当前位置:文档之家› 氨基硅油

氨基硅油

氨基硅油

氨基硅油配方及工艺

(1) 氨基含量0.6%,活性羟基封端 硅油合成配方: 602氨基硅烷-----------------------------8Kg DMC-------------------------------------192Kg 5%氢氧化钾水溶液---------------------400g 蒸馏水-------------------------------------200g 设备: 300L不锈钢夹套反应釜,电动搅拌,导热油及电加热设备。 合成工艺: 先将192KgDMC投入反应釜内,开搅拌; 搅拌下加入8Kg氨基硅烷,然后缓慢加入400克氢氧化钾水溶液和200克蒸馏水,加料过程中搅拌不能停; 全部物料加完后,开始加热升温; 料温150℃开始计时,同时注意控温,保持料温150-160℃反应4小时得到产品,反应过程中搅拌不能停。 产品性状: 无色透明粘稠液体,粘度600-1000cs。 乳液配方: 氨基硅油------------------------20Kg AEO3-----------------------------4Kg TX-10----------------------------6Kg 冰醋酸-------------------------0.6Kg 去离子水------------------------70Kg 乳化设备: 200L分散搅拌设备。 乳化工艺: 先投氨基硅油、AEO3、TX-10; 开搅拌,将物料搅匀; 搅拌下缓慢加入冰醋酸; 搅拌下缓慢加水,直到全部水加完; 全部物料搅匀后,停机。 产品性状: 无色透明液体。 产品用途: 用于织物处理,赋予织物很好的柔软性,特别适合棉、毛织物处理。本产品氨基含量较高,略有黄变,不适合处理白色和浅色织物。 用于洗发水中,可以改善头发柔软性。

氨基硅油乳化

氨基硅油乳化 {Reference Type}:Journal Article {Author}:李玮 {Year}:1995 {Title}:TS系列氨基硅油乳液应用试验 {Tag}:0 {Journal}:有机硅材料及应用 {Issue}:2 {Pages}:20-22 {Reference Type}:Journal Article {Author}:白杉,周洁 {Year}:2006 {Title}:氨基改性硅乳液在纺织整理中的应用{Tag}:0 {Journal}:天津纺织科技 {Issue}:2 {Pages}:12-15

{Date}:2009-11-01 {Reference Type}:Journal Article {Author}:王树根,苏开第,马永才 {Year}:1998 {Title}:氨基改性羟基硅油乳液的制备与性能 {Tag}:0 {Journal}:印染助剂 {Volume}:15 {Issue}:6 {Pages}:5-9 {Date}:2009-09-20 {Reference Type}:Journal Article {Year}:2009 {Title}:氨基改性有机硅柔软剂的合成及其微乳液的制备研究{Tag}:0 {Date}:2009-10-22

{Reference Type}:Journal Article {Year}:2009 {Title}:氨基改性有机硅微乳化技术的探讨{Tag}:0 {Date}:2009-10-26 {Reference Type}:Journal Article {Author}:钟泰宣 {Year}:1996 {Title}:氨基硅油乳化工艺的研究{Tag}:0 {Journal}:有机硅材料及应用{Issue}:2 {Pages}:9-11 {Reference Type}:Journal Article {Author}:郭丽霞,梅玉娇 {Year}:2000 {Title}:氨基硅油乳化剂的分析与配制{Tag}:0

三元共聚硅油的应用性能分析

三元共聚硅油的应用性能分析 摘要:本文以JL-4610和JL-4615为例,对三元共聚硅油的应用性能进行了分析。通过对其手感、黄色变、摩擦耐洗牢度、抗静电性、与分散染料同浴染色及稳定性这六方面的探讨,揭示了三元共聚硅油手感滑软,黄色变小,牢度好,稳定性高等优点,适合在染整后整理中广泛应用。 关键词:三元共聚硅油应用性能分析 引言 在纺织印染助剂中,柔软剂是整理助剂中的一个大类,品种多,产量大。从化学纤维的纺丝、拉伸、卷筒、编织或纤维素纤维的制条、纺纱、织造到纺织品的染色整理等各项工序都要使用柔软平滑剂。各种柔软剂其主要功能是满足各种纺织品的不同手感,不同风格和要求。随着现代生活水平的逐步提高,柔软剂的使用已发展到家庭洗涤工序,称为柔软调理剂。其中三元共聚硅油是一种高分子平滑型柔软剂,采用硅氧烷、多胺、聚醚这三者聚合而成。 自20世纪60年代以来,硅油柔软剂经历了四个发展阶段。从第一代的二甲基硅油、羟基改性有机硅,到第二代的环氧基改性有机硅、聚醚改性有机硅,至第三代的氨基改性有机硅。目前氨基改性有机硅以其突出的柔软平滑手感成为市场上应用最多的有机硅整理剂。但是传统氨基改性有机硅在加工过程中易产生粘辊、粘缸现象,不耐高剪切,相容性差,而且手感发粘等缺点,因此科研人员研发了新型的线形三元共聚有机硅――瞬间亲水整理剂JL-4610及超稳定柔滑亲水整理剂JL-4615以满足市场的需要。本文从手感、色黄变、干湿摩擦牢度、耐洗色牢度、抗静电、与涤纶同浴染色以及稳定性等几方面对新型三元共聚硅油的特点和应用性能进行探讨。 1实验材料与方法 1.1 仪器与设备 电子天平,VPM-1A型轧车,PT-2A销板拉幅机、SW-24AII型耐洗色牢度试验机、Datacoler测色仪、Y5718耐摩擦色牢度试验机、Y(L)3420织物静电测试仪 1.2 试验材料与药品 织物:涤纶毛毯、涤纶机织(红色、墨绿色、白色)、棉针织(翠兰、梅红)、黑色棉机织、涤纶增白布、麂皮绒 助剂:瞬间亲水整理剂JL-4610、超稳定柔滑亲水整理剂JL-4615、普通氨基硅油

氨基硅油的合成及工艺对比讨论

氨基硅油的合成及工艺对比讨论 袁金亮,周昭亮,傅向东 (广州市旭美化工科技有限公司,广东广州 510665) 摘要:以二甲基硅氧烷混合环体(DMC)或八甲基环四硅氧烷(D4)或端羟基聚二甲基硅氧烷及N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷为原料,通过本体聚合的方法制备氨基硅油。通过对影响聚合的催化剂、偶联剂、反应温度及反应时间等因素的讨论,确定了适宜的聚合条件。对比分析不同原料合成氨基硅油的产率以及简单分析其乳化与应用的差异。 关键词:二甲基硅氧烷混合环体(DMC);八甲基环四硅氧烷(D4 );端羟基聚二甲基硅氧烷;氨基硅氧烷;本体聚合;氨基硅油; 氨基硅油即氨基改性聚硅氧烷现已广泛应用于纺织、制革及日化等行业,尤其是纺织印染行业的用量很大[1]。如用作纺织柔软整理剂,可赋予织物柔软、滑爽和丰满的效果,还具有良好的弹性手感。 氨基改性聚硅氧烷分子量较大,同时交联性使纤维产生弹性。由于氨基的极性强、易与纤维中的羟基和羧基发生化学反应,使聚硅氧烷主链发生取向定位并吸附于纤维表面,降低了纤维之间的摩擦系数,从而给予纤维极好的柔软、平滑、耐洗性[2]。同时,氨基的引入提高了聚硅氧烷的亲水性,使其易于乳化,只要采用适当配方和工艺就能得到微乳液,使纤维产生丰满感。 氨基硅油对提高织物附加值具有积极的作用,国外公司如日本信越、德国瓦克等,都在努力开发高品质的氨基硅油。国内对氨基硅油的研究也在不断加强,但还存在乳液漂油、泛黄等问题[3]。 用端羟基聚二甲基硅氧烷(俗称线性体)直接与氨基硅氧烷聚合制备氨基硅油或用二甲基硅氧烷混合环体(DMC)或八甲基环四硅氧烷(D4)开环聚合制备氨基硅油已逐渐普及,本实验将采用端羟基聚二甲基硅氧烷或二甲基硅氧烷混合环体(DMC)或八甲基环四硅氧烷(D4)与N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷偶联剂通过本体聚合制备氨基硅油[4]。 1. 实验部分 1.1 主要原料和仪器装置 二甲基硅氧烷混合环体(DMC),浙江合盛化工有限公司;八甲基环四硅氧烷(D4),瓦克化学有限公司;端羟基聚二甲基硅氧烷(WS 62M),瓦克化学有限公司;N-β-(氨乙基)-γ-氨丙基甲基二甲氧基硅烷(N602),南京曙光硅烷化工有限公司;γ-氨丙基甲基三乙氧基硅烷(KH550),江苏晨光偶联剂有限公司;γ―甲基丙烯酰氧基丙基三甲氧基硅烷(KH-570),N-环己基-γ-氨丙基甲基二甲氧基硅烷(KH-702),中科院有机硅研究院;异构C13醇聚氧乙烯醚(5,7),巴斯夫;KOH,化学纯;甲醇钠,工业级;醋酸:化学纯;布料:精纺涤纶织物,平纹织物,规格为25cm×12cm;电动搅拌器;水浴锅;水循环真空泵,三口烧瓶;温度计。 1.2 实验原理 在碱催化剂条件下,通过D4开环后与偶联剂聚合,反应得到氨基硅油,

三元共聚硅油的应用性能分析

三元共聚硅油的应用性能分析 摘要:本文以TF-463和TF-468K为例,对三元共聚硅油的应用性能进行了分析。通过对其手感、黄色变、摩擦耐洗牢度、抗静电性、与分散染料同浴染色及稳定性这六方面的探讨,揭示了三元共聚硅油手感滑软,黄色变小,牢度好,稳定性高等优点,适合在染整后整理中广泛应用。 关键词:三元共聚硅油应用性能分析 引言 在纺织印染助剂中,柔软剂是整理助剂中的一个大类,品种多,产量大。从化学纤维的纺丝、拉伸、卷筒、编织或纤维素纤维的制条、纺纱、织造到纺织品的染色整理等

各项工序都要使用柔软平滑剂。各种柔软剂其主要功能是满足各种纺织品的不同手感,不同风格和要求。随着现代生活水平的逐步提高,柔软剂的使用已发展到家庭洗涤工序,称为柔软调理剂。其中三元共聚硅油是一种高分子平滑型柔软剂,采用硅氧烷、多胺、聚醚这三者聚合而成。 自20世纪60年代以来,硅油柔软剂经历了四个发展阶段。从第一代的二甲基硅油、羟基改性有机硅,到第二代的环氧基改性有机硅、聚醚改性有机硅,至第三代的氨基改性有机硅。目前氨基改性有机硅以其突出的柔软平滑手感成为市场上应用最多的有机硅整理剂。但是传统氨基改性有机硅在加工过程中易产生粘辊、粘缸现象,不耐高剪切,相容性差,而且手感发粘等缺点,因此科研人员研发了新型的线形三元共聚有机硅――低温成膜高渗透柔滑整理剂TF-463及超稳定柔滑整理剂TF-468K以满足市场的需要。本文从手感、色黄变、干湿摩擦牢度、耐洗色牢度、抗静电、与涤纶同浴染色以及稳定性等几方面对新型三元共聚硅油的特点和应用性能进行探讨。 1实验材料与方法 1.1 仪器与设备 电子天平,VPM-1A型轧车,PT-2A销板拉幅机、SW-24AII型耐洗色牢度试验机、Datacoler测色仪、Y5718耐摩擦色牢度试验机、Y(L)3420织物静电测试仪 1.2 试验材料与药品 织物:涤纶毛毯、涤纶机织(红色、墨绿色、白色)、棉针织(翠兰、梅红)、黑色棉机织、涤纶增白布、麂皮绒 助剂:低温成膜高渗透柔滑整理剂TF-463、超稳定柔滑整理剂TF-468K、普通氨基硅油 1.3 实验方法 1.3.1手感评价 将不同硅油分别以10g/L的浓度浸轧到涤针织织物上(浸轧的工艺为:配液→常温浸轧→定型(190℃×60S)),再将整理过的布样放至室内回潮冷却,最后由人为从柔软、蓬松、滑度等方面综合评价,得到评价结果。 1.3.2色变、黄变评价 根据 1.3.1中的方法用不同硅油在增白布或容易变色的织物上进行柔软整理,用DatacoLor测色仪测试其与空白样的白度、△L*、△a*、△b*和△E。

结构的几何构造分析概念

结构的几何构造分析概念 1-1 1、几何组成分析的目的主要是分析、判断一个体系是否几何可变,或者如何保证它成为几何不变体系,只有几何不变体系才可以作为结构。 几何可变体系:不考虑材料应变条件下,体系的位置和形状可以改变的体系。几何不变体系:不考虑材料应变条件下,体系的位置和形状保持不变的体系。 2、自由度:描述几何体系运动时,所需独立坐标的数目。 平面内一个动点A,其位置要由两个坐标 x 和 y 来确定,所以一个点的自由度等于2。平面内一个刚片,其位置要由两个坐标 x 、y 和AB 线的倾角α来确定,所以一个刚片在平面内的自由度等于3。 3、刚片:平面体系作几何组成分析时,不考虑材料应变,所以认为构件没有变形。可以把一根杆、巳知是几何不变的某个部分、地基等看作一个平面刚体,简称刚片。 4、约束:如果体系有了自由度,必须消除,消除的办法是增加约束。约束有三种: 5、多余约束:减少体系独立运动参数的装置称为约束,被约束的物体称为对象。使体系减少一个独立运动参数的装置称为一个约束。例如一根链杆相当于一个约束;一个连接两个刚片的单铰相当于二个约束;一个连接n个刚片的复铰相当于n—1个单铰;一个连接二个刚片的单刚性节点相当于三个约束;一个连接n 个刚片的复刚性节点相当于n—1个单刚性节点。如果在体系中增加一个约束,体系减少一个独立的运动参数,则此约束称为必要约束。如果在体系中增加一个约束,体系的独立运动参数并不减少,则此约束称为多余约束。平面内一个无铰的刚性闭合杆(或称单闭合杆)具有三个多余约束。

6、瞬变体系及常变体系:常变体系概念:体系可发生大量的变形,位移。区别于瞬变体系:瞬变体系概念:体系可发生微小的变形,位移。 7、瞬铰:两刚片间以两链杆相连,其两链杆约束相当(等效)于两链杆交点处一简单铰的约束,这个铰称为瞬铰或虚铰。 2-2平面杆件体系的计算自由度 1、体系是由部件(刚片或结点)加上约束组成的。 2、刚片内部:是否有多余约束。内部有多余约束时应把它变成内部无多余约束的刚片,而它的附加约束则在计算体系的约束总数时应当考虑进去。 3、复铰:连接两个以上刚片的铰结点。连接n个刚片的铰相当于(n-1)个单铰。 4、单链杆:连接两个铰结点的链杆。 5、连接两个以上铰结点的链杆。 连接 n 个铰结点的复链杆相当于(2n-3)个单链杆。 6、平面体系的计算自由度 W :W=3m-(2n+r) m:钢片数 n:单绞数 r:支座链杆数上面的公式是通用的。 W=2J-(b+r) J:结点个数 b:链杆数 r:支座链杆数上面的公式用于完全由铰接的连杆组成的结构体系。 7、自由度与几何体系构造特点: 静定结构的受力分析

氨基硅油

氨基硅油的制备及应用实验 一、实验目的 聚硅氧烷是一类有着特殊硅氧主链结构的半有机、半无机结构的高分子化合物,具有独特的低玻璃化温度、低表面张力特性,以及优良的耐热性、耐候性、憎水性、电绝缘性等性能。典型的如聚二甲基硅氧烷(PDMS),其分子结构示意如下: CH3 Si O n CH3 氨基硅油,即氨基改性聚硅氧烷,是二甲基硅油中部分甲基被氨烃基取代后的产物。氨基硅油除保留着二甲基硅油原有的疏水性、脱模性外,氨烃基的存在还可赋予其反应性、吸附性、润滑性及柔软性等性质,因而广泛应用于纺织、制革、日化等行业,尤其是纺织品的染整行业。 氨基硅油作为纺织品的柔软整理剂,可赋予织物柔软、滑爽、丰满等效果,以及良好的弹性手感。近年来,国内对氨基硅油的研究仍在不断加强。本实验的目的,就是通过探索优化的合成工艺条件,制备一定组成、结构的氨基硅油,并应用氨基硅油对羊毛或涤纶织物进行后整理研究。 二、实验反应机理 氨基硅油中的氨基主要有伯氨基、仲氨基、叔氨基、芳氨基、季铵盐等,例如: NH2NHCH2CH2NH2NHC2H4NHC2H4NH2OC6H4NH2 其中,不同的氨基赋予氨基硅油不同的应用性能。本次实验用的是仲氨基改性。 氨基硅油的制备方法,主要有:(1)氨烃基硅烷与硅氧烷催化平衡;(2)氨烃基硅氧烷与硅氧烷催化平衡;(3)氨烃基硅烷与端羟基硅氧烷缩合;(4)含氢硅油与烯丙胺加成等。 本实验拟采用氨烃基硅烷与硅氧烷催化平衡法,以八甲基环四硅氧烷(D4)、N-β-氨乙基-γ-氨丙基甲基二甲氧基硅烷(602)、六甲基二硅氧烷(MM)为原料来制备氨值为0.1~0.9的氨基硅油,反应式示意如下:

反应性氨基硅油

皮革用反应性氨基聚硅氧烷滑爽剂的 研制及应用 ! !"#$%"%&’()%)*%$$+’,%&’()(-"#%,&’.#%/’)($(+01’+(2%)#+#%&3#"1/((&3%4 #)&周建华!!张晓镭(陕西科技大学资源与环境学院,咸阳!"#$%" )!"#$%&’("$’,!"’()*&’#+,&(5(++#4 #(-6#1(7",#%)*8).’"()/#)&,93%%)2’:)’.#"1’&0(-9,’#),#%)*;#,3)(+(40,<’%)0%)4 !"#$%")摘 要 以!,"&二羟基聚二甲基硅氧烷(=9&’#>)和?&#&氨乙基&$&氨丙基三甲氧基硅烷(9@&9’($$)为原料,胺为催化剂,通过酯交换反应,合成了反应性氨基聚硅氧烷。利用A 6对其结构进行表征。采用微乳化技术,选择合适的乳化剂制备透明、粒径细小、稳定性优良的反应性氨基聚硅氧烷微乳液,将其作为滑爽剂应用于皮革,并测试了皮革的有关性能。应用结果表明:反应性氨基聚硅氧烷的氨值为$B )(!’//(+/4,黏度为’)$$/!%·1时滑爽性最佳,其处理后的皮革具有优异持久的柔软、滑爽、丰满的手感特性,并且革面细腻、光亮自然、疏水性强。 关键词!,"&二羟基聚二甲基硅氧烷反应性氨基聚硅氧烷 微乳液 皮革滑爽剂 中图分类号;9)" 文献标识码C C D 1&"%,& *+,-.!,"&/,01/2341/,5670189381+,834:-6(;<&’#=):-/>&#&:5,-367018&$&:5,-392391 8&72,5670341+,8:-6(K U V K H T V J W 38G R Q >3G "( " """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""X @7G #$$) !!!第一作者简介:周建华,女,"(!R 年生, 硕士学位,讲师基金项目:陕西省教育厅专项科研计划项目($Q Y Z "R Q )万方数据

氨基硅油乳液的制备方法

氨基硅油乳液的制备方法 氨基硅油不溶于水,不能直接用于纤维/织物的柔软整理,必须将其乳化制成乳液才能应用。按乳液粒径分类,目前出现的氨基硅油乳液有三种:普通乳液、微乳液和细乳液。普通乳液粒径为0.5~1.0μm外观为蓝或灰的乳白色液体;微乳液粒径通常小于0.10μm,外观为透明或半透明的液体;细乳液则介于两者之间。由于普通乳液粒径大,颗粒表面的双电层较弱,颗粒间易相互作用而凝聚,导致乳化状态破坏,水与油相分离;而微乳液粒径小,乳液呈热力学稳定的分散状态,其贮藏性、耐热及抗剪切稳定性均很优越,一般不破乳,且使用效果极佳。因而,工业场合均力求将氨基硅油进行微乳化[10]。 氨基硅油微乳液胶束很小,能够渗透到纤维内部,为织物提供内在的柔软性和出色的4表面平滑性。微乳液属热力学稳定体系,粘度低且结构稳定,从而减少了聚结或破乳的危险。理论上讲,氨基硅油因为含有极性的氨基而较聚二甲基硅油易乳化,但由于硅氧烷上甲基的疏水性和低氨基含量,与水相比氨基硅油仍具有很低的表面能,使乳化受到一定的限制,表现在随着分子量的升高,乳化难度增加,所以实际上氨基硅油的微乳化往往需用复配乳化剂才能达到较佳的效果,否则是比较困难的[6,11]。影响氨基硅油乳化的因素有:①乳化剂的选择和复配②助剂的选择③乳化工艺的选择④温度的影响⑤搅拌及滴加速度⑥pH值的影响⑦水硬度的影响⑧硅油结构的影响⑨氨基硅油含量。 1.1.3.1乳化剂的选择和复配 表面活性剂是微乳化过程的主要影响因素,它主要是通过降低油水界面的表面张力及增溶作用来实现微乳化。表面活性剂的选取主要是考虑它能否尽可能降低油水界面的表面张力[10]。用于氨基硅油微乳化的表面活性剂可以是阳离子、阴离子、非离子和两性乳化剂。因高度纯化的表面活性剂通常生成不紧密的界面膜,机械强度不高。故优良的乳化剂通常是两种或两种以上的表面活性剂复配而成的复合乳化剂,而不是单一的品种。一般是一种亲水性较强的表面活性剂和另一种亲油性较强的表面活性剂复合而成的。由于氨基硅油具有一定的阳离子性,因此应避免使用阴离子型乳化剂,从国内外的文献报道看,大部分使 用的是非离子乳化剂。常见的非离子型乳化剂大致分为以下两大类[7]: 聚乙二醇型:平平加AEO(脂肪醇聚氧乙烯醚) OP(烷基酚聚氧乙烯醚) TX(仲辛基酚聚氧乙烯醚) 脂肪酸聚氧乙烯醚等 多元醇型:Span,T ween(失水山梨醇脂肪酸酯) 甘油脂肪酸酯 蔗糖脂肪酸酯 也有使用两性表面活性剂:C12-C15的烷基二甲基叔胺或羧基型、磺酸型两性咪唑啉等;阳离子表面活性剂使用较少,如Ethoquaol C/2(季化聚氧乙烯椰子胺)、十八烷基三甲基溴化铵(1831)、十六烷基三甲基溴化铵(1631)、十二烷基三甲基氯化铵(1231)及十二烷基二甲基苄基氯化铵(1227)等 乳化剂的选择和复配的原则主要是基于乳化剂的HLB值法。所谓HLB值法是指乳化剂的亲水亲友平衡值法。复配乳化剂时,复合乳化剂的HLB值应当大体和被乳化的氨基硅油的HLB值相同,国内外有很多报道采用多种乳化剂复配乳化剂,在一定的乳化条件5下得到了透明或半透明的氨基硅油微乳液[7,8,11]。 1.1.3.2助剂的选择 一般认为,在氨基硅油微乳液体系中加入少量的辅助表面活性剂有助于澄清透明微乳液的形成。有文献报道在配制乳液过程中添加含氨基的酸及乙二醇单异丙醚,可使配制的微乳液的储存稳定性、稀释稳定性、机械稳定性、热稳定性及透明性得到提高。Marianne等提出加入醋酸可提高微乳液的透明度,pH值控制在5.5~6.5;Jam es也提出应加入低级脂肪羧酸或无机酸(最好是醋酸),并提出加入脂肪醇可增加微乳液的透明度;Katayama等认为在离子型表面活性剂中,助剂醇(低碳链的脂肪醇)可以使界面易弯曲,对层状液晶起到稳定作用[10,11]。综上所述,辅助表面活性剂可起到减小界面张力、增加界面膜的滚动性、调节HLB值及界面的自然弯曲的作用。1.1.3.3乳化工艺的选择 微乳液分为油包水型(W/O)、水包油型(O/W)和双连续型3种结构,其类型主要取决于体系中油水界面的曲率。具有自动弯曲向油相

结构力学 第二章 结构的几何组成分析

第二章 结构的几何组成分析 李亚智 航空学院·航空结构工程系

2.1 概述 结构要能承受各种可能的载荷,其几何组成要稳固。即受力结构各元件之间不发生相对刚体移动,以维持原来的几何形状。 在任意载荷作用下,若不考虑元件变形,结构保 持其原有几何形状不变的特性称为几何不变性。 在载荷作用下的系统可分为三类。 2.1.1 几何可变系统 特点: 不能承载,只能称作“机构”。 2 1 3 4 P 2’3’

2.1.2 几何不变系统 特点:能承载,元件变形引起几何形状的微小变化,可以称为结构。 2.1.3 瞬时几何可变系统 特点:先发生明显的几何变形,而后几何不变。 P 213 4 2’ 3’ 2’3’ P 2 1 34 5 ∞ →=2321N N 1 2 3 P 内力巨大,不能作为结构。 N 21 N 23 P 2

由以上分析可见,只有几何不变的系统才能承力和传力,作为“结构”。 系统几何组成分析的目的: (1)判断系统是否几何不变,以决定是否能作为结构 使用; (2)掌握几何不变结构的组成规律,便于设计出合理 的结构; (3)区分静定结构和静不定结构,以确定不同的计算 方法。

2.2 几何不变性的判断 2.2.1 运动学方法 将结构中的某些元件看成自由体,拥有一定数量的自由度; 将结构中的另一些元件看成约束。 如果没有足够多的约束去消除自由度,系统就无法保持原有形状。 所谓运动学方法,就是指这种引用“约束”和“自由度”的概念来判断系统几何不变性的方法。

1、自由度与约束(1)自由度的定义 决定一物体在某一坐标系中的位置所需要的独立变量的数目称为自由度,用n 表示。平面一个点有2个独立坐标,故n =2空间一个点有3个独立坐标,故n =3 x y y ?x ?A A ' x y A y A x A z A z A ' O

氨基硅油项目可行性研究报告

氨基硅油项目可行性研究报告 Word模板可编辑

目录 第一章氨基硅油项目总论 (1) 一、项目基本情况 (1) 二、项目拟建地址及用地指标 (1) 三、项目建设的理由 (3) 四、项目建设内容 (3) 五、项目产品规划方案 (4) 六、投资估算及资金筹措方案 (5) 七、项目达纲年预期经济效益 (6) 八、项目建设进度规划 (7) 九、报告编制说明 (8) 十、项目综合评价 (12) 十一、主要经济指标分析 (14) 第二章项目建设背景及必要性 (20) 一、项目提出的背景 (20) 二、项目建设的必要性 (23) 第三章项目选址科学性分析 (25) 一、项目选址及用地方案 (25) 二、项目节约用地措施 (26) 三、项目选址综合评价 (27) 第四章总图布置 (29) 一、项目总平面布置方案 (29)

二、运输组成 (32) 三、总图主要数据 (34) 第五章工程设计总体方案 (35) 一、工程设计条件 (35) 二、土建工程设计年限及安全等级 (36) 三、建筑设计方案 (37) 四、辅助设计方案 (37) 五、主要材料选用标准要求 (38) 六、建筑物防雷保护 (39) 第六章原辅材料及能源供应情况 (41) 一、原辅材料供应 (41) 第七章工艺技术设计及设备选型方案 (44) 一、工艺技术设计确定的原则 (44) 二、工艺技术方案 (45) 三、设备选型 (50) 第八章环境保护 (52) 一、拟建项目环境污染源的识别 (52) 二、建设期环境影响分析及防治对策 (52) 三、项目运营期废水治理措施 (59) 四、运营期废气治理措施 (61) 五、项目运营期固体废弃物治理措施 (64) 六、项目运营期噪声影响治理措施 (65) 七、环境保护结论 (66) 第九章清洁生产 (68) 一、清洁生产综述 (68)

第二章-结构的几何构造分析(龙驭球第三版)

第2章结构的几何构造分析 本章内容:§2-1 几何构造分析的几个概念 §2-2 平面几何不变体系的组成规律 §2-3 平面杆件体系的计算自由度 §2-4 在求解器中输入平面结构体系(略) §2-5 用求解器进行几何构造分析(略) §2-6 小结 主要内容: 第三讲 §2-1 几何构造分析的几个概念 1. 几何不变体系和几何可变体系 一般结构必须是几何不变体系 几何不变体系—在不考虑材料应变的条件下,体系的位置和形状是不能改变的。 几何可变体系—在不考虑材料应变的条件下,体系的位置和形状是可以改变的。 2. 自由度 平面内一点有两种独立运动方式,即一点在平面内有两个自由度。 一个刚片在平面内有三种独立运动方式,即一个刚片在平面内有三个自由度。 自由度个数=体系运动时可以独立改变的坐标数 3. 约束 一个支杆相当于一个约束,如图(a);一个铰相当于两个约束,如图(b);一个刚性结合相当于三个约束,如图(c)

4. 多余约束 如果在一个体系中增加一个约束,而体系的自由度并不减少,此约束称为多余约束。 有一根链杆是多余约束 5. 瞬变体系 特点:从微小运动的角度看,这是一个可变体系;经微小位移后又成为几何不变体系;在任一瞬变体系中必然存在多余约束。 可变体系 瞬变体系:可产生微小位移 常变体系:可发生大位移 6. 瞬铰 O为两根链杆轴线的交点,刚片I可发生以O为中心的微小转动,O点称为瞬时转动中心。 两根链杆所起的约束作用相当于在链杆交点处的一个铰所起的约束作用,这个铰称为瞬铰。 7. 无穷远处的瞬铰

两根平行的链杆把刚片I与基础相连接,则两根链杆的交点在无穷远处。两根链杆所起的约束作用相当于无穷远处的瞬铰所起的作用。 无穷远处的含义 (1)每一个方向有一个∞点; (2)不同方向有不同的∞点; (3)各∞点都在同一直线上,此直线称为∞线; (4)各有限点都不在线∞上。 §2-2 平面几何不变体系的组成规律 1. 三个点之间的连接方式 规律1 不共线的三个点用三个链杆两两相连,则所组成的铰接三角形体系是一个几何不变的整体,且没有多余约束。 2. 一个点与一个刚片之间的连接方式 规律2 一个刚片与一个点用两根链杆相连,且三个铰不在一直线上,则组成几何不变的整体,且没有多余约束。 3. 两个刚片之间的连接方式 规律3 两个刚片用一个铰和一根链杆相连,且三个铰不在一直线上,则组成几何不变的整体,且没有多余约束。

氨基硅油的性质

氨基硅油的性质 1 氨基硅油的分类 氨基硅油根据氨基在聚硅氧烷分子中的位置,可分为单端型、双端型、侧端型、 共聚型和混合型。 按端基分类,有甲基、甲氧基和羟基等氨基硅油。端基为甲基的称为“非活性氨 基硅油”,比较适合加工棉和蚕丝织物。端基为羟基和甲氧基的称为“活性氨基硅油”,适合加工动物纤维。 按氨基分类,有伯氨基(-NH2),仲氨基(-NHCH3),叔氨基[-N(C2H5)2]及伯仲氨基 皆有(-NHCH2CH2NH2)的结构硅油。 2 氨基硅油的柔软机理 氨基硅油所具有的优异柔软性源于其基本的几何分子构型,聚硅氧烷的主链是 一种易扭曲的螺旋形直链结构,由硅原子和氧原子交替组成,围绕-Si-O-键旋转所需的能量几乎为零,这表明-Si-O-的旋转是自由的,可以360°旋转,这使得主链十分柔顺。在聚二甲基硅氧烷的每一个硅原子上有 2 个甲基,这 2 个甲基处在垂直于 2个相近的氧原子连接线的平面上。 氨基硅油中的氨基极性强,与纤维表面的羟基、羧基等相互作用,非常牢固地取 向和吸附在纤维上,-Si-O-键主链和硅原子上的甲基与聚二甲基硅氧烷一样,使纤维之间的静摩擦系数下降,轻微的力就能使纤维之间滑动,从而感到柔软平滑。 3 氨基硅油的特性表征 氨基硅油通常以三个特性参数来表征:氨值、粘度、反应性,这三个特性参 数基本反映了氨基硅油的品质,并影响织物处理后的性能。 3.1 氨值 氨基硅油赋予织物的各种性质(如柔软手感、平滑度、弹性等)都是由聚合物中 的氨基造成的。氨值与氨基硅油中氨基含量(百分率)成正比,氨基含量越高,氨值就越大,被整理织物的手感就越柔软、平滑,用作织物柔软剂的氨基硅油的氨值一般在 0.2~0.6 之间。虽然氨基有机硅柔软

氨基硅油性能

【化学成分】多种表面活性剂复配而成【类型】非离子【技术指标】 外观:无色透明粘稠液体pH值:5.0-7.0 ( 1% 水溶液) 水分:≤1.0% 含量:≥99% 【性能及特点】1、本乳化剂易溶于水,具有优良的乳化、分散性能,特别适用于生产各种O/W型氨基硅油(氨值0.1~0.6)微乳液,具有操作容易,乳化力强,乳化分散稳定性好等优点,是目前市场中各种性能均优的氨基硅油乳化剂品种。2、AMM为含NP结构的多种表面活性剂复配而成,适用于粘度≤6000cp的各种氨基硅油,可得到清澈、透明的微乳液。3、AMH为不含NP结构的多种表面活性剂复配而成,安全环保,对环境无害,适用于粘度≤50000cp的各种氨基硅油,广泛应用于出口类纺织品。4、AMM、AMH 氨基硅油乳化剂具有以下特点:(1)能增强氨基硅油与织物之间的附着和渗透;(2)增加织物的柔顺性,弥补某些氨基硅油在软度或滑度等方面的不足;(3)乳化能力强,在比较宽的HLB值范围内对不同胺值的氨基硅油微乳化;(4)生产时对设备要求低,不需使用高剪切机,仅用一般机械搅拌器即可;(5)配伍性好,能与阴,阳和非离子型助剂复配结合使用; 【应用】一、正相乳化法将乳化剂和氨基硅油按所需含固量加入乳化釜中,乳化剂10份,氨基硅油20份,搅拌混合均匀,加入部分醋酸0.15份和水5份,搅拌20~30分钟,再缓慢滴加入水20份,搅拌30分钟,再加20份水稀释,搅拌10~20分钟,直至形成均匀乳液,加醋酸0.15份,调节pH在5.5~6.0之间,加入25份水稀释,搅拌10~20分钟,直至形成均匀乳化液,取样,检查外观为透明液体,过滤并包装。(供参考) 二、反相乳化法将5份乳化剂和35份水加入乳化釜中,加热至60℃,搅拌均匀,加入0.1~0.15份醋酸,搅拌均匀后,缓慢加入10份氨基硅油,搅拌30分钟,用醋酸调节PH在7左右,搅拌降温至40℃以下,即的透明微乳液。(供参考) 【包装与贮运】200Kg铁桶、20Kg、50Kg塑料桶包装。按一般化学品贮存和运输。贮存于干燥通风处。保质期二年。

相关主题
文本预览
相关文档 最新文档