当前位置:文档之家› 软土地区地基加固的沉降计算

软土地区地基加固的沉降计算

软土地区地基加固的沉降计算
软土地区地基加固的沉降计算

软土地区地基加固的沉降计算

在软土地区桥梁扩大基础工程或高路堤挡土墙基础工程中,均存在回填或高筑等路基形成过程,使得软土地基在填土荷载作用下,应力状态发生变化,导致土体产生变形,本文主要根据太砂基的固结理论为基础,采用Microsoft Excel来编制土体沉降及固结分析程序,分析土体在回填施工过程中或施工结束后土体的总沉降历程以及深层某层某点的沉降历程以及土体相应的总固结度,并结合实际某工程实测面层沉降数据之分析,说明本程序的功能以及应用。

一、土体沉降的计算

在实际工程中,由于受施工过程,地基土体本身情况复杂性的影响,地基土在受荷后的变形情况是十分复杂的,但按土体受荷后沉降发生的次序,主要可分以下三个部分,即初始沉降,固结沉降和次固结沉降。初始沉降主要包括以下三个部分:a)基础受荷后,地基土体会发生剪切变形,尤其在靠近基础边缘处,由于应力比较集中,剪切变形范围更大;b)地基土体受荷后产生的侧向变形而引起的沉降;c)地基土中的砂土层在受荷后产生的沉降。以上三部分沉降假定地基土受荷后立即产生的,是属于初始沉降。固结沉降是由于土体受荷后压缩将土体孔隙中的水份逐渐排挤出而产生的缓慢沉降,次固结沉降是由于土体颗粒骨架在持续荷载作用下发生蠕动而引起的变形。由于该部分沉降发生的持续时间很长,而沉降数值一般较小,在本文中没有考虑。

根据上面叙述,地基土体的沉降可用下式表示:

S=Sd+Sc (1)

式中:

Sd:由于地基土因受荷后发生的剪切变形,侧向变形以及地基土中的砂土层所引起的初始变形,该部分沉降认为加荷后立即产生。

Sc:地基土因固结变形而引起的最终沉降。

S:地基土体受荷后所产生的总沉降。

由于地基土的初始变形Sd的影响因素比较多,计算比较复杂困难,为进一步简化,上式可写成:

S=Sd+Sc=m?Sc (2)

式中:

m:沉降经验系数,表示地基土受荷后发生的剪切变形、侧向变形、以及地基土中砂层的沉降影响系数,与地基土的变形特性、荷载条件、加荷速率以及土体的固结状态、灵敏度等因素有关。

一次聚然加荷或一次等速加荷结束后任一时刻的地基沉降量为

St=(m-1+Ut)Sc (3)

式中:

St:加荷开始后t时刻的土体沉降量;

Ut:加荷开始后t时刻的土体总固结度。在实际工程施工实施过程中,很多路基形成过程是由许多分级加载形式实施的,因此,为求任一时刻t的土体累计沉降量应对各个时刻的St值加以修正,使其与修正的固结度相适应,因此,上述公式可修正为: St=[(m-1)+Ut]?Sc (4)

式中:

Pt:加荷开始后至t时刻的累计荷载;

∑P:总荷载;

Sc:土体的固结沉降值。

对正常固结之饱和土体:

Sc=?hi?log()i (5)

对欠固结之饱和土体:

Sc=?hi?log()i (6)

(5)、(6)两式各符号意义如下:

Cc:土体的压缩指数;

eo:土体的原状孔隙比;

Po:计算深度处的土体自重有效应力;

P:计算深度处土体的附加应力;

hi:土体计算的分层厚度;

Pc:地基土体的前期固结压力。

二、土体的固结度计算

土体的固结度计算是根据太沙基固结理论方程为基础所进行的,考虑到实际工程中施工加载过程的复杂性,对太沙基的理论公式进行修正,具体叙述如下:太沙基固结理论方程为:

=Cvx+Cvy+Cvz

根据太沙基固结理论方程解,大面积堆载条件下和瞬时加荷条件下的砂井地基平均固结度的计算公式如下:

a)竖向固结度公式为:

Utv=1- (7)

其中:m=1,3,5……

式中:

Tv= (8)

b)水平向固结度公式为:

Uth=1-e (9)

式中:

F(n)=?ln(n)- (10)

Th= (11)

上叙各式中:

Uth、Utv:分别为加载开始后t时刻的水平向和竖向平均总固结度;

Ch、Cv:分别为土体在水平向和竖向的固结系数;

H:竖向渗泾长度;

de:砂井有效直径。

若为三角形布臵时

de= 1.05d

若为正方形布臵时

de= 1.128d

d为砂井(或塑料板等)的间距

n:n=de/dw砂井之井径比

dw:砂井直径或塑料板等效折算等效直径。

c)砂井地基瞬时加载之平均总固结度公式为:

Ut=1-(1-Uth)?(1-Utv) (12)

如前所述,由于实际工程施工实施过程中,很多是属于多级逐渐加载情况(如图

-1),因此,需对上述固结度计算公式进行修正,修正后的多级加载的地基固结度公式如下:

Ut’=Ut(t-)? (13)

上述(13)式即为所谓改正太沙基固结度计算公式。

式中:

Ut’:砂井地基在多级荷载作用下,从第一级加载开始后t时刻的平均总固结度;

Ut:瞬时加荷条件下某一级加载后t时刻的平均总固结度;

Tio:第i级加载的起始时间;

Tif:第i级加载的终了时间,当计算加荷期间的固结度时Tif应改为t;

Pi:第i级等速加荷之增量,如计算逐级加载过程中某一时间点的固结度时,应取用该时间点的荷载增量值△Pi;

∑P:各级荷增量之累加,即总荷载;

Si:第I级荷载作用下的最终沉降量,当计算该级加荷期间的总固结度时,Si应改为△Si,△Si为对应于该级加荷过程中t时刻的荷载增量(Pi作用下所产生的最终沉降量;

∑S:由总荷载所产生的最终沉降量;

t:计算固结度的时间点。

三、程序的编制及功能

根据上面关于土体在多级荷载作用下的沉降及固结度的计算方法,本文采用Microsoft Excel软件来编制土体沉降历程及固结度计算程序,其编制要点及程序的主要功能叙述如下:

1.编制要点:

本程序主要是针对高架道路桥梁基础的清淤及回填的要求而编制的,考虑到超载及清淤回填以及安全区的卸载时的荷载形式,共分七级加载,其荷载图式如图-2,其荷载时间关系曲线见图-3或图-7。

2.程序组成:

本程序由下列八个表面独立,但计算数据相互联系的文件形成的程序群体组成:

i)沉降计算点的钻孔地质资料文件:

该文件是将要计算沉降地点附近的地质资料,经综合分析后形成,包括计算点区域的土层分层情况,各土层的分层顶底标高,土层厚度、容重、压缩系数以及天然孔隙比等,程序中能考虑计算点处多达8层土的情况;

ii)施工实施计划时间表:

该文件是将要计算沉降历程或固结度地点附近的陆域形成施工实施计划要实施的施工计划时间表输入进去,以便形成施工加载曲线,为了使得此程序具有广泛的通用

性,本程序考虑了多达七级的分级加载历程,并在其中考虑了砂井(或塑料板)加固施工时间、超载预压和卸载以及卸载和回填的计算,为便于本程序具有一定的通用性,除考虑了回填或吹填土容重以及各级强度根据其标高以及水上、水下和清淤区之间的关系和各种可能。

iii)总固结沉降计算文件:

该程序主要考虑了在大面积回填荷载、清淤区域内的条形梯形荷载以及超载条形荷载作用下的固结总沉降的计算,沉降计算按(5)式采用分层总和法计算,每层土分五等分,和前面i)一样,考虑了多达8层土的总沉降计算。

iv)固结度计算文件:

该程序主要是根据实际或设计工程中砂井参数,如加固深度、布臵形式、砂井(或塑料板)间距,加固深度范围内土体的竖向、水平向渗透系数,结合I)的土层指标,ii)的施工实施计划以及iii)的总固结沉降,来进行土体的固结沉降历程计算,是本程序的计算核心,它能一次计算多达20个时间点的沉降数值和固结度数值,且分别考虑了多级荷载作用下的改进太沙基法,以及初始沉降对总固结沉降的影响(沉降经验系数m值)以及先超载后卸载的土体回弹影响。

v)固结度曲线:

该文件是将前面iv)的计算结果,将有关的固结度数据摘取出而绘制而成的土体加固历程曲线。

vi)沉降历程曲线:

vii)土体沉降或固结历程结果表:

该文件是将前面vi)的计算结果及有关数据摘录出来而整理成的计算结果数据

表,和上述v)、vi)的曲线相对应。

viii)土体沉降或固结度参数表:

该文件是将有关沉降和固结度历程计算的输入数据分别从以上各文件中摘录出来而整理成的计算参数表,以便计算者校对输入数据的正确与否,能比较容易地发现输入数据中的错误。

3.程序的功能及应用:

本程序的主要功能如下:

i)软土地基面层总沉降及其沉降历程的计算;

ii)软土地基下深层某点在砂井加固范围内的沉降历程计算;iii)软土地基某一时间点面层或深层沉降历程数据可利用本程序对其进行行算,可以将计算结果和实测结果进行比较,并可进一步对土体的固结情况作出比较准确的评价以及对影响土体沉降的各种因素进行分析。

四、结论

本程序主要目的是土体的观察沉降计算分析,比较及综合评价,但由于工程在施工过程中的复杂性,加之在编制过程中刻意考虑使此之具有通用性,因此,在类似工程中,只要荷载加载形式符合图-2,荷载-时间曲线符合图-3或图-7的形式,本程序便可适用。另外,本程序在计算过程中,由于能够直接和计算者见面,各种计算参数和计算结果能直接显示在屏幕上,方便使用者发现错误及时调整得到满意的结果,计算结果可以直接以图表的形式打印出,但本程序存在着以下几个问题:

1.关于沉降经验系数m和回弹系数:

如前所述,沉降经验系数是考虑土体在荷载作用时的初始沉降(变形)影响,它的影响因素很多,加之实际工程的复杂性,因此,它是一个实践性很强的参数,必须根据具体工程的客观实际情况,附近类似工程的实测资料的分析,以及受荷条件土体的变形特性等作综合分析后确定。

2.在程序中土体的固结情况是假定为正常固结,荷载形式为大面积堆载,这和实际情况不尽相同,影响土体的竖向固结度以及沉降总值的计算。

3.本程序的砂井加固是考虑在第四级加荷后进行的,在砂井施打以前各级荷载仅有

竖向排水固结,砂井施打以后才有水平向排水固结,因此,严格地说该几级荷载在砂井施打以后的固结度不能用公式(12)来表达,但由于在砂井施打以前各级荷载的固级速度很慢,固结度相对比较少,用公式(12)处理所引起的误差很少,不会有较大的影响。

软土地基处理方案

软土地基处理方案 本合同段软土地基处理包括以下几种方法:换填砂垫层、干砌片石、碎石垫层、预压与超载预压、土工布、单向土工格栅、双向土工格栅、土工格室、搅拌桩。施工时间安排在2002年11月11日至2003年8月31日。 软土路基处理时遵循的施工原则 施工季节:优先安排在非雨季节施工,根据气象预报资料选取在连续降雨量少时间施工。 工序安排:采用机械化快速施工,开挖、换填、防护加固、防排水各项设施等工序一气完成,尽量缩短工作面暴露时间。严格按照各种不同处理方法的工艺要求进行施工。软基段的涵洞工程,在路基预压期满,沉降基本完成后在开槽施工。 4.4.1.一般路堤浅层处理施工 采用排水砂垫层,土工格栅设置在排水垫层顶部,坡角采用干砌片石护坡,护坡背后设置土工布反滤层。 4.4.1.1.换填砾类土垫层 施工工艺??见表5 施工工艺框图砂垫层施工工艺框图。 砂选用中粗砂,在开工前对砂场进行调查,并及时取样进行分析,主要测定细度模数、含泥量、有害物含量,选择符合设计标准的砂方可使用。 施工时首先清除加固范围内地面上的草皮及杂物,用土质相同的土填成坡度为3~4%的横坡,并碾压密实。 分层填筑:砂垫层分两层填筑,每层压实厚度25cm,按照经过试验确定的合格填料和经过试验确定的工艺参数,进行分层填筑压实。 摊铺整平:为了保证路堤压实均匀和填层厚度符合规定,填料采用推土机初平,刮平机进行二次平整,使填料摊铺表面平整度符合要求。 洒水或晾晒:砂的含水量直接影响压实密度。在相同的碾压条件下,当达到最佳含水量时密实度最大,填料含水量波动范围控制在最佳含水量的+2%~-3%范围内,超出最佳含水量2%时进行晾晒,含水量低于最佳含水量进行洒水。洒水采用洒水车喷洒,晾晒采取自然晾晒,必要时旋耕机翻晒。 机械碾压:碾压是保证砂垫层达到密实度要求的关键工序。碾压按照“先静压,后振动碾压”;“先轻,后重”;“先慢,后快”;“先两侧,后中间”的原则。 检验签证:砂垫层的检测采用K30荷载仪进行检测地基系数,核子密度仪检测压实系数。 施工防排水:砂垫层施工完成后,在两侧挖临时排水沟,使排到砂垫层里面的水能及时排出。严格管理施工用水与生活用水,以免冲刷路基各部与取土处。 4.4.1.2.单向单层土工格栅处理软土地基施工 施工工艺??见表5 施工工艺框图铺设单层单向土工格栅施工工艺框图。 施工时首先清除加固范围内地面上的草皮及杂物,用土质相同的土填成坡度为3~4%的横坡,并碾压密实。 在上面填厚30cm的中粗砂,压实到符合设计要求后,将表面进行整平,去除表面石块,并将去除石块后形成的凹坑补平,然后在上面满铺一层单向土工格栅。 土工格栅铺设要求幅与幅之间纵向采取密贴排放,横向采用连接棒连接或搭接法连接,连接强度不低于设计强度,横向接缝错开不小于1m。铺设时使格栅与土层密贴,每隔一定距离用U型钉将格栅固定在土层上。 格栅铺设后及时用砂或其他渗水材料覆盖20cm厚,并按设计要求铺回折段砂,外边逐幅回折2m,用砂压住。然后进行整平、压实达到设计要求后进行路基填筑。

常用的地基沉降计算方法

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性 力学法、 分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据 的。在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s : E r P s 2 1μπ-?= (6-8) 式中 μ—地基土的泊松比; E —地基土的弹性模量(或变形模量E 0); r —为地基表面任意点到集中力P 作用点的距离,22y x r +=。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6 所示,设荷载面积A N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为集中力P= p 0(ξ,η)d ξd η代替。于是,地面上与N 点距 离r =22)()(ηξ-+-y x 的M (x, y )点的沉降s (x, y ),可由式(6-8)积分 求得: ??-+--=A y x d d p E y x s 22002 )()(),(1),(ηξηξηξμ (6-9) 图6-5 集中力作用下地基表面的沉降曲线 图6-6 局部荷载下的地面沉降

从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若 沉降已知又可以反算出应力分布。 对均布矩形荷载p0(ξ,η)=p0=常数,其角点C的沉降按上式积分的结果为: 2 1 bp E s c ω μ - = (6-10) 式中cω—角点沉降影响系数,由下式确定: ? ? ? ? ? ? + + + + + =)1 ln( ) 1 1 ln( 12 2 m m m m m cπ ω (6-11) 式中m=l/b。 利用式(6-10),以角点法易求得均布矩形荷载下地基表面任意点的沉降。例如矩形中心点的沉降是图6-6(b)中的虚线划分为四个相同小矩形的角点沉降之和,即 2 21 )2/ ( 1 4bp E p b E s cω μ ω μ- = - = (6-12) 式中cω ω2 =—中心沉降影响系数。 图6-7 局部荷载作用下的地面沉降 (a)绝对柔性基础;(b)绝对刚性基础 以上角点法的计算结果和实践经验都表明,柔性荷载下地面的沉降不仅产生于荷载面围之,而且还影响到荷载面之外,沉降后的地面呈碟形,见图6-7。但一般基础都具有一定的抗弯刚度,因而沉降依基础刚度的大小而趋于均匀。中心荷载作用下的基础沉降可以近似地按绝对柔性基础基底平均沉降计算,即 A dxdy y x s s A / ) , ( ??= (6-13) 式中A—基底面积, s(x, y)—点(x, y)处的基础沉降。 对于均布的矩形荷载,上式积分的结果为:

浅谈建筑工程中软土地基处理技术

浅谈建筑工程中软土地基处理技术 随着新时代大众生活水平的不断提高,人们对精品、低密度房屋建筑的需求与日俱增,同时 对结构成本的控制愈加严格。房屋建筑施工技术不断发展,对软土地基进行综合改造成为技 术改良趋势,也是提高房屋建筑结构性能及节约建筑结构造价的关键。软土是指以水下沉积 的软弱粘性土或淤泥为主的地层,有时也有少量的腐泥或泥炭层。软土、沼泽的划分为软粘土、淤泥质土、淤泥、泥炭质土及泥岩五种类型。习惯上常把淤泥、淤泥质土、软粘土总称 为软土,而把有机质含量高的泥炭、泥炭质土总称为沼泽。 2 建筑工程中软土地基的特点 软土地基如果没有处理妥当是很容易造成塌方。在建筑工程中,软土地基属于较难开发的地 基种类。在工程施工时必须要对它进行勘察和分析,然后再利用严格的处理技术对软土地基 进行处理,保证软土地基对建筑的承受能力,使软土地致符介建筑工程的基本规格,避免出 现软土地基向下沉的情况,保证建筑工程的安全性。建筑工程中软土地基主要特点如下: 一是容易发生改变。软土地基由于土质较为松软,软土地基由于在施工过程中受到施工的十扰,它的土质就会由原先的固体的变得稀疏松动。 二是软土地基具有高压缩性。当软土地基压缩性较强时,建筑工程在施工过程中,如果压力 过大的话,软土地基就会收缩变形,那么房屋的质量必然会受到影响。 三是软土地基含水量较高。在对软土地基施工中必须要保证软土地基呈固体,软土地基含水 量过高很容易导致土质松动,因此会使房屋和下沉。 四是软土地基土质小均匀。由于软土地基土质存在较大问题,导致软土地基分布位置小均匀,那么在施工过程中,受外力的影响小够均匀的话,建筑房屋会出现倾斜。 五是软土地基容易下沉。软土地基由于含水量过多,它的土质是不够稳定的,由于楼层的小 断加大,软土地基需要承受的外力加大,很容易导致地基下沉。 3 软土地基处理技术分析 3.1 垫层换填法 垫层换填法属于一种对软土地基的进行浅层处理的方法。常用的填充材料有碎石以及泥土。 被广泛的应用于对固体坚硬物质含量少的图层进行填充,在进行垫层换填法时,常用的工具 有两种,一种是人工的方式,另一种是采用机器作为动力辅助。其使用原理是依靠人工或者 机器将浅层的泥土抽取出来,然后将碎石等相对僵硬的物质填埋进去,实现换填的目的。但是,在换填的时候,有一项非常重要的注意事项,就是当填埋的深度超过1m时,为了实现 功能的最大化,就需要加一层土工布等物质。这种换填的方法本质上还是为了满足建筑的需要,保证其能够承担更大的压力。此外,这种换填还有效地解决由于地基冻胀对房屋建筑地 基造成影响的问题。 3.2 加载法 所谓加载法,就是在地基的硬度不符合要求的时候,在其上面加重物,将软性物质进行压缩,提高其硬度,达到建筑的要求。这种高硬度的地基,有利于提高建筑的使用周期。在建筑建 设中使用此方法都是利用高强的压力,这种对泥土施压的方式能够减少软土中的水分。当在 泥土中使用此方法时,应当选择合适的时间进行。 3.3 添加剂法

地基沉降实用计算方法

第三节 地基沉降实用计算方法 一、弹性理论法计算沉降 (一) 基本假设 弹性理论法计算地基沉降是基于布辛奈斯克课题的位移解,因此该法假定地基是均质的、各向同性的、线弹性的半无限体,此外还假定基础整个底面和地基一直保持接触。 布辛奈斯克是研究荷载作用于地表的情形,因此可以近似用来研究荷载作用面埋置深度较浅的情况。当荷载作用位置埋置深度较大时,则应采用明德林课题的位移解进行弹性理论法沉降计算。 (二) 计算公式 建筑物的沉降量,是指地基土压缩变形达固结稳定的最大沉降量,或称地基沉降量。 地基最终沉降量:是指地基土在建筑物荷载作用下,变形完全稳定时基底处的最大竖向位移。 基础沉降按其原因和次序分为:瞬时沉降d S ;主固结沉降c S 和次固结沉降s S 三部分组成。 瞬时沉降:是指加荷后立即发生的沉降,对饱和土地基,土中水尚未排出的条件下,沉降主要由土体测向变形引起;这时土体不发生体积变化。(初始沉降,不排水沉降) 固结沉降:是指超静孔隙水压力逐渐消散,使土体积压缩而引起的渗透固结沉降,也称主固结沉降,它随时间而逐渐增长。(主固结沉降) 次固结沉降:是指超静孔隙水压力基本消散后,主要由土粒表面结合水膜发生蠕变等引起的,它将随时间极其缓慢地沉降。(徐变沉降) 因此:建筑物基础的总沉降量应为上述三部分之和,即 s c s s s s s ++= 计算地基最终沉降量的目的:(1)在于确定建筑物最大沉降量;(2)沉降差;(3)倾斜以及局部倾斜;(4)判断是否超过容许值,以便为建筑物设计值采取相应的措施提供依据,保证建筑物的安全。 1、 点荷载作用下地表沉降

Er Q y x E Q s πνπν)1() 1(22 22-+-= = 2、 绝对柔性基础沉降 ?? ----=A y x d d p E y x s 2 202 )()(),(1),(ηξηξηξπν 0) 1(2bp s c E c ων-= 3、 绝对刚性基础沉降 (1) 中心荷载作用下,地基各点的沉降相等。 圆形基础:0)1(2dp s c E c ων-= 矩形基础:0)1(2bp s r E c ων-= (2) 偏心荷载作用下,基础要产生沉降和倾斜。 二、分层总和法计算最终沉降 分层总和法都是以无側向变形条件下的压缩量公式为基础,它们的基本假设是: 1.土的压缩完全是由于孔隙体积减少导致骨架变形的结果,而土粒本身的压缩可不计; 2.土体仅产生竖向压缩,而无测向变形; 3.在土层高度范围内,压力是均匀分布的。 目前在工程中广泛采用的方法是以无测向变形条件下的压缩量计算基础的分层总和法。具体分为e-p 曲线和e -lgp 曲线为已知条件的总和法。 1.以e~p 曲线为已知条件的分层总和法 计算步骤: (1)选择沉降计算剖面,在每一个剖面上选择若干计算点。 1)根据建筑物基础的尺寸,判断在计算其底压力和地基中附加应力时是属于空间问题还是采用平面问题; 2)再按作用在基础上的荷载的性质(中心、偏心或倾斜等情况)求出基底压力的大小和分布; 3)然后结合地基中土层性状,选择沉降计算点的位置。 (2)将地基分层:在分层时天然土层的交界面和地下水位应为分层面,同时在同一类土层中分层的厚度不宜过大。分层厚度h 小于0.4b ;或h=2~4m 。

软土地基处理方案

一、引言 如果地基的承载能力足够,则基础的分布方式可与竖向结构的分布方式相同。但有时由于土或荷载的条件,需要采用满铺的伐形基础。伐形基础有扩大地基接触面的优点,但与独立基础相比,它的造价通常要高的多,因此只在必要时才使用。不论哪一种情况,基础的概念都是把集中荷载分散到地基上,使荷载不超过地基的长期承载力。因此,分散的程度与地基的承载能力成反比。有时,柱子可以直接支承在下面的方形基础上,墙则支承在沿墙长度方向布置的条形基础上。当建筑物只有几层高时,只需要把墙下的条形基础和柱下的方形基础结合使用,就常常足以把荷载传给地基。这些单独基础可用基础梁连接起来,以加强基础抵抗地震的能力。只是在地基非常软弱,或者建筑物比较高的情况下,才需要采用伐形基础。多数建筑物的竖向结构,墙、柱都可以用各自的基础分别支承在地基上。中等地基条件可以要求增设拱式或预应力梁式的基础连接构件,这样可以比独立基础更均匀地分布荷载。 如果地基承载力不足,就可以判定为软弱地基,就必须采取措施对软弱地基进行处理。软弱地基系指主要由淤泥、淤泥质土、冲填土、杂填土或其他高压缩性土层构成的地基。在建筑地基的局部范围内有高压缩性土层时,应按局部软弱土层考虑。勘察时,应查明软弱土层的均匀性、组成、分布范围和土质情况,根据拟采用的地基处理方法提供相应参数。冲填土尚应了解排水固结条件。杂填土应查明堆积历史,明确自重下稳定性、湿陷性等基本因素。 在初步计算时,最好先计算房屋结构的大致重量,并假设它均匀的分布在全部面积上,从而等到平均的荷载值,可以和地基本身的承载力相比较。如果地基的容许承载力大于4 倍的平均荷载值,则用单独基础可能比伐形基础更经济;如果地基的容许承载力小于2倍的平均荷载值,那么建造满铺在全部面积上的伐形基础可能更经济。如果介于二者之间,则用桩基或沉井基础。 二、地基的处理方法 利用软弱土层作为持力层时,可按下列规定执行: 1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施; 2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层; 3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。

建筑工程软土地基处理技术分析

建筑工程软土地基处理技术分析 发表时间:2019-10-12T16:54:53.963Z 来源:《建筑细部》2019年第7期作者:幸幸 [导读] 在具体施工作业上,需要注重地质结构、土体强度以及含水量等情况。 斗门区建设工程质量监督检测站广东珠海 519125 摘要:在具体施工作业上,需要注重地质结构、土体强度以及含水量等情况。当工程范围的土层揭示之后,如果地基土体是强度低、压缩量较高的软弱土层,则被称之为软土地基。在软土地基上,极容易出现地基的沉降问题,此时,其地基承载能力的提升显得极为重要。基于此,以下对建筑工程软土地基处理技术进行了分析,以供参考。 关键词:建筑工程;软土地基;处理技术 引言 在建设建筑的过程中,会遇到很多土质柔软、天然含水量高、支撑力低、孔隙率高的弱基础,在这种情况下建造的基础就是软土基础。软土地基的施工需要比基础更高的施工技术。软土地基不保证工程质量,建筑物变形很可能严重影响建筑物安全。 1建筑施工中对软土地基处理的重要性 软土地基处理的关键在于针对软土地基的特性和不利点,通过相关的技术措施改善软土地基的不可预测性,低透水性和可压缩性,从而改善软土地基的负荷能力,提高负荷限度和稳定性,提高房屋建筑的安全性能和质量,降低施工的难度及不安全性。这要求做好前期的地质考察工作,明确地基土层结构和类型,然后配合专业技术人员和设备,改善地基性质,为房屋建筑施工奠定基础,防止出现土地沉降和变形等情况。 2建筑工程中软土地基的基本特征 2.1土体压缩性较强 一般的软土孔隙比大于1,含水量大而容重较小,土中含有大量有机物或者矿物质,压缩性较强,长期不易达到稳定,而在软土晾干碾压成型后,失水会产生干缩裂缝,软土表层一般会产生网裂等特性。如在施工过程中没有进行有效的缩胀处理,则会使整个路基工程的耐久性受到影响。 2.2不均匀性 一般来说,软土地基的内部成分主要以细土颗粒和高分散土为主,因此使得其整体土质极为不均匀。一旦受到强烈冲击之后,内部结构便会出现巨大变化,使得建筑物的质量有所下降。 2.3地基沉降量大 具体表现在软土的触变性、流变性和不均匀性,当原状软土未受破坏时常具有一定的结构强度,但一经扰动或受到一定的荷载持续作用,原有的结构就会瞬间破坏,强度很快降低,产生不均匀沉降,其变形也虽时间相应增长。软土地基一般自身含有非常大的天然水成分,常达到50%~70%,而透水性能一般很低,垂直层面几乎是不透水的,故在建筑物加荷初期,常出现较高的孔隙水压力,影响地基强度,而建筑物的沉降延续时间也更长。 3建筑施工中的软土地基处理技术 3.1胶结处理技术处理法 胶结处理技术是一种利用软土地基原有的固结性能,在软土中融入水泥砂浆,石灰粉等水泥材料,从而将软土地基转化为复合地基,提高地基土层硬度和承载性能的处理法。胶结处理技术运用有灌浆法,水泥土搅拌法,高压注浆法等。其中,高压注浆法是使特殊浆液利用高压的方式冲散原软土层,然后让土体和特殊浆液融合,最终实现固结。水泥搅拌法,适用于土壤抗碱性大,含水量高的地基中,是将软土和水泥混合发生反应,最后形成固体的处理法。灌浆法是通过将泥浆灌到土层中,让土层和泥浆充分结合,提高地基结构强度和载荷能力。 3.2换填处理 借助于换填方式进行地基处理,主要是将地基中的土体强度提升,进而提高地基的承载力。除此之外,还能将场地松软土质转化成高强度土体,使得地基承载力与实际要求相符。在实际地基换填处理过程中,可以应用稳定性较高的碎石或者是砂石作为换填材料,具体施工顺序如下:先将原有地基之中的松软土体挖出,其次,借助于机械设备实施换填并进行分层压实作业,让地基强度得到提高。采用地基换填技术,可以让土体强度得到提升,在避免地基变形问题出现的同时,也能保证施工顺利进行。 3.3DDC灰土挤密法处理法 DDC灰土挤密法的原理是用强夯法将软土地基转变为混泥土复合地基。首先用强夯法对深层的地基孔进行夯实处理,然后借助螺旋钻机将灰土分层注入到地基的混凝土空隙中,接着夯实成桩,经过重复锤击后,扩大桩径,形成混凝土复合地基。这是一种新兴的广泛被应用于房屋建筑施工中的软土地基处理方法。通过改变土质结构,提高地基稳定性。在我国那些有湿陷性特征的黄土区域内的房屋建筑地基处理工作中,DDC灰土挤密技术被广泛利用于改善湿陷性黄土。 3.4碎石桩和强夯处理技术 随着多种地基处理技术的不断应用,人们首先需要做的就是对地基土层中的相关数据进行深入分析,将需要夯实的深度统计出来,并对夯实力进行明确。除此之外,相关工作人员需要根据实际土壤性质,确定夯实次数,并进行合理化调节,让夯实效果与建筑地基的强度需求相符。在整个碎石桩处理上,可以将挤密法和排水固结法结合在一起,将最佳的夯实位置确定下来,这样可以让碎石桩在高强度压力作用下,将不稳定因素消除,并确保碎石可以融入周边土体之中。除此之外,相关工作人员还可以对硬壳和碎石桩进行充分利用,以基本结构为基础,建立起有效的复合层,借助于碎石,来强化地基整体稳定性,为后续工程开展创造有利条件。 3.5深层搅拌法 通常情况下,深层搅拌法更多会在一些包含大量水液的粘性土以及淤泥的地基处理工作中进行使用,以此对其进行全面加固。通过使用较为特殊的深层搅拌机械,并使用水泥浆作为基础原料。在经过多次混合之后,促使地基的整体质量和强度得到全面提升。在实际加固

淤泥软土地基处理要求措施

施工中淤泥软地基处理方法 一、工程概况 本工程为市高新区鹿港海洋公社1#~3#楼工程,由海工园投资。含1#楼地下一层地上十二层,2#楼地下一层地上十二层,3#楼地下一层地上三层,设计为独立基础,框架结构。 二、建设地点及环境特征 本工程位于市红岛高新区新业路与海月路交汇处,地形:场区已经过整平总体起伏较小。地貌:场区原地貌为滨海浅滩,后经人工回填改造形成现地貌。根据建设单位提供勘察中间报告及现场第一层土方开挖现状,架空层(底标高-5.5米)至地基持力层(底标高为-8.4米)为第四系全新统海相沼泽化层(Q4mh)第○6层、淤泥质粉质黏土,该层分布广泛。表现为:灰黑色~灰色,流塑~软塑,韧性较差,颗粒均匀,手感细腻,含有机质、贝壳碎屑,强度低,具有高压缩性。地基承载力特征值f ak=60~80kPa,压缩模量E s1-2=2~4MPa。力学性质:强度极低,压缩性大,透水性差。工程特性:地基承载力低,强度增长缓慢,加荷后易变形且不均匀,变形速率大且稳定时间长,具有渗透性小、触变性及流变性大的特点。 三、处理方法 因淤泥软地基承载力低,压缩性大,透水性差,不易满足高层建筑物地基设计要求,故需进行处理,下面介绍淤泥软地基五种处理方法。 1、桩基法 淤泥质粉质黏土层较厚地基处理可以采用灌注桩,打灌注桩至硬土层,作承载台,灌注桩有沉管灌注桩、冲钻孔灌注桩和人工挖空灌注桩,但前两种方法灌注桩还存在一些技术难题,一是沉管灌注桩在深厚软土中存在桩身完整性问题;二是冲钻孔灌注桩存在泥浆污染问题,桩身混凝土灌注质量,桩底沉渣清理和持力层判断不易监控等问题。 当淤土层较厚,难以大面积进行深处理,可采用打桩或人工挖孔桩办法进行加固处理。而桩基础技术多种多样,早期多采用水泥土搅拌桩、砂石桩、木桩,目前很少使用。一是水泥土搅拌桩水灰比、输浆量和搅拌次数等控制管理自动化系统未健全,设备旧,

软土地基的设计及其处理方法

软土地基的设计及其处理方法 摘要 近年来,随着我国经济持续高速发展,基础设施建设的需求也在强劲增长。各基础设施的建设量日渐增多,而其穿越软土地基区域的情况也随之增多。在此情况下,软土地基的处理方法成为了许多研究者关注的热点问题。本文针对这一问题,分析了软土的特征分布及处理目的,总结了针对中层软基和深层软基分别适用的处理方法,提出了针对不同的实际情况,工程技术员应该选择的软基处理方法也有所不同。 关键词:软土地基;方法;选择

目录 第一章绪论 (1) 1.1 引言 (1) 1.2 国内外研究现状 (1) 1.2.1 软土地基处理技术的研究现状 (1) 1.2.2 国内外软土地基处理的施工方法 (1) 1.3 主要研究内容 (2) 第二章软土的特征分布及处理目的 (3) 2.1 软土特征 (3) 2.1.1 软土地基的鉴别 (3) 2.1.2 软土的工程性质 (3) 2.2 软土分布 (4) 2.2.1 沿海地区软土地基的工程特性 (4) 2.2.2 三角洲地区软土地基工程特性 (4) 2.3 处理目的 (5) 3.1 浅层软基处理方法 (6) 3.1.1 常用方法 (6) 3.1.2 方法选用 (6) 3.2 中层软基处理方法 (6) 3.2.1 水泥搅拌桩 (6) 3.2.2 袋装砂井法 (7) 3.2.3 塑料排水板 (7) 3.2.4 强夯置换法 (7) 3.2.5 挤密碎石桩 (8) 3.3 深层软基处理方法 (9) 3.3.1 水泥粉煤灰碎石桩 (9) 3.3.2 预应力高强混凝土管桩 (10) 3.3.3 钉形水泥土双向搅拌桩 (10) 4.1 主要结论 (11) 4.2 讨论与展望 ................................................................................ 错误!未定义书签。参考文献 . (12)

软土地基处理技术探讨

软土地基处理技术探讨 发表时间:2019-01-16T11:31:32.453Z 来源:《建筑学研究前沿》2018年第31期作者:张喜华 [导读] 软土地基具有天然含水量大、压缩大、强度低、承载能力低的特点。 中铁十一局集团第一工程有限公司福建莆田 351100 摘要:软土地基具有天然含水量大、压缩大、强度低、承载能力低的特点。如果这项技术处理不当,将对从调查到设计和施工的人员生命和财产安全构成严重威胁。软土地基的处理是各施工环节中最重要的环节。文章针对软土地基处理技术探讨进行了详细的阐述,内容仅供参考。 关键词:软土地基;处理技术;探讨 1 软土地基处理方法的选用原则 (1)处理方法应与工程的规模、特点和地基土的类别相适应; (2)处理后土的加固深度; (3)上部结构的影响; (4)能提供的处理材料; (5)能选用的机械设备,并掌握加固原理与技术; (6)周围环境因素和邻近建筑的安全; (7)对施工工期的要求; (8)施工队伍的专业技术素质; (9)施工技术条件与经济技术比选,尽量节省材料与资金。 总之,应做到技术先进、经济合理、安全适用、确保质量、因地制宜、就地取材、保护环境、节约资源。 2工程上的常见软土处理技术 2.1 砂石桩法 (1)定义:在工程软土地基施工中,砂桩法在软土地基处理中具有重要的作用和意义。砂桩法是利用沉管灌注桩的技术,将砂质挤压进软土地基。采用机械设备对软土地基进行冲击振动。 (2)加固机理:在软土基础的施工中,砂桩的加工技术主要是通过砂土和机械的冲击和振动,使原有的软土和砂石紧密结合,从而提高软土基础的承载力。因此,砂岩桩法主要采用外部承受力强的材料与原有软土结合,进一步保证工程施工质量。 (3)施工特点: 采用砂桩法处理软土地基。在施工过程中主要采用季节性冲击和振动。因此,它的施工技术相对方便。此外,沙石主要用于建筑中的固化,沙石较为常见。简单的施工也在一定程度上缩短了工期。因此,砂石桩软土地基的加工工艺简单、方便、短。 (4)施工步骤:主要分两大部分:成孔→加填写填料密实成桩。 在砂石桩的软土地基施工中,首先要成孔,也就是说在进行软土地基的施工中,可以根据施工区域的土质进行施工,例如,砂石桩的施工处理技术比较适合砂性土,之后,利用砂石和机械设备进行施工,进而提高地基的整体抗剪强度与承载力,减少地基的沉降量和不均匀沉降。 (5)施工准备:在软土地基的处理中,采用砂石桩的处理技术,在施工前要先对施工区域进行勘察,同时对施工所需的机械设备进行检修,进而保障施工的质量和水平。 (6)施工中常发生的质量问题及注意事项:在运用砂石桩的软土处理技术中,其一,要先对施工区域的土质进行调查,由于砂石桩的处理技术适用于砂性土,不适于饱和的软黏土地基处理,故此,在运用前要先对施工区域进行勘察,根据土质的情况选择合适的处理技术,其二,在施工的过程中,挤密砂桩用砂标准要求与袋装砂井用砂标准基本相同,不同的是挤密砂桩也可使用砂和角砾的混合料,含泥量不得大于百分之五,其三,在施工完成之后,要对施工进行检测,坐好施工后的收尾工作,提高施工质量,并将施工周边的垃圾进行清理。 2.2复合地基法 当建筑结构的上部荷载仅仅由地基土来承担时,就是我们所说的浅基础;当这部分荷载由竖向增强体来承担的,这就是深基础中的桩基础;如果由两者共同承担就是复合地基,复合地基是浅基础和桩基础之间过渡的地基类型。在一般情况下,我们选择水泥土混合复合地基。这种地基处理方法的优点是:工程造价低,施工现场原有土质使用极为有限,容易获得建筑材料,机械设备较多,国内操作技术成熟;在搅拌过程中,对周围环境和市政管道无振动、噪声低、影响小,这种地基处理可以根据上部结构的需要选择桩的形状。在岩土调查的前期调查中,除了按照现行标准要求对岩土工程进行详细的调查外,还需要找出ph值,有机物的含量,施工现场地下障碍物和软土的分布,以及地下水的运动规律。这些要求也主要是为了保证施工质量。 2.3 袋装砂井法 (1)原理:在在软土地基的施工中,袋装砂井法是常用的软土地基施工技术之一。袋装沙井用于软土地基的施工。将沙袋装入袋中,然后将袋装的沙袋放入套筒。在填充了密井后,套筒被一步一步地拔出来。水平砂层铺设在顶部表面。此时,软基中的水会因上层填土堤的荷载而连接在砂土和水平砂垫层之间,从而成为一条排水道,将软基中的水排除在外。然后在软基固结的同时达到排水的效果。(2)施工特点:在软土地基的处理中运用袋装砂井的处理技术,而这种施工技术在运用的过程中只需要将沙袋装满沙,之后进行施工,从中可以看出,这种施工方法其施工方式简单,便捷,同时由于施工过程简单,其施工周期也得到缩短,故此,袋装砂井法的软土处理技术是常用的施工技术。 (3)砂井的布置:袋装砂井可呈矩形,梅花形布置,井径采用7-12cm的直径,井距1-2m,砂墊层厚40-50CM。 (4)工艺流程:整平原地面-→摊铺下层砂垫层→机具定位→打入套管→沉入砂袋→拔出套管→机具移位→埋砂袋头→摊铺上层砂垫

常用的地基沉降计算方法

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量, 目前常用的计算方法有:弹性力学法、分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq课题的位移解为依据的。在弹性半空间表面作用着一个竖向集中力P时,见图6-5,表面位移w(x, y, o)就是地基表面的沉降量s: E r P s 2 1μ π - ? = (6-8) 式中μ—地基土的泊松比; E—地基土的弹性模量(或变形模量E ); r—为地基表面任意点到集中力P作用点的距离,2 2y x r+ =。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6所示,设荷载面积A内N(ξ,η)点处的分布荷载为p0(ξ,η),则该点微面积上的分布荷载可为集中力P= p0(ξ,η)dξdη代替。于是,地面上与N点距离r =2 2) ( ) (η ξ- + -y x的M(x, y)点的沉降s(x, y),可由式(6-8)积分求得: ?? - + - - = A y x d d p E y x s 2 2 2 ) ( ) ( ) , ( 1 ) , ( η ξ η ξ η ξ μ (6-9) 从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若 沉降已知又可以反算出应力分布。 对均布矩形荷载p0(ξ,η)= p0=常数,其角点C的沉降按上式积分的结果为: 图6-5 集中力作用下地基表面的沉降曲线图6-6 局部荷载下的地面沉降 (a)任意荷载面;(b)矩形荷载面

软土地基常见五种处理方法

鉴于淤泥软土地基承载力低,压缩性大,透水性差,不易满足水工建筑物地基设计要求,故需进行处理,下面介绍淤泥软土地基五种处理方法。 1、桩基法 当淤土层较厚,难以大面积进行深处理,可采用打桩办法进行加固处理。而桩基础技术多种多样,早期多采用水泥土搅拌桩、砂石桩、木桩,目前很少使用,一是水泥土搅拌桩水灰比、输浆量和搅拌次数等控制管理自动化系统未健全,设备陈旧,技术落后,存在搅拌均匀性差及成桩质量不稳定问题;二是砂石桩用以加固较深淤泥软土地基,由于存在工期长,工后变形大等问题,已不再用作对变形有要求的建筑地基处理;三是民用建筑已禁用木桩基础。 钢筋混凝土预制桩(钢筋混凝土桩和预应力管桩)目前由于具有较强承载力,投资省,质量有保证,施工速度快等特点,得到普遍运用,如本人设计龙海市角美镇金山水闸,其地质条件覆盖一层10m以上厚的淤泥土层,地基处理采用边长为250mm钢筋混凝土预制方桩,挤密淤土层并靠摩擦承载,钢筋混凝土预制桩还具有抗水闸水压力产生水平荷载,达到水平稳定作用。 淤土层较厚地基处理还可以采用灌注桩,打灌注桩至硬土层,作承载台,灌注桩有沉管灌注桩和冲钻孔灌注桩,但两种方法灌注桩还存在一些技术难题,一是沉管灌注桩在深厚软土中存在桩身完整性问题;

二是冲钻孔灌注桩存在泥浆污染问题,桩身混凝土灌注质量,桩底沉渣清理和持力层判断不易监控等问题。福建省龙海市发生几起灌注桩基础民用建筑不均匀沉陷,导致墙体裂缝事件,是由于施工中存在上述技术问题造成。 2、换土法 当淤土层厚度较簿时,也可采用淤土层换填砂壤土、灰土、粗砂、水泥土及采用沉井基础等办法进行地基处理,鉴于换砂不利于防渗,且工程造价较高,一般应就地取材,以换填泥土为宜。换土法要回填有较好压密特性土进行压实或夯实,形成良好的持力层,从而改变地基承载力特性,提高抗变形和稳定能力,施工时应注意坑边稳定,保证填料质量,填料应分层夯实。 3、灌浆法 是利用气压、液压或电化学原理将能够固化的某些浆液注入地基介质中或建筑物与地基的缝隙部位。灌浆浆液可以是水泥浆、水泥砂浆、粘土水泥浆、粘土浆及各种化学浆材如聚氨酯类、木质素类、硅酸盐类等。灌浆法对加固淤泥软土地基具有明显效果,如福建省龙海市角美壶屿港水闸由于淤泥软基不均匀,沉陷闸基沉降最大达到0.63m,加固时采用单管高压旋喷灌浆处理,每个闸墩上、下游侧和中间各设5个灌浆孔,沿闸墩轴线两侧布孔,灌注水泥浆,成桩直径0.5m,伸

岩土工程中软土地基处理技术的应用

岩土工程中软土地基处理技术的应用 发表时间:2018-10-16T10:19:29.917Z 来源:《防护工程》2018年第11期作者:孙秀东 [导读] 其对整个工程质量有着直接性的影响。基于此,本文主要对岩土工程中软土地基处理技术的应用进行了详细分析,旨在提高施工技术,不断为国家相关工程的开发提供科学助力。 孙秀东 贵州正业工程技术投资有限公司 摘要:在岩土工程中,淤泥质软土地基必须采取有效的处置方法和工艺技术加以处理,其对整个工程质量有着直接性的影响。基于此,本文主要对岩土工程中软土地基处理技术的应用进行了详细分析,旨在提高施工技术,不断为国家相关工程的开发提供科学助力。 关键词:岩土工程;软土地基;处理技术;应用 引言 目前,我国对于岩土工程施工技术的运用逐步成熟,同时对施工技术及工艺问题的解决能力也有所提升,尤其在对软土地基处理方面,不仅可对多种复杂软土地基采用有效的解决措施,同时可进一步提高软土地基结构密度及强度,保障基础承压水平可达到岩土工程建设标准,是现代岩土工程建设必不可少的主要技术型施工项目之一。 一、软土地基的特性 1.孔隙比大。 软土地基通常土质比较松散,土粒之间具有较大的空隙,所以孔隙比较一般的土体都比较大。 2.含水率大。 很多靠近河流、湖泊等位置的土体,地下水含量含丰富;或者是局部地区常年雨水丰富,都会导致土体内含有大量的水形成软土地基。 3.压缩性高。 软土地基由于其大的孔隙比和含水率,因此整体承载力较差,在承受外部压力的时候,空隙变小、内部水被挤压出,所以体积会急剧变小,如果应用在道路桥梁工程中,就会引起上部结构的沉降和开裂。 4.透水性弱。 由于很多软土地基已含有丰富的水,当上部雨水或养护的施水的时候,下部无法吸收,导致上部水会长期积累在路面无法排走,形成滞水。 5.抗剪强度低。 有些由于地质变化情况导致的断层带或软土层,在上部承受不均匀荷载的时候,很容易发生断裂,造成上部结构的破坏。 6.变动灵敏性高。 在内部含有大量的水分和气泡的情况下,软土地基体积很不稳定,当承受荷载的时候,会因为压力施加的部位、方向和不均匀性,导致软土体积发生各种变化,因此变动灵敏性很高。 二、软土地基施工控制 1.水泥搅拌桩开钻之前,应用水清洗整个管道并检验管道中有无堵塞现象,待水排尽后方可下钻。 2.为保证水泥搅拌桩桩体垂直度满足规范要求,在主机上悬挂一吊锤,通过控制吊锤与钻杆上、下、左、右距离相等来进行控制。 3.对每根成型的搅拌桩质量检查重点是水泥用量、水泥浆拌制的罐数、压浆过程中是否有断浆现象、喷浆搅拌提升时间以及复搅次数。 4.为了确保桩体每米掺合量以及水泥浆用量达到设计要求,每台机械均应配备电脑记录仪。同时现场应配备水泥浆比重测定仪,以备监理工程师和项目经理部质检人员随时抽查检验水泥浆水灰比是否满足设计要求。 5.为保证水泥搅拌桩桩端、桩顶及桩身质量,第一次提钻喷浆时应在桩底部停留30s,进行磨桩端,余浆上提过程中全部喷入桩体,且在桩顶部位进行磨桩头,停留时间为30s。 6.施工时应严格控制喷浆时间和停浆时间。每根桩开钻后应连续作业,不得中断喷浆。严禁在尚未喷浆的情况下进行钻杆提升作业。储浆罐内的储浆应不小于一根桩的用量加50kg,若储浆量小于上述重量时,不得进行下一根桩的施工。 三、岩土工程中软土地基处理技术的应用 1.粉喷桩复合地基技术 粉喷桩复合地基技术能够取得一个良好的软土地基处理效果,究其本质属于化学加固方法之一。在具体施工过程中实施该项技术时,需要应用相应的施工设备进行操作,将水泥粉、石灰粉等材料加入到软土地基之中,并进行相应的搅拌工作。而软土地基中往往含有大量的水分,而水泥粉、石灰粉在搅拌过程中能直接吸收结合地基中的水分,产生良好的软土融合固结效果。该项技术能够有效缓解软土地基抗压性能较弱的特点,具备比较广泛的应用范围。 2.水泥搅拌桩 水泥搅拌桩施工过程中,搅拌机借助于搅拌机械叶片的动作来让地基土出现微量的位移,使其成为颗粒状与水泥等固化剂拌和,促使水泥与软土发生一系列的物理与化学反应,在此基础上形成一个具有整体性、水稳定性以及足够强度的水泥土桩体,藉此提高桩体周围土体的强度。水泥搅拌桩工艺可用于处理淤泥土质、粉质粘土等软土地基,并具备有以下几种应用特点:(1)在桩体中能对原状土进行最大限度的利用,且水泥用量较少;(2)加固后的土体重度基本保持不变,减少了附加沉降等情况的发生;(3)施工过程中对周边的建筑物影响较小;(4)操作方式较简便,施工过程中无噪音污染与振动;(5)施工所需费用相对较低,工期短,施工效率良好。 3.碾压与夯实法 如果岩土工程软土地基的土层比较复杂,包含碎石土、粉土、砂土或低饱和度的黏土和杂填土,可以结合具体工程诉求,应用碾压与夯实法对软土地基进行处理。碾压夯实法的应用原理比较简单,借助机械物理碾压方法,压密表层地基土,或采用强夯,使夯击冲能在地

软土地基工程中存在的问题及处理方法概要

浅析软土地基工程中存在的问题及处理方法 摘要:软土在荷载作用下,极易产生工程问题,在勘察过程中切不可马虎松懈,本文从软土特性出发,分析了软土工程地基中存在的问题及处理措施,并作出了勘察方法探讨。 关键词:软土地基工程问题勘察方法 中图分类号:tu4文献标识码:a 文章编号: 在公路铁路的修建施工过程中,经常会遇到物理力学性质差且分布面积较大的第四系软土类区域,软土体是自然界的历史产物,它有独特的地域特征,地基条件差别巨大,根据相邻建筑物或相邻地域的地质资料来设计,一点微小的差异就可能给影响工程质量,给工程造成巨大的经济损失,所以应引起重视,我们施工中充分利用信息,及时调整设计参数和工艺,避免了施工期间可能引起的附加沉降,体现了当今勘察设计施工监测为一体的全过程综合岩土工程实践理念。 一、软土的特征及其危害性 软土指的是所含水量大于液限天然孔隙比大于或等于1.0的细粒土,处于软朔或流朔状态。我国的软土主要分布在东南沿海及各大江大河的入海三角洲冲击平原地区。内陆主要是湖泊或山谷冲击而成,有机质含量较高,分布范围比较小。主要包含饱和软粘土包括泥炭、泥炭质土,淤泥、淤泥质土等,软土一般具触变性、流变性、高压缩性、低强度、低透水性、不均匀性等特征,在工程应用上的

表现为地基沉降量大,可以达到数十厘米甚至到数百厘米;地基沉降时间长,达数十年甚至到数百年,特别严重的是沿海地带的软土地基,因为厚度过大,所以固结速度比较慢;地基不均匀沉降,大多是由上部结构的特性和荷载差异所引起;地基抗剪强度低。软土上述的特点,容易影响公路铁路工程质量,引发一些地质灾害,其危害性主要表现为:软土地基不均匀和过大沉降将严重影响路面的平整度,牵制了道路通行能力和安全度;路基路堤还可能会随着软土地基一起产生滑动现象,从而导致路面的整体遭到破坏,鉴于软土地基潜在的种种危害性,各部对于软基的处理标准要求高,也更高地要求了地质勘察在软土地基工程的深度和广度。 二、软土地基工程中存在的问题 由上所述出的软土地基固有的特性以及工程在勘察、设计、施工、管理使用各程序阶段的失误,造成了所建造在软土地基上建筑物的结构损伤工程倒塌等一系列工程事故,大致可分为以下几种情况: (一在地质勘测时深度不够,没有查清楚软土土层的分布、厚度以及一些暗沟暗塘的具体情况,造成建筑物产生严重不均匀沉降,结构构件开裂,甚至工程不负荷载倒塌的事故。 (二由于地质勘察不深入,不细致,未取得的地质资料不具可靠性,以致错误的将软土判断为好的地基土,使设计也随之错误,产生的不均匀沉降使建造物受力结构变化,裂缝倒塌,引起工程事故。 (三软土的承载力比较低,地基无法承受,发生剪切的破坏,基础失去稳定性,带来较大沉降和不均匀沉降,使上部建造物结构受损,造成工程事故。 (四对软土地基未作出处理,或者处理方法不正确,施工质量不过关,使建筑物产生过大的沉降和不均匀沉降,开裂,不得不二次或多次进行加固和处理。 四、软土地基处理措施

地基沉降的计算方法

地基沉降的计算方法 地基在荷载作用下,沉降将随时间发展,其发展规律可以通过土体固结原理进行数值分析来估算。但是由于固结理论的假定条件和确定计算指标的试验技术上的问题,使得实测地基沉降过程数据在某种意义上较理论计算更为重要。通过大量的沉降观测资料的积累,可以找出地基沉降过程的具有一定实际应用价值的变形规律,还可以根据路基施工时的实测沉降资料和已取得的经验进行估算,是工程中最为常用的方法。根据经验沉降预测一般要经过3~6个月恒载(或预压)的观测才能建立。曲线回归法法是变形预测最常用的方法,德国无碴轨道的经验,认为当曲线回归的相关系数不低于0.92时,所确定的沉降变形趋势是可靠的;当预测的6个月以后的沉降与实际沉降的偏差小于8mm 时,说明预测是稳定的,但要达到准确的预测还要求最终建立沉降预测的时间t 应满足下列条件 s(t)/s(t=∞)≥75% 式中: s(t): t 时间的沉降观测值; s(t=∞): 预测的总沉降。 通常利用沉降资料进行预测路堤沉降随时间发展的常用方法有以下几种: 1 双曲线法 双曲线方程为: bt a t S S t ++=0 (3.3.2-1) b S S f 10+= (3.3.2-2) 式中:t S ——时间t 时的沉降量; f S ——最终沉降量(t =∞); S 0——初期沉降量(t =0);

a、b——将荷载不再变化后的3组早期实测数据代入上式组成方程组求得的系数。 沉降计算的具体顺序: (1)确定起点时间(t=0),可取填方施工结束日为t=0; (2)就各实测计算t/(S t-S0),见图3.3.2-1; (3)绘制t与t/(S t-S0)的关系图,并确定系数a,b见图3.3.2-2; (4)计算S t; (5)由双曲线关系推算出沉降S~时间t曲线。 图3.3.2-1用实测值推算最终沉降的方法 图3.3.2-2求a,b方法 双曲线法是假定下沉平均速率以双曲线形式减少的经验推导法,要求恒载开始实测沉降时间至少半年以上。 2 固结度对数配合法(三点法) 由于固结度的理论解普遍表达式为:

相关主题
文本预览
相关文档 最新文档