纪70 年代,刚开始是由中南工业大学、北京矿冶研究总院等单位联合开发的。因为受研究手段的限制,当时大家

只是把目光放到了矿物的单体解离上,虽然试验室完成了回收率93%、产率90%、选精矿a/s 达到13 以上的骄人成绩,但所得精矿粒度较细,-200#在97% 左右,这样细的精矿粒度使磨矿成本较高,更使选矿后的精矿脱水工作变得难

以进行,因此无法真正地应用于工业生产。

直到上世纪90 年代中期,随着矿物结构研究的深入,铝土矿中富铝连生体

的概念提出后,才使选矿工作真正从研究室走了出来。基于北京矿冶研究总

院、中南工业大学的研究成果,现中铝河南分公司于1999 年在小关铝矿进行

了正浮选工业试验,a64%(a/s 为6.4)的矿石经过正浮选后,其选精矿达到

a70%(a/s 为14),氧化铝回收率为87%,尾矿a/s 稳定在1.5,精矿粒度有了大的突破,达到-200#小于75%的水平,选后经过的精矿水分在10%。

2001 年,中国长城铝业公司中州铝厂与北京矿冶研究总院、中南大学等单位

再次用河南铝土矿做了进一步的正浮选工业试验,在采用与1999 年原矿成分

相似的矿石时,取得了与1999 年同样的效果;在采用原矿a54%(a/s 为3.5)的原矿时,精矿达到了a65%(a/s 为8)、尾矿石a/s 为1.2 的效果,精矿细度、水分保持在原来的水平。此次试验不但验证了1999 年的结论,而且在工艺流程等

方面有了新的突破。

我国铝土矿具有氧化铝含量高的特点,如果采用拜耳法工艺,在矿石a/s 相

铝土矿选矿论述

非金属矿物开发与利用课程论文论文题目铝土矿矿选矿论述 学院名称 专业名称 学生姓名 学生学号 任课教师 设计(论文)成绩 教务处制 2015年12 月3日

目录 铝土矿矿选矿 (3) 1 引言 (3) 2 铝土矿的成分 (4) 2.1 铝土矿的矿物成分 (4) 2.2 铝土矿的化学成分 (4) 3 铝土矿的分类 (5) 4 铝土矿资源特点 (5) 5 铝土矿的用途 (6) 6 铝土矿选矿脱硅 (7) 6.1 正浮选脱硅 (7) 6.2 反浮选脱硅 (9) 6.3 化学选矿脱硅 (10) 6.4生物选矿脱硅法: (12) 6.5 辐射选矿法: (12) 7 铝土矿的浮选法研究 (12) 7.1 正浮选脱硅 (12) 7.2 正浮选脱硅存在的问题: (12) 7.3反浮选脱硅 (12) 7.4与正浮选相比,反浮选技术将可望具有以下特点: (13) 8 小结 (13) 参考文献 (14)

铝土矿矿选矿论述 摘要:运用我国氧化铝工业发展的最新数据,分析了铝土矿选矿脱硅的重要性和目标;根据作者长期从事铝土矿选矿理论研究与实践工作得到的认识,论述了铝土矿矿石性质与选矿的关系;介绍了作者所研发的“铝土矿选择性磨矿—聚团浮选脱硅”工艺及其在中州铝业公司工业应用的效果;探讨了铝土矿选矿脱硅实践中存在的问题与今后的工作方向。 关键词:铝土矿选矿脱硅 Abstract:Newest data of China’s alum in an industry development are used in analyzing the importance and objective of desilication in bauxite beneficiation. Based on the knowledge gained in long time theoretical research and practice of bauxite beneficiation, the authors elaborate the relationship between bauxite ore properties and its beneficiation, describe the process of “bauxite selective grinding-agglomeration flotation for silica removal” developed by the authors and its industrial application in ZhongzhouAluminium Co. and discuss the existing problems inand future work orientation of desilication in bauxite beneficiation Keywords: Bauxite, Beneficiation, Desilication 1引言 铝土矿实际上是指工业上能利用的,以三水铝石、一水软铝石或一水硬铝石为主要矿物所组成的矿石的统称。铝土矿的应用领域有金属和非金属两个方面,是生产金属铝的最佳原料,也是最主要的应用领域,其用量占世界铝土矿总产量的90%以上。铝土矿在非金属方面的用量所占比重虽小,但用途却十分广泛。 我国铝土矿具有资源丰富、铝高、硅高的特点,不能满足拜耳法生产氧化铝的要求[1]。通过采用经济高效的选矿技术脱硅获得高铝硅比精矿,而后选精矿采用拜耳法生产氧化铝,即选矿——拜耳法,是近期内增强我国氧化铝工业生存与竞争能力,并使之充满活力的重要途径[2]。 在微细物料分选技术中,浮选机曾经是普遍应用的设备。但随着贫、细铝土矿资源的开发,浮选机对微细物料分选效率低的劣势更加明显,因而造成现有分

某低品位含铁铝土矿选矿试验研究

某低品位含铁铝土矿选矿试验研究 李正丹,王秀峰,李民菁,兰建厚,万兵,高朋利 (河南东大科技股份有限公司,河南登封452470) 摘要:本文对河南某低品位含铁铝土矿进行了选矿试验研究:在工艺矿物学的基础上,采用优先磁选选铁,磁选尾矿经过分级后进行浮选选铝。经过一次粗选、一次精选和一次扫选得到铝精矿。在粗选段进行了不同的条件试验,并从中选取了最优条件。在最佳条件试验的基础上进行了闭路试验,获得铁精矿TFe含量60.48%,铝精矿Al2O3含量65.46%、A/S为6.32的良好指标。 关键词:铝土矿;磁选;浮选 Beneficitation test of a low grade iron-bauxite LI Zhengdan,W ANG Xiufeng,LI Minjing,LAN Jianhou, WAN Bing,GAO Pengli (Henan Eastar Science&Technology Co., Ltd.,Dengfeng Henan 452470,China) Abstract: Beneficitation test of a low grade iron-bauxite from Henan in this paper: On the basis of the technological mineralogy, selection of iron concentrate by preferential magnetic separation, and magnetic separation tailings are classified and floated to select aluminum concentrate.Once roughing flotation,once concentration flotation and once scavenging flotation to get the aluminium concentrate.Different conditions were tested in the coarse section and the optimal conditions were selected. Closed circuit tests were carried out on the basis of the best condition test, a good index of iron concentrate TFe content 60.48%, aluminum concentrate Al2O3content 65.46% and A/S 6.32 was obtained. Key words: bauxite; magnetic separation; flotation 我国是世界上铝资源较为丰富的国家之一,铝土矿分布高度集中,地质工作程度较高,矿石以古风化壳型为主,其次为堆积型,红土型较少。中国的古风化壳型铝土矿常共(伴)生多种成分,常见的伴生有用组分有铁、钛、稼、钒、锂等。有用矿物以一水硬铝石为主,大部分铝土矿属于难开采和难利用的低品位资源,限制了铝产业链的良性可持续发展。 针对我国铝土矿高铝高硅、低铝硅比、杂质矿物组成复杂的特点,为了提高我国氧化铝工业在国际上的竞争力,根据我国铝土矿的特点,应有效利用中低品位一水硬铝石型矿石。本试验以河南某低品位含铁铝土矿为研究对象,在原矿工艺矿物学研究的基础上,有针对性地开展铝选矿及伴生铁元素的综合回收试验研究,对工业化生产具有一定的指导意义。 1 矿石性质 1.1原矿矿物组成

铝土矿选矿工艺,铝土矿选矿方法,如何提取氧化铝

金属铝是世界上仅次于钢铁的第二重要金属,1995年世界人均消费量达到3.29kg。由于铝具有比重小、导电导热性好、易于机械加工及其他许多优良性能,因而广泛应用于国民经济各部门。全世界用铝量最大的是建筑、交通运输和包装部门,占铝总消费量的60%以上。铝是电器工业、飞机制造工业、机械工业和民用器具不可缺少的原材料。 一、种类分布 中国铝土矿除了分布集中外,以大、中型矿床居多。储量大于2000万t的大型矿床共有31个,其拥有的储量占全国总储量的49%;储量在2000~500万吨之间的中型矿床共有83个,其拥有的储量占全国总储量的37%,大、中型矿床合计占到了86%。 基本类型亚类型主要分布地区 一水型铝土矿1)水铝石-高岭石型(D-K型) 山西、山东、河北、河南、 贵州 一水型铝土 矿 2)水铝石-叶蜡石型(D-P型)河南 一水型铝土 矿 3)勃姆石-高岭石型(B-K型)山东、山西一水型铝土 矿 4)水铝石-伊利石型(D-I型)河南 一水型铝土矿5)水铝石-高岭石-金红石(D-K- R型) 四川 三水型铝土 矿 三水铝石型(G型)福建、广西 二、消费前景 国际氧化铝市场:2005年全球氧化铝产量6064万吨,消费量6153.5万吨,略有缺口。2006年底投产的在建氧化铝项目总规模为1482万吨,至今拟建的氧化铝项目总规模已达到3952万吨。 国内氧化铝市场:2006年-2010年,全国电解铝需求量按照平均7.8%的增长速度, 2010年国内原铝需求量达到880万吨左右。2011-2020年,电解铝需求量以5%的速度增长,预计2020年需求量将达到1430万吨左右。 截止目前,中国平均每月铝土矿进口量为161.3 万吨,这反映了中国氧化铝生产商对进口矿的依赖程度大大增加。进口铝土矿中,从印尼进口的铝土矿为103.5 万吨,占进口总量的近64%。我们认为铝土矿进口过度集中,加大了国内

山西铝厂中铝山西分公司铝土矿选精矿调配项目工程施工设计方案

山西铝厂中铝山西分公司铝土矿选精矿调配项目施工方案 第一章编制依据: 1、山西省河津市山西铝厂中铝山西分公司铝土矿选精矿调配项目所提供的设计文件及施工蓝图。 2、遵守的主要规范及规程: 《建筑结构可靠度设计统一标准》(GB50068-2001) 《建筑结构荷载规范》(GB50009-2012) 《混凝土结构设计规范》(GB50010-2010) 《建筑地基基础设计规范》(GB50007-2011) 《砌体工程施工质量验收规范》(GB50203-2002) 《建筑抗震设计规范》(GB50011-2010) 《钢结构设计规范》(GB50017-2003) 《建筑钢结构焊接规程》(JBJ81-2002) 《冷弯薄壁型钢结构技术规范》(GB50018-2002) 《钢结构高强螺栓连接设计施工及验收规程》(JBJ82-91) 《建筑钢结构焊接规程》(JGJ81-2002) 《压型金属板设计施工规程》(YBJ216-88) 《焊接符号表示法》(GB/T324-2008) 《钢结构高强度螺栓连接的设计、施工及验收规程》(JGJ82-91)《混凝土工程施工质量验收规范》(GB50204-2002) 《水泥混凝土路面施工及验收规范》(GBJ97-87) 《公路路面基层施工技术规范》(JTJ034-2000) 《建筑灭火器配置设计规范》(GB50140-2005)

《建筑设计防火规范》(GB50016-2014) 《钢制焊接常压容器》(JB4735-2005) 《建筑给排水及采暖工程施工质量验收规范》 GB50242-2002 《现场设备、工业管道焊接工程施工验收规范》GB50236-97 《电气安装工程接地装置施工及验收规范》 GB50169-92 《电气装置安装工程施工及验收规范》 GB50254-96 第二章工程概况: 本工程山西省河津市山西铝厂中铝山西分公司铝土矿选精矿调配项目。 一、设计路面工程:新增混凝土地坪结构一面积:3280.13平方方米,新增混凝土地坪结构二面积:470.75平方米,场地平整土方量约:8549.3立方米。 二、主体工程:(1)漏斗钢架一个及漏斗一个,(2)DK-1一个,DK-2一个;(3)GPT-1一个,GPT-2一个;(4)SJ-1调配槽基础三个,污水槽基础一个;(5)调配槽区域地面硬化353.6㎡围堰80.4m;(6)管道支架。 三、配电室、工具、休息、更衣室工程:建筑面积:135.11㎡,建筑层数及高度为一层6.3m(配电室)4.5m(工具、休息、更衣室)。耐火及防水等级为二级,结构类型为砖混结构。 四、工艺:主要采用无缝钢管及阀门连接,由钢架、固定支架、滑动支架为支撑,施工完毕后采用岩棉管壳和镀锌铁皮保温。调配槽为8m×10m两台,施工完毕后采用岩棉板和镀锌铁皮保温。 五、电气及自控:电气采用KYN28A-12型高压柜,综合保护装置与现有一致。调配槽附近新建一座变、配电室,放置环网柜、变压器、低压柜、变频柜所有的设备、仪表的信号均进入主控室。控制电缆选

国土资源部关于锰、铬、铝土矿、钨、钼、硫铁矿、石墨和 石棉等矿产资源合理开发利用“三率”最低指标要求

附件 锰、铬、铝土矿、钨、钼、硫铁矿、石墨和石棉等矿产资源合理开发利用“三率” 最低指标要求(试行) 矿产资源合理开发利用“三率”指标是指矿山开采回采率、选矿回收率和综合利用率等三项指标,是评价矿山企业开发利用矿产资源效果的主要指标。经研究,确定锰、铬、铝土矿、钨、钼、硫铁矿、石墨和石棉等矿产资源合理开发利用“三率”最低指标要求如下: 一、各矿种矿产“三率”最低指标要求 (一)锰矿。 1.开采回采率 (1)露天开采。大、中型露天矿山开采回采率不低于92%;小型露天矿山开采回采率不低于90%。

露天矿山生产规模依据《国土资源部关于调整部分矿种矿山生产建设规模标准的通知》(国土资发〔2004〕208号)的规定确定。 (2)地下开采。根据锰矿矿床的赋存条件,锰矿地下矿山开采回采率应达到以下指标要求(详见表1-1)。 注:(1)岩稳固性划分为稳固(Ⅰ、Ⅱ级)、中等稳固(Ⅲ级)、不稳固(Ⅳ、Ⅴ级)三类。 (2)矿体厚度依据矿体真厚度(H)划分为薄矿体(H≤0.8m)、中厚矿体(0.8m4m)三类。 2.选矿回收率 各主要类型的锰矿按照入选品位不同,其选矿回收率应达到以下指标要求(详见表1-2)。

注:其他锰矿包括硅酸锰矿、硼酸锰矿、铁锰多金属矿以及由两种或两种以上类型矿物构成的复合矿。 3.综合利用率 综合利用率包括共伴生矿产综合利用率、尾矿和废石综合利用率。 (1)共伴生矿产综合利用率 在锰矿中常有铁、钴、镍及有色、贵金属等共伴生。当共伴生有用组分矿物的品位达到表1-3所列含量时,开采设计或矿产资源开发利用方案应对该有用组分的综合利用方式提出指标要求。当共伴生有用组分在现有技术条件下暂时不能回收或技术经济评价结论不宜综合利用的,应提出处置措施。矿山具体利用程度应依据地质勘查报告、选矿试验、矿山设计及矿山采选生产实际等确定。 表1-3 锰矿共伴生组分综合评价指标表 注:摘自DZ/T0200-2002,铁、锰、铬矿地质勘查规范。 (2)锰矿山尾矿与废石综合利用率

铝土矿选矿简介

铝土矿选矿简介 铝土矿是氧化铝生产以及铝硅耐火材料的主要原料,铝土矿的主要化学成为:Al2O3、SiO2、Fe2O3、TiO2、K2O、Na2O、CaO、MgO等,主要物相成分为:一水硬铝石、高岭石、伊利石、叶腊石、赤铁矿、水针铁矿、金红石、锐钛矿、方解石等。其物相中的矿物成分为一水硬铝石,脉石为高岭石、伊利石、叶腊石、赤铁矿、水针铁矿、金红石、锐钛矿、方解石等。矿山产出的铝土矿Al2O3含量为45%—75%,SiO2含量为2%-35%,铝土矿成分中Al2O3含量与SiO2含量的比值称为铝硅比(A/S),铝硅比(A/S)是氧化铝生产用铝土矿的重要指标。 在氧化铝生产过程中,随着铝土矿中SiO2含量的升高,生产成本不断增加,因而氧化铝生产用铝土矿要求铝土矿的铝硅比(A/S)不能低于4.5。但矿山开采的矿石中,仅有大约60%的矿石才能达到氧化铝生产的要求,其余40%需要通过选矿的方法脱除大部分的高岭石,以提高矿石的铝硅比(A/S),达到氧化铝生产的要求。 铝土矿选矿的原理是利用铝土矿中矿物(一水硬铝石)与脉石(高岭石为主)微粒表面特性的细微差异,先通过对矿物的破碎、研磨使矿物与脉石物理解离,形成悬浮矿浆,然后加入选矿药剂捕收一水硬铝石,并通过气泡把矿石中的一水硬铝石分离出来,从而达到脱除脉石(高岭石为主)的目的。 铝土矿选矿工艺过程分为:矿石破碎与均化、矿浆磨制、矿浆浮选、精矿尾矿浆浓缩、精矿尾矿脱水等过程。矿山运输进厂的矿石首先进行破碎与均化,均化的矿石存放在干矿棚中;干矿棚中的矿石首选经过高压辊磨的预磨使其矿石颗粒达到3mm以下,然后定量送入湿法球磨机进行矿浆磨制,磨制后的合格矿浆称为浮选原矿浆;浮选原矿浆送入广益达集成浮选系统进行分选,原矿浆被浮选系统分选为精矿浆与尾矿浆,精矿浆要求A/S不能低于5.0,尾矿浆A/S不能高于1.5,在原矿A/S为 2.0-2.5时,精矿产出率为50—60%;精矿、尾矿浆需要送入精矿、尾矿浓缩槽进行浓缩,以脱除80%的水分,浓缩后的精矿、尾矿浆含水率为50—60%,浓缩后的精矿、尾矿浆还需要通过压滤机进行压滤,脱

外文翻译---浅淡铝土矿生物选矿

附录A Research Advances in the Biobeneficiation of Bauxites Abstract: The recent research advances and current trends in the bio-beneficiation of bauxite were briefly outlined in this paper. Some suggestions for promoting research work in this field were proposed. Keywords:Bauxite; Biotechnology Beneficiation Bauxite according to their use can be divided into metallurgical grade production of alumina, refractory grade abrasive grade, chemical products level four categories. With the high quality bauxite resources are increasingly scarce, bauxite beneficiation has been widely accepted. Over the years, the bauxite beneficiation impurity (desilication, de-ilmenite) and the physical method and chemical method. For example, the re-election, magnetic separation, flotation, chlorine chloride, hydrochloric acid leaching. As the bauxite mineral crystallization in small scattered and disseminated with the gangue, dissociation degree of difference between the impurity effect, using physical methods is not ideal. Chemical impurity satisfactory, but because of the high cost and environmental pollution, which is generally not used. The physical method and chemical France impurity defects, study of foreign the bauxite biological dressing to carry out more active. 1.The basic principles of a bauxite biological dressing Biological beneficiation biology, chemistry, and other engineering disciplines in the field of mineral processing applications. Biological beneficiation of the 1950s in the United States with biological leaching of copper in copper and 1960s, Canada successfully leaching of uranium ores, scientists around the world have been committed with great enthusiasm to carry out low-grade, finely dispersed refractory ore study. Biological beneficiation of bauxite is the use of certain microorganisms or their metabolites and bauxite interaction, resulting in oxidation, reduction, dissolution, adsorption, reaction and thus removal of the unwanted components in the ore or

解析有色金属的选矿流程

解析有色金属的选矿流程 有色金属矿的选矿工艺因矿物的可选性能而各异,一般原则流程为破碎筛分-磨矿分级-浮选。对于向各大有色金属矿石提供球磨机钢球的生产厂家来说,有必要让销售员了解有色金属的选矿流程,才能够为矿山球磨机制定出更加合理的配球方案。 铜、铅、锌矿石,均需经过选矿厂处理,精选出符合有色金属冶炼需要的铜、铅、锌精矿产品。 铝土矿不需进行选矿加工而直接供给氧化铝厂的原料车间配料后,进入氧化铝生产流程。 福山铜矿牙山矿区选矿厂的工艺流程是,破碎采用三段一闭路流程。磨矿采用一段闭路流程,浮选工艺流程是一次粗选,二次精选,二次扫选,中矿循序返回流程。精选产品为铜精矿。孔辛头矿区选矿厂破碎部分采用三段一闭路流程。磨矿部分采用一段一闭路流程,中矿循序返回流程。浮选工艺是一粗一精一扫。浮选产品为铜精矿,浮选尾矿经磁选得铁精矿。该选厂1972年改为选钼,将浮选工艺改造为一粗二精三扫,选出铜钼混合精矿,经过再磨进入一粗七精二扫分离浮选流程,精选产品为钼精矿,精选尾矿为铜精矿。 香夼铅锌矿铅锌选矿厂,破碎部分采用两段一闭路洗矿破碎流程,即在两段破碎之间设圆筒洗矿机脱泥。磨矿系统为一段一闭路流程。浮选工艺流程为铜铅和锌硫分别混合浮选后再行分离的部分混合浮选。铜铅混合浮选流程为一次粗选三次精选三次扫选,得到铜铅混合精矿。铜铅分离浮选工艺为一次粗选一次精选二次扫选,分离浮选产品为铜精矿和铅精矿。在铜铅分离浮选作业中采用了以硫代硫酸钠和硫酸亚铁代替氰化物药剂,实现了无氰化物选矿,消除了公害,也改善了选矿指标。 金岭铁矿和莱芜铁矿的两座铁矿选矿厂,因铁矿原矿石含有伴生的铜钴元素可供综合利用,在选矿工艺中设置了浮选工艺流程,综合回收铜和钴,其产品为铜精矿、钴硫精矿和铜钴混合精矿,是山东铜、钴精矿的主要产地。

铁矿等矿石选矿工艺流程介绍

铁矿等矿石选矿工艺流程介绍 选矿是利用矿物的物理化学性质的差异,借助各种选矿设备将矿石中的有效矿物和脉石矿分离,矿石中含有有用成分往往还会有有害杂质,比如铁矿石中还有硫、磷等,铝土矿含有硫、硅等,这些有害成分在冶炼前可以使用选矿的方式去除,取出后才能被利用,才能达到合理利用国家矿产资源的目的。 选矿前准备的作业包括破碎筛分与磨矿分级 破碎与筛分是通过不同破碎机的挤压、冲击、劈裂等方式将采来的矿石(一般在1000mm)破碎到5-25mm. 工业运用的破碎机有鄂式破碎机、反击式破碎机、圆锥破碎机等。 筛分是破碎后的产品安粒度分类的一个过程,破碎作业与筛分作业进行联合。 工业用筛分为固定格筛、弧形筛、圆筒筛、振动筛、运动筛等。

磨矿分级是将破碎后的产品进一步的冲击、研磨,使矿山的粒度更精密,磨矿的作业是破碎作业的继续,其目的是将矿石中的有用矿物分为单体解离状态,为下一步分选作业打下基础。 几乎所有的选矿厂都会用到磨矿作业,磨矿作业的生产费用站金属选矿厂总费用的40%,基本上1吨矿石要消耗7-30kw/以上,站选矿厂总耗电量的50%,所以磨矿作业和磨矿设备的操作对选矿厂有很大的作用。 磨矿机的种类有很多主要分为球磨机、棒磨机、半自磨机与自磨机等。 选矿的工艺有多种下面给大家介绍几种常见的选矿工艺,目前常用的选矿方法为:重选、浮选、磁选以及化学选矿法等 重选重选是一种古老的选矿方法,刚开始应用于选金,砂里淘金,重选法处理量大,简单可靠,特别适用于密度较大的氧化矿石,常用方法有重介质选矿、无极限选矿溜槽,重选工艺应用在选前分级,按粒级选用合适的重选设备,有助于提高选矿的效率。 浮选浮选是利用矿物表面物理化学性质的差异,使矿物颗粒选择性对的想气泡附着的选矿方法,浮选的目的是得到粒度适宜的矿粒,一般浮选的方法有正浮选反浮

铝土矿的选别与氧化铝的制备方法

铝土矿的选别与氧化铝的制备方法---阅微草堂 氧化铝的制备方法大致有:拜耳法(A/S>8-10)适合低硅比的三水铝石型、联合法(A/S=5-7)、烧结法(A/S=3.5-5) (A/S=铝硅比) 铝土矿主要资源分布:山西、河南、贵州、广西,储量世界第八 我国铝土矿主要矿石类型:主要为高硫、高硅低铝硅比一水硬铝石型。所以我国铝土矿选别工艺主要是有两大任务:脱硫和脱硅 脱硅选矿工艺(一):铝土矿脱硅按浮选可分为正浮选和反浮选 正浮选:浮选铝矿物的有效捕收剂有脂肪酸和磺酸盐类;调整剂有六偏磷酸钠、丹宁酸、焦磷酸钠、碳酸钠等。 试验研究表明:当矿石磨至-200目占95%,碳酸钠和硫化钠做为调整剂,水玻璃、六偏磷酸钠按比例配制做为抑制剂,用氧化石蜡皂做为捕收剂,浮选脱硅效果较好。 反浮选:是把高岭石、伊利石、叶腊石等含硅矿物和石英浮选成泡沫产品,由于入选粒度细、矿浆粘度大,导致分散剂、捕收剂耗量大,而且选别回收率低、铝土矿矿物损失大。 脱硅选矿工艺(二):化学法脱硅工艺有焙烧-氢氧化钠溶出脱硅法,氢氧化钠直接溶出-分选脱硅法,均采用氢氧化钠浓度低于20%的稀碱溶液处理,前者的缺点是焙烧作业能耗高,后者由于溶出矿浆浓度低,碱耗量较大。杨波[1]等人提出用高浓度碱常压高温浸取铝土矿脱硅技术,在氢氧化钠浓度50%,碱矿比2.5,浸出温度135℃,脱硅时间5~20min,获得铝土矿精矿A/S大于12。该法简化了整体氧化铝生产工艺,缩短了流程,有望使氧化铝生产成本大大降低。

脱硅选矿工艺(三):絮凝脱硅适用于细粒嵌布、含泥较多的一水铝石型铝土矿,将矿石细磨至-5μm占30%~40%,然后添加调整剂苏打和苛性钠、分散剂六偏磷酸钠,再使用聚丙烯胺聚合物进行选择性絮凝,使悬浮物和沉淀物分离。 铝土矿脱硫的方法:有浮选法、碱性铝酸盐溶液浮选法、电位调控浮选法、碱石灰烧结法、添加脱硫剂的氧化铝湿法除硫、焙烧法等。吕国志等人[2]提出高硫铝土矿的焙烧预处理除硫方法,原矿含硫1.82%,在焙烧温度750℃,焙烧时间60min的条件下,矿石含硫降至0.70%以下,符合氧化铝工业生产要求;焙烧矿在溶出温度为220℃左右时溶出1h,氧化铝溶出率高于97%,说明铝土矿焙烧法处理高 硫型铝土矿是可行的。硫元素以SO2的形式生成,直接排放会造成环境污染,若增加必要的处理设备设施,会造成设备成本提高。主要的含硫矿物是黄铁矿、磁黄铁矿,黄铁矿是分布最广泛的硫化物,易 于用浮选法选别,但黄铁矿在氧存在的条件下其表面会部分发生氧化,其可浮性大大降低。通过对河南西部某高硫铝土矿浮选除硫试验,含硫矿物进入泡沫产品,铝土矿留在矿浆中,含硫矿物的浮选受到矿浆碱度、矿浆浓度、矿石粒度、捕收剂用量和种类的影响较大,试验结果表明,用丁基钠黄药-丁基铵黑药做为捕收剂,合计用量在200~400g/t,起泡剂用量在30~35g/t,氢氧化钠作为矿浆碱度调整剂,PH=9.5~10.5之间,矿浆浓度15%~20%,入选粒度-150目占85%的条件下,一次精选精矿硫品位<0.40%,铝土矿含硫量符合工业要求,氧化铝回收率达89.5%。

铝土矿选矿技术

书山有路勤为径,学海无涯苦作舟 铝土矿选矿技术 铝土矿选矿起步于上世纪70 年代,刚开始是由中南工业大学、北京矿冶研 究总院等单位联合开发的。因为受研究手段的限制,当时大家只是把目光放到了 矿物的单体解离上,虽然试验室完成了回收率93%、产率90%、选精矿a/s 达到13 以上的骄人成绩铝土矿选矿起步于上世纪70 年代,刚开始是由中南工业大学、北京矿冶研究总院等单位联合开发的。因为受研究手段的限制,当时大家 只是把目光放到了矿物的单体解离上,虽然试验室完成了回收率93%、产率90%、选精矿a/s 达到13 以上的骄人成绩,但所得精矿粒度较细,-200#在97% 左右,这样细的精矿粒度使磨矿成本较高,更使选矿后的精矿脱水工作变得难 以进行,因此无法真正地应用于工业生产。 直到上世纪90 年代中期,随着矿物结构研究的深入,铝土矿中富铝连生体 的概念提出后,才使选矿工作真正从研究室走了出来。基于北京矿冶研究总 院、中南工业大学的研究成果,现中铝河南分公司于1999 年在小关铝矿进行 了正浮选工业试验,a64%(a/s 为6.4)的矿石经过正浮选后,其选精矿达到 a70%(a/s 为14),氧化铝回收率为87%,尾矿a/s 稳定在1.5,精矿粒度有了大的突破,达到-200#小于75%的水平,选后经过的精矿水分在10%。 2001 年,中国长城铝业公司中州铝厂与北京矿冶研究总院、中南大学等单位 再次用河南铝土矿做了进一步的正浮选工业试验,在采用与1999 年原矿成分 相似的矿石时,取得了与1999 年同样的效果;在采用原矿a54%(a/s 为3.5)的原矿时,精矿达到了a65%(a/s 为8)、尾矿石a/s 为1.2 的效果,精矿细度、水分保持在原来的水平。此次试验不但验证了1999 年的结论,而且在工艺流程等 方面有了新的突破。 我国铝土矿具有氧化铝含量高的特点,如果采用拜耳法工艺,在矿石a/s 相

有色金属矿的选矿工艺

立志当早,存高远 有色金属矿的选矿工艺 铝土矿不需进行选矿加工而直接供给氧化铝厂的原料车间配料后,进入氧化铝生产流程。 山东的铜、铅、锌矿石,均需经过选矿厂处理,精选出符合有色金属冶炼需要的铜、铅、锌精矿产品。山东境内的有色金属矿山(不含黄金矿山)选矿厂设计总规模为日处理原矿石1710 吨,其中福山铜矿王家庄矿区铜选厂日处理原矿能力500 吨,孔辛头矿区铜钼选厂日处理原矿250 吨,香夼铅锌矿铅锌选厂日处理原矿460 吨,铜硫选厂日处理原矿500 吨。此外,还有金岭铁矿年处理铁矿石60 万吨和莱芜铁矿年处理铁矿石40 万吨选厂,均回收铜精矿、钴硫精矿和铜钴精矿。 有色金属矿的选矿工艺因矿物的可选性能而各异,一般原则流程为破碎筛分- 磨矿分级-浮选。 福山铜矿牙山矿区选矿厂的工艺流程是,破碎采用三段一闭路流程。磨矿采用一段闭路流程,浮选工艺流程是一次粗选,二次精选,二次扫选,中矿循序返回流程。精选产品为铜精矿。孔辛头矿区选矿厂破碎部分采用三段一闭路流程。磨矿部分采用一段一闭路流程,中矿循序返回流程。浮选工艺是一粗一精一扫。浮选产品为铜精矿,浮选尾矿经磁选得铁精矿。该选厂1972 年改为选钼,将浮选工艺改造为一粗二精三扫,选出铜钼混合精矿,经过再磨进入一粗七精二扫分离浮选流程,精选产品为钼精矿,精选尾矿为铜精矿。王家庄矿区铜选厂的工艺流程是破碎部分采用三段一闭路流程。磨矿采用两段一闭路流程。浮选工艺为一次粗选四次精选二次扫选,中矿循序返回。浮选精矿产品为铜精矿。为了提高入选品位和消除矿泥影响,原矿在粗破碎后加手选和洗矿措施。1981 年,因王家庄矿区一矿段开采结束,无铜矿石供选矿,将该铜选厂改

氧化铝生产对铝土矿品质的要求

立志当早,存高远 氧化铝生产对铝土矿品质的要求 铝土矿的品质直接影响氧化铝生产工艺的选择和氧化铝生产的技术经济指标。衡量铝土矿品质一般考虑铝硅比、氧化铝含量和铝矿物类型。不同铝矿物 类型的铝土矿溶出性能相差甚远。但是,由于我国铝土矿与世界其它国家不同,占储量99%的都为一水硬铝石型铝土矿,其中大部分为沉积型铝土矿,具有铝高、硅高、铁低的特点,因此,铝土矿的铝硅比是最重要的质量指标。 不同的氧化铝生产方法适宜处理的铝土矿铝硅比见表1。在3 种氧化铝生产方 法中,拜耳法有着流程简单、能耗低、产品质量好、生产成本低等明显优势。 但是,由于矿石中的SiO2 是以水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O)的形式进入赤泥,造成Al2O3 和Na2O 的损失,因此拜耳法适合处理高铝硅比的铝土矿。我国80%以上的铝土矿铝硅比<9,所以,以国内铝土矿为原料的我 国氧化铝生产工艺主要是烧结法和联合法。由于这两种方法均需进行烧结,因 而带来生产系统复杂庞大、基建投资相对增加、能耗高等一系列问题。表2 是国内外氧化铝厂主要消耗比较。可见,我国氧化铝生产的铝土矿消耗和碱消耗 明显低于国外氧化铝厂,但能耗却远远高于它们。在氧化铝生产成本构成中, 我国的能源成本占43%,是国外相应费用的1.65 倍,这便是我国氧化铝生产成本高于国外先进指标的最重要原因。随着铝土矿资源短缺和质量下降的问题日 趋严重,我国氧化铝工业不得不必须面对大规模利用低品位铝土矿的问题。如 果不能提高铝土矿的铝硅比,再加上能源价格不断攀升,我国氧化铝生产的技 术经济指标必将进一步恶化,这将对我国氧化铝工业的生产成本和竞争力产生 严重影响。表1 各种氧化铝生产方法适宜处理的铝土矿的铝硅比氧化铝生产方法拜耳法烧结法联合法铝硅比>93~56~8 表2 国内外氧化铝厂主要消耗指标比较(2003 年)指标国外氧化铝厂中国氧化铝厂美洲欧洲澳洲拜耳法联合

铝矿选矿工艺

从矿石中提取氧化铝的方法 从矿石提取氧化铝有多种方法,例如:拜耳法、碱石灰烧结法、拜耳-烧结联合法等。拜耳法一直是生产氧化铝的主要方法,其产量约占全世界氧化铝总产量的95%左右。70年代以来,对酸法的研究已有较大进展,但尚未在工业上应用。 1、拜耳法 系奥地利拜耳(KJ.Bayer)于1888年发明。适于处理含Al2O3高、SiO2低的富矿,一般要求Al2O3>65%,Al2O3/SiO2>7。氧化铁在拜耳法流程中不与碱起反应,只是铁高赤泥量大,赤泥洗涤复杂,易造成碱和氧化铝的机械损失,但不宜有铝针铁矿。 其原理是用苛性钠(NaOH)溶液加温溶出铝土矿中的氧化铝,得到铝酸钠溶液。溶液与残渣(赤泥)分离后,降低温度,加入氢氧化铝作晶种,经长时间搅拌,铝酸钠分解析出氢氧化铝,洗净,并在950~1200℃温度下煅烧,便得氧化铝成品。析出氢氧化铝后的溶液称为母液,蒸发浓缩后循环使用。 由于三水铝石、一水软铝石和一水硬铝石的结晶构造不同,它们在苛性钠溶液中的溶解性能有很大差异,所以要提供不同的溶出条件,主要是不同的溶出温度。三水铝石型铝土矿可在125~140℃下溶出,一水硬铝石型铝土矿则要在240~260℃并添加石灰(3~7%)的条件下溶出。 现代拜耳法的主要进展在于:①设备的大型化和连续操作;②生产过程的自动化;③节省能量,例如高压强化溶出和流态化焙烧;④生产砂状氧化铝以满足铝电解和烟气干式净化的需要。 拜耳法的优点主要是流程简单、投资省和能耗较低,最低者每吨氧化铝的能耗仅3×106千卡左右,碱耗一般为100公斤左右(以Na2CO3计)。 拜耳法生产的经济效果决定于铝土矿的质量,主要是矿石中的SiO2含量,通常以矿石的铝硅比,即矿石中的Al2O3与SiO2含量的重量比来表示。因为在拜耳法的溶出过程中,SiO2转变成方钠石型的水合铝硅酸钠(Na2O·Al2O3·1.7SiO2·nH2O),随同赤泥排出。矿石中每公斤SiO2大约要造成1公斤Al2O3和0.8公斤NaOH的损失。铝土矿的铝硅比越低,拜耳法的经济效果越差。直到70年代后期,拜耳法所处理的铝土矿的铝硅比均大于7~8。由于高品位三水铝石型铝土矿资源逐渐减少,如何利用其他类型的低品位铝矿资源和节能新工艺等问题,已是研究、开发的重要方向。目前世界上用拜耳法生产的氧化铝要占到总产量的90%以上,氧化铝大部分用于制金属铝,用作其它用途的不到10%. 2、碱石灰烧结法 适于处理含硅较高的低品级矿石,要求Al2O3/SiO2为3~5(或3.5左右),Fe2O3<10%。 将铝土矿、碳酸钠和石灰按一定比例混合配料,在回转窑内烧结成由铝酸钠 (Na2O·Al2O3)、铁酸钠(Na2O·Fe2O3、原硅酸钙(2CaO·SiO2)和钛酸钠(CaO·TiO2组成的熟料。然后用稀碱溶液溶出熟料中的铝酸钠。此时铁酸钠水解得到的NaOH也进入溶液。如果溶出条件控制适当,原硅酸钙就不会大量地与铝酸钠溶液发生反应,而与钛酸钙、Fe2O3·H2O 等组成赤泥排出。溶出熟料得到的铝酸钠溶液经过专门的脱硅过程,SiO2O 形成水合铝硅酸钠(称为钠硅渣)或水化石榴石3CaO·Al2O3·xSiO2·(6-2x)H2O沉淀(其中

铝土矿选矿

铝土矿选矿(processing of bauxite ore) 从铝土矿矿石中分选出铝土矿精矿的过程。其目的是除去脉石矿物和有害杂质,分离高铝矿物和低铝矿物,以获得高铝硅比的精矿。 铝土矿又称铝矾土,主要矿物组成是水铝石(A1 2O 3 ?H 2 O)和高岭石 (Al 2O 3 ?2SiC) 2 ?2H 2 O)。水铝石是由一水硬铝石、一水软铝石和三水铝石三种矿物, 以各种比例构成的细分散胶体混合物。铝土矿经常与铁的氧化物和氢氧化物、锐钛矿及高岭石、绿泥石等粘土矿物共生。有时还含钙、镁、硫等矿物。铝土矿石按其所含杂质可分为高碱铝土矿、高钛铝土矿、高铁铝土矿三类。中国根据矿物组成不同将铝土矿分为五类:(1)水铝石一高岭石型(D—K型);(2)水铝石叶蜡石型(D—P型);(3)勃姆石一高岭石型(B~K型);(4)水铝石伊利石型(D—I型); (5)水铝石高岭石一金红石型(D—K—R型)。铝土矿经煅烧生成的莫来石 (3Al 2O 3 ?2SiO 2 )是优良的耐火材料原料。铝土矿也是生产氧化铝、刚玉磨料、铝 化合物的原料。 铝土矿主要按Al 2O 3 含量或Al 2 O 3 /SiO 2 比值进行分级。不同用途的铝土矿, 对杂质含量有不同的要求。中国有关标准将耐火材料用铝土矿分为五个等级,其 中特级品要求Al 2O 3 75%,Fe 2 O 3 <2.0%,CaO<0.5%,耐火度>1770℃;四级品 要求A1 2O 3 45%~55%,Fe 2 O 3 <2.5%,CaO<0.7%,耐火度>1770℃;将生产氧 化铝的铝土矿分为七个品级,其中一级品要求Al 2O 3 /SiO 2 ≥12,Al 2 O 3 ≥60%;七 级品要求Al 2O 3 /SiO 2 ≥6,Al 2 O 3 ≥48%。 主要选矿方法有洗矿、浮选、磁选、化学选矿等。洗矿是提高铝土矿铝硅比的最简单、有效的方法,通过洗矿一般可将矿石铝硅比提高约2倍,对质地疏松矿石的分选更为有效。洗矿常与其他分选方法结合组成洗矿(筛洗)一分级——手选流程。浮选法可用于分离水铝石和高岭石,用氧化石蜡皂和塔尔油作捕收剂,在碱性介质中进行。磁选用于分离含铁矿物。化学选矿主要有焙烧脱硅,这是基于矿石中主要含硅矿物是含水铝代硅酸盐,焙烧后部分Si()z转变为无晶形易溶于碱的氧化硅微粒而提高了物料的铝硅比。 主要选矿流程根据矿石的不同类型,采用不同的选矿工艺流程。 (1)三水铝石一高岭石类铝土矿的选矿流程。常采用先进行泥、砂分选,粗级别磨矿后用磁选除铁,矿泥磨矿后浮选。浮选药剂用油酸、塔尔油、机油按1:1:1配制。前苏联采用的低品位三水铝石高岭石型铝土矿的选矿流程见图1。铝 土矿浮选精矿品位含Al 2O 3 49.65%,回收率45.3%。A1203/SiO 2 为12.3。

阐述我国铝土矿资源特点以及适合处理低品位铝土矿的工艺技术

5、阐述我国铝土矿资源特点以及适合处理低品位铝土矿的工艺技术。 5.1我国铝土矿资源特点 铝土矿是含铝矿物和赤铁矿、针铁矿、高岭石、锐铁矿、金红石、钛铁矿等矿物的混合矿。我国铝土矿资源比较丰富,分布甚广。具有以下几个特点:(1)储量集中于煤或水电丰富的地区,有利于开发利用。山西、贵州、河南和广西壮族自治区储量合计占全国储量的85.5%,加上其煤炭和水利资源,为其提供了发展铝工业的有利条件。 (2)矿床类型以沉积型为主,坑采储量比重较大。 (3)一水硬铝石型矿石占绝对优势。其特点是高铝、高硅和低铁,铝硅比偏低,一般在4-7之间,铝硅比在10以上的相对少些。在福建、河南和广西有少量的三水铝石型铝土矿。 5.2处理低品位铝土矿的工艺技术 从铝矿提取铝有两个方案,第一个方案是选用高品位铝土矿,先用化学方法从矿石中提取纯净的氧化铝,然后用电解法从氧化铝中提取纯净的铝。第二个方案是选用低品位的铝土矿,经过物理选矿,分离掉一部分硅酸盐矿物后,送入溶出流程中去,提取氧化铝;或者用化学法分离掉一部分氧化铁和氧化钛后,在电解槽或电弧炉内还原出铝-硅-铁-钛合金。 一般处理低品位铝土矿的工艺技术有:选矿拜耳法、石灰拜耳法、富矿烧结法、串联法。 5.2.1选矿拜耳法 选矿拜耳法工艺流程是:铝土矿(A/S=5~6)经过选矿得到铝硅比为10-11的精矿,与石灰一起加入到铝酸钠溶液母液中在245-260℃进行溶出,得到赤泥浆料,然后分理出铝酸钠溶液进行种分,获得Al(OH)3浆液,进而干燥焙烧得到Al2O3。由于铝矿中各种含硅矿物与氢氧化钠反应生成的水合铝硅酸盐,可在设备和管道上析出结疤,硅在分解时析出,还降低了产品的质量,所以必须进行脱硅。 铝土矿选矿脱硅方法有化学选矿脱硅、生物选矿脱硅、物理选矿脱硅。 化学选矿脱硅是指在一定温度下使含硅矿物发生分解,然后用苛性钠溶液溶出而达到脱硅目的的方法。 生物选矿脱硅是指用微生物分解硅酸盐和铝硅酸盐矿物,将铝硅酸盐矿物分解成为氧化铝和二氧化硅,并使二氧化硅成为可溶物,而氧化铝不溶,从而使得铝、硅得以分离。 物理选矿脱硅是指以天然矿物形态除去含硅矿物。

相关主题
文本预览
相关文档 最新文档