当前位置:文档之家› 03第二章 固体中的相结构

03第二章 固体中的相结构

第二章2 固体结构试题与答案

一、名词解释:相、固溶体、中间相、超结构、电子浓度、正常价化合物、电子化合物、 间隙相、间隙化合物; 二、计算题: 1、青铜为铜和锡组成的固溶体合金,其中大约有3%的铜原子为锡原于所取代,且仍维持着fcc结构。试求合金中所含Cu和Sn的质量分数(已知cu的相对原子量为63.54,Sn为118.69) 解由题意知,合金中所含Sn的摩尔分数为X Sn=3%,所台Cu的摩尔分数为X Cu=97%,故其质量分数为 2、在1000℃时,有Wc=1.7%的碳溶入面心立方结构的铁中形成固溶体,求100个单位晶胞中有多少个碳原子? 解因为100个单位晶胞中,有400个铁原子,其质量分数W Fe=98.3% 总质量为(400×55.85)/0.983=22726 碳原子数为22726×0.017/12.0l=32 大约l/3个单位晶胞中才有1个碳原子。这是因为碳原子半径较八面体间隙半径稍大些,因而碳原子不太可能都填满所有的等效位置。 3、β’黄铜的结构为简单立方。如图2-3所示。如果Cu和Zn原子半径分别为0.13nm和0.14 nm,试估计其密度(已知Cu和Zn的相对原子质量分别为63.54及65.38)。 4、计算单质原子配位数为6的晶体结构的致密度,并计算此时的原子半径与配位数为12时的原子半径比值。 配位数为6的晶体结构为简单立方结构,设其半径为r,晶格常数为a,二者关系为a=2r,

致密度 3 3 4 3 =0.5233 6 r a ππ η== , 612 1 r/r a = 5、Mg具有hcp结构,c/a=1.624体密度为1.74g/cm3,求a,c,原子半径和致密度。 1.74 A nM VN ρ===,得a=0.32nm,c=0.52nm,r=0.1598, 致密度为 3 4 6 0.74 r π η ? == 6、测得X Au=40%的Cu-Au固溶体点阵常数a=0.3795nm,密度为14.213g/cm3,计算说明该合金是什么类型固溶体? 利用Cu Au (X X) Cu Au A n M M VN ρ + =,得出n=3.95≈4,故为置换固溶体 Au M=200 7、Fe-Mn-C固溶体具有面心立方结构,Mn和C的质量分数为12.3%和1.34%,点阵常数为0.3624nm,密度为7.83g/cm3,请说明Mn和C在Fe中各是什么固溶体? 再计算固溶体中每个原子的平均重量 23 23 0.821755.850.11954.940.059312 8.821910 6.0210 A g - ?+?+? ==? ? 每个晶胞中的原子数为 37 23 (0.362410)7.83 4.2876 8.821910 a n A ρ- - ?? === ? 因为Fe-Mn-C合金固溶体具有面心立方结构,每个晶胞中含有4各原子,现在计算得每个晶胞中含有4.2876个原子,说明其中一个或全部溶质组元都是间隙溶质原子。上面计算结果说明每个晶胞中含有0.2876各间隙原子,间隙原子的摩尔分数应该为

《固体物理学答案》第一章晶体的结构

第一章、晶体的结构 习题 1.以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6 π ; (2)体心立方, ; 8 3 π (3)面心立方,; 6 2 π(4)六角密积,; 6 2 π (5)金刚石结构,; 16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体 积,则致密度ρ= V r n3 3 4 π (1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为 , , 4 33a V r a= = 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) ( 3 3 2 3 4π π = a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为, , 4 33a V r a= =晶胞内包含2个原子,所以 ρ=π π 8 3 ) ( * 2 3 3 4 3 3 4 = a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ=6 2)( *4334234 ππ=a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23232c r a == 晶胞体积 V = 222 360sin ca ca =ο, 一个晶胞内包含两个原子,所以 ρ=ππ62) (*2223 3234 =ca a .

第二章固体结构2教案

2.2金属的晶体结构 2.2.1 三种典型的金属晶体结构 面心立方结构A1或fcc、体心立方结构A2或bcc和密排六方结构A3或hcp三种。 面心立方结构体心立方结构密排六方结构 1.晶胞中的原子数 面心立方结构n = 8*1/8 + 6 * 1/2 = 4体心立方结构n = 8*1/8 + 1 =2密排六方结构n = 12*1/6 +2*1/2 +3 = 6 2.点阵常数与原子半径 晶胞的大小一般是由晶胞的棱边长度即(a,b,c)衡量的,它是表征晶体结构的一个重要基本参数。 如果把金属原子看作刚球,并设其半径为R,根据几何学关系不难求出三种典型金属晶体结构的点阵常数与R之间的关系: 面心立方结构:点阵常数为a,且2a=4 R; 体心立方结构:点阵常数为a,且3a=4 R; 密排六方结构:点阵常数由a和c表示。在理想的情况下,即把原子看作等径的刚球,可算得c/a=1.633,此时,a=2R;但实际测得的轴比常常偏离此值,即c/a≠1.633,这时,(a2/3+c2/4)1/2=2R。 3.配位数和致密度 所谓配位数(CN)是指晶体结构中任一原子周围最近邻且等距离的原子数;

而致密度是指晶体结构中原子体积占总体积的百分比。如以一个晶胞来计算,则致密度就是晶胞中原子体积与晶胞体积之比值,即 式中K为致密度;n为晶胞中原子数;v是一个原子的体积。 表 2.7 典型金属晶体结构的配位数和致密度 晶体结构类型配位数(CN)致密度 A1120.74 A28( 8 + 6 )0.68 A312( 6 + 6 )0.74 2.2.2 晶体的原子堆垛方式和间隙 原子密排面在空间一层一层平行的堆垛起来就分别构成以上三种晶体结构。 面心立方和密排六方结构的致密度均为0.74,是纯金属中最密集的结构。体心立方结构的致密度为0.68。 金属晶体存在许多间隙,这种间隙对金属的性能、合金相结构和扩散、相变等都有重要影响。 1、体心立方晶格 1).晶胞中的原子数 体心立方晶体每个角上的原子只有1/8个属于这个晶胞,晶胞中心原子完全属于这个晶胞,所以体心立方晶胞中的原子数为8*1/8+1=2. 2).原子半径 原子沿立方体对角线紧密接触.设晶格常数为,则立方体对角线长度为,等于4个原子半径,所以体心立方晶胞中的原子半径.

固体物理题库 第一章 晶体的结构

第一章晶体的结构 一、填空体(每空1分) 1. 晶体具有的共同性质为长程有序、自限性、各向异性。 2. 对于简立方晶体,如果晶格常数为a,它的最近邻原子间距为 a ,次近邻原子间 ,原胞与晶胞的体积比1:1 ,配位数为 6 。 3. 对于体心立方晶体,如果晶格常数为a a2/,次近邻原子间距为 a ,原胞与晶胞的体积比1:2 ,配位数为8 。 4. 对于面心立方晶体,如果晶格常数为a 邻原子间距为 a ,原胞与晶胞的体积比1:4 ,配位数为12 。 5. 面指数(h1h2h3)所标志的晶面把原胞基矢a1,a2,a3分割,其中最靠近原点的平面在a1,a2,a3上的截距分别为__1/h1_,_1/h2__,__1/h3_。 6. 根据组成粒子在空间排列的有序度和对称性,固体可分为晶体、准晶体和非晶体。 7. 根据晶体内晶粒排列的特点,晶体可分为单晶和多晶。 8. 常见的晶体堆积结构有简立方(结构)、体心立方(结构)、面心立方(结构)和六角密排(结构)等,例如金属钠(Na)是体心立方(结构),铜(Cu)晶体属于面心立方结构,镁(Mg)晶体属于六角密排结构。 9. 对点阵而言,考虑其宏观对称性,他们可以分为7个晶系,如果还考虑其平移对称性,则共有14种布喇菲格子。 10.晶体结构的宏观对称只可能有下列10种元素:1 ,2 ,3 ,4 ,6 ,i ,m ,3,4,6,其中3和6不是独立对称素,由这10种对称素对应的对称操作只能组成32 个点群。 11. 晶体按照其基元中原子数的多少可分为复式晶格和简单晶格,其中简单晶格基元中有 1 个原子。 12. 晶体原胞中含有 1 个格点。 13. 魏格纳-塞茨原胞中含有 1 个格点。 二、基本概念 1. 原胞 原胞:晶格最小的周期性单元。 2. 晶胞 结晶学中把晶格中能反映晶体对称特征的周期性单元成为晶胞。 3. 散射因子 原子内所有电子在某一方向上引起的散射波的振幅的几何和,与某一电子在该方向上引起的散射波的振幅之比。 4. 几何结构因子 原胞内所有原子在某一方向上引起的散射波的总振幅与某一电子在该方向上所引起的散射

《固体物理学答案》第一章晶体的结构

第一章、 晶体的结构 1. 以刚性原子球堆积模型,计算以下各结构的致密度分别为: (1)简立方, 6π; (2)体心立方, ;8 3π (3)面心立方, ;62π (4)六角密积,;62 π (5)金刚石结构, ;16 3 π [解答] 设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度, 设 n 为一个晶胞中的刚性原子球数,r 表示刚性原子球半径,V 表示晶胞体 积,则致密度ρ=V r n 3 34π (1) 对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积, 如图1.2所示,中心在1,2,3,4 处的原子球将依次相切,因为 ,,433a V r a == 面1.2 简立方晶胞 晶胞内包含1个原子,所以 ρ= 6 ) (3 3 23 4π π= a a (2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如 图1.3所示,体心位置O 的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433a V r a ==晶胞内包含2个原子,所以 ρ= ππ8 3) ( *23 3 4 334= a a

图1.3 体心立方晶胞 (3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为 3,42a V r a ==,1个晶胞内包含4个原子,所以 ρ= 6 2) ( *43 3 4 234ππ= a a . 图1.4面心立方晶胞 (4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切, 图 1.5 六角晶胞 图 1.6 正四面体 晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高 h =2 23 2 32c r a == 晶胞体积 V = 2 22 360sin ca ca = , 一个晶胞内包含两个原子,所以 ρ= ππ6 2)(*22 2 3 3 234= ca a .

第二章 固体结构

第二部分 固体结构 概述:物质聚集状态通常分为气态、液态、固态。固态物质按其原子排列特征又分为晶态和非晶态,前者中原子在空间呈有规律的周期性重复排列,而后者中原子呈无规则排列;材料的性能与材料中各元素的原子结构和键合、原子的排列和运动规律及原子集合体的形貌特征等密切相关,因此,研究固态物质内部结构,即原子排列和分布规律是了解和掌握材料性能的基础,只有这样我们才能从物质内部找到改善和发展新材料的途径。 第一节 晶体学基础 1.空间点阵与晶胞 空间点阵:将理想晶体中的质点抽象为几何点,这些几何点在空间周期性排列所组成的阵列; 晶胞:由空间点阵中选取的基本单元即为晶胞,但必须服从一定的选取规则; 晶胞选取规则:1.选取的平行六面体应能反映出点阵的最高对称性;2.平行六面体中棱和角相等的数目应最多;3.当棱边夹角存在直角时,直角数目应最多;4.在满足上述条件下,平行六面体应具有最小体积。 晶系与布拉维点阵: 晶系 晶胞参数 布拉维点阵 举例 三斜 a≠b≠c,α≠β≠γ≠90° 简单三斜 K 2CrO 7 单斜 a≠b≠c,α=γ=90°≠β 简单单斜,底心单斜 β-S,CaSO 4·2H 2O 正交 a≠b≠c,α=β=γ=90° 简单正交,底心正交,体心正交,面心正交 α-S,Fe 3C 六方 a 1=a 2=a 3≠c, α=β=9°,γ=120° 简单六方 Zn,Cd 菱方 a=b=c,α=β=γ≠90° 简单菱方 As,Sb,Bi 四方 a=b≠c,α=β=γ=90° 简单四方,体心四方 TiO 2 立方 a=b=c,α=β=γ=90° 简单立方,体心立方,面心立方 Cu,Ag,Au 晶体结构与空间点阵的关系:☆ 空间点阵是晶体中质点排列的几何学抽象,用以描述和分析晶体结构的周期性和对称性,由于各点阵的周围环境相同,故它只能由14中类型;而晶体结构指晶体中实际质点(原子、分子或离子)的具体排列情况,它们能组成各种类型的排列,因此实际存在的晶体结构是无限的。 2.晶向指数与晶面指数☆ 晶向指数 [uvw] 晶向族 类似于向量的方向向量 晶面指数 (hkl ) 晶面族{hkl } 类似与平面的法向向量 三轴定向与四轴定向之间的转换: [UVW] [uvtw] U=u-t V=v-t W=w u=(2U-V)/3 v=(2V-U)/3 t=-u+v w=W 晶带:所有平行或相交于某一晶向的晶面构成一个晶带。 晶带定律:hu+kv+lw=0 晶面间距计算公式: 对于简单晶胞如下:

固体物理 第一章 晶体结构习题

第一章晶体结构 1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。 解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。 另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。 2.晶格点阵与实际晶体有何区别和联系? 解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。晶格点阵与实际晶体结构的关系可总结为: 晶格点阵+基元=实际晶体结构 3.晶体结构可分为Bravais格子和复式格子吗? 解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。 4.图1.34所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪类? (a)(b)(c)(d) 图1.34 (a)“面心+体心”立方;(b)“边心”立方;(c)“边心+体心”立方;(d)面心四方解:(a)“面心+体心”立方不是布喇菲格子。 从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。 (b)“边心”立方不是布喇菲格子。 从“边心”立方体竖直边心任一点来看,与它最邻近的点子有八个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有八个。虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。竖直边心点的最邻近的点子处于相互平行、横放的两个平面上,而水平边心点的最邻近的点子处于相互平行、竖放的两个平面上,显然这两种点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。 (c)“边心+体心”立方不是布喇菲格子。

第二章 固体结构作业

1、在立方单胞中画出(010)、(110)、(121)、(312)等晶面,画出[111][123]、[110]和[211]等晶向。 2、用四轴坐标系画出六方晶系的(112 0)、(1012)、(1011)等晶面及[112 0]、[2113]、[3125]等晶向。 3、(110 )、(112 )、( 312 )面是否同属一个晶带?如是,求出晶带轴的方向指数。 4、已知纯钛有两种同素异构体,密排六方结构的低温稳定的α-Ti和体心立方结构的高温稳定的β-Ti,其同素异构转变温度为 882.5℃,使计算纯钛在室温(20℃)和900℃时晶体中(112)和(001)的晶面间距(已知aα20℃=0.29506nm,cα20℃=0.46788nm, aβ900℃=0.33065nm)。 5、MgO具有NaCl型结构。Mg2+的离子半径为0.078nm,O2-的离子半径为0.132nm。试求MgO的密度(ρ)、致密度(k)。 6、Mn的同素异构体有一为立方结构,其晶格常数为0.632nm,ρ为7.26g/cm3,r 为0.112nm,问Mn晶胞中有几个原子,其致密度是多少? 7、纯铁在912°C 由bcc 结构转变为fcc 结构,体积减少1.06%,根据fcc 形态的原子半径计算bcc 形态的原子半径。它们的相对变化为多少?如果假定转变前后原子半径不变,计算转变后的体积变化。这些结果说明了什么? 8、铜的相对原子质量为63.55,密度为8.96g/cm3,计算铜的点阵常数和原子半径。测得Au的摩尔分数为40%的Cu-Au 固溶体点阵常数a=0.3795nm,密度为 14.213g/cm3,计算说明它是什么类型的固溶体。 9、CsI 具有B2 结构,若Cs 和I 的原子(离子)半径分别为0.172nm 和0.227nm,求它的致密度。 10、试从晶体结构角度,说明间隙固溶体、间隙相及间隙化合物之间的区别。

第十章固体结构

第十章固体结构 [教学要求] 1.熟悉晶体的类型、特征核组成晶体的微粒间的作用力。 2.了解金属晶体的三种密堆积结构及其特征。理解金属键的形成核特征。 3.熟悉三种典型离子晶体的结构特征。理解晶格能的概念和离子电荷、半径对晶格能的影响;熟悉晶格能对离子化合物熔点、硬度的影响;了解晶格能的热化学计算方法。 4.了解离子半径及其变化规律、离子极化及其对键型、晶格类型、溶解度、熔点、颜色的影响。 5.熟悉键的极性和分子的极性;了解分子的偶极矩和变形性及其变化规律,了解分子间力的产生及其对某些物性的影响。 [教学重点] 1.晶胞 2.各种类型晶体的结构特征,特别是离子晶体。 3.离子极化 [教学难点] 晶胞的概念, 离子极化 [教学时数]8学时 [教学内容] §10.1 晶体结构和类型 10.1.1 晶体结构的特征与晶格理论 1. 晶体结构的特征 晶体是由原子、离子或分子在空间按一定规律周期性地重复排列构成的固体。特征: (1) 晶体具有规则的几何构形,这是晶体最明显的特征,同一种晶体由于生 成条件的不同,外形上可能差别,但晶体的晶面角却不会变. (2) 晶体表现各向异性,例如热、光、电、硬度等常因晶体取向不同而异。

(3) 晶体都有固定的熔点,玻璃在加热时却是先软化,后粘度逐渐小,最后 变成液体. 2. 晶格理论的基本概念 晶格(点阵)是晶体的数学抽象。 晶胞是晶体的最小重复单元,通过晶胞在空间平移并无限地堆砌而成晶体,它有二个要素: 一是晶胞的大小、型式。晶胞的大小、型式由a、b、c三个晶轴及它们间的夹角α.β.γ所确定。 另一是晶胞的内容。由组成晶胞的原子或分子及它们在晶胞中的位置所决定晶胞的内容包括粒子的种类,数目及它在晶胞中的相对位置。 按晶胞参数的差异将晶体分成七种晶系。

材料科学基础考研讲义 第一章 固体结构

第一章固体结构 1、结合键 离子键:正负离子间的库仑力—键合很强,无方向性。 一次键共价键:核间库仑力—方向性,饱和性。 金属键:正离子与自由电子间库仑力—无方向性,无饱和性。 氢键:氢原子核与极性分子间的库仑引力—方向性,饱和性。 二次键 结合键 范德瓦尔斯键:原子瞬时电偶极矩的感应作用—无方向性。 确定键类型因素:电负性,电负差值。 离子键:硬度大,强度大,脆性大 不同键的性能共价键:硬度大,强度大,脆性大 金属键:塑韧性好,强韧性高,导电导热性好 二次键:强硬度低 考点1:键的概念 【例题1-1-1】 (1)金属键:_____ 。(大连理工大学2011,北京工业大学2016,合工大2013,厦门大学2013) (2)化学键与金属键:_____。(哈尔滨工程大学2016) (3)辨析金属键与共价键:_____。 (南京航空航天2013) 解析: (1)金属正离子与自由电子之间的相互作用所构成的金属原子间的结合键称为金属键。 (2)化学键是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子相结合或原子相结合的作用力通称为化学键。金属键同上。 (3)异:电子公用范围不同,金属键中电子属所有原子共用,共价键中属若干原子共用。同:成键方式为电子共用。 【练习题1-1-2】 (1)主要化学键:金刚石_____;镍_____;MgO_____;聚乙烯_____;SiO2_____ (四川大学2016) (2)什么是金属键?金属为什么具有良好的导电性和导热性?(山东大学2014)

(3)下列对金属键描述正确的是()。(浙工大2013) A、无方向性和饱和性 B、有方向性和饱和性 C、有方向性无饱和性 D、无方向性有饱和性 【练习题1-1-3】简述共价键的特性,并说明多原子分子体系中以杂化轨道形成的共价键与材料晶体结构的关系。(北京工业大学2013) 【练习题1-1-4】 (1)共价键的特点是以原子的形式_____,具有_____性和_____性。(郑州大学2013) (2)氢键是何种类型的键?常见于何种物质、材料之中?对材料的性能会有什么影响? (北京工业大学2014) (3)高分子材料中的化学键有哪几种?(湖南大学2013) 考点2:结合键 【例题1-1-5】固体材料中有几种原子结合键,哪些为一次键,哪些为二次键?(南京航空航天2013) 解析: 材料的许多性能在很大程度上取决于原子结合键。根据结合力的强弱可把结合键分为两大类。一次键:结合力较强(依靠外壳层电子转移或共享而形成稳定的电子壳层),包括离子键、共价键和金属键。二次键:结合力较弱(依靠原子之间的偶极吸引力结合而成),包括分子键和氢键。 【练习题1-1-6】 (1)原子间的结合键共有几种?各自的特点如何?(中国海洋大学2014) (2)从结合键和晶体结构上比较金刚石、石墨、石墨烯、碳纳米管、富勒烯。 (清华大学2015) 【练习题1-1-7】简述一次键和二次键的本质特点,并从结合键的角度讨论金属的力学特征。 (湖南大学2012) 【练习题1-1-8】 (1)试从结合键的角度分析金属材料的塑性或延展性优于无机非金属材料的原因。 (湖南大学2013,西北工业大学2013) (2)比较金属材料、陶瓷材料、高分子材料和复合材料在结合键上的差别。(华南理工大学2016) 考点3:键与性能的关系

第2章 晶体结构

第2章晶体结构 为了便于对材料进行研究,常常将材料进行分类。如果按材料的状态进行分类,可以将材料分成晶态材料,非晶材料及准晶材料。因所有的晶态材料有其共同的规律,近代晶体学知识就是为研究这些共同规律而必备的基础。同时为了研究非晶材料与准晶材料及准晶材料也必须以晶体学理论做为基础。在一般的教材中对晶体学的基础知识已经有了不同深度的阐述,作为辅导教材,对教科书上已经有较多阐述的内容,本章中就简要的进行说明,而重点在于用动画形式,将在教材中难以用文字表达清楚的内容进行较多的阐述,加深对教材内容的理解记忆 2.1晶体学基础 2.1.1 空间点阵和晶胞 具有代表性的基本单元(最小平行六面体)作为点阵的组成单元,称为晶胞。将晶胞作三维的重复堆砌就构成了空间点阵。 为了便于分析研究晶体中质点的排列规律性,可先将实际晶体结构看成完整无缺的理想晶体并简化,将其中每个质点抽象为规则排列于空间的几何点,称之为阵点。这些阵点在空间呈周期性规则排列并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。同一空间点阵可因选取方式不同而得到不相同的晶胞 <晶胞、晶轴和点阵矢量> 根据6个点阵参数间的相互关系,可将全部空间点阵归属于7种类型,即7个晶系。按照"每个阵点的周围环境相同"的要求,布拉菲(Bravais A.)用数学方法推导出能够反映空间点阵全部特征的单位平面六面体只有14种,这14种空间点阵也称布拉菲点阵。

空间点阵是晶体中质点排列的几何学抽象。 1 空间点阵 最初人们认为凡是具有规则外形的天然矿物均为晶体。但现在人们认识到晶体的规则的几何外形是内部结构规律的外在反映. 近代的科学研究表明了下面的两个基本事实: 1)如果说某一种材料是晶体,其基本的特征是:组成该材料的内部的微观粒子(原子,分子,离子等)在三微的空间做有规则的周期性的排列。 2)这种排列的规律决定了材料的性能。 根据这样的事实我们可以抽象出个的重要概念即空间点阵。为了清楚地表明原子在空间排列的规律性,常常将构成晶体的实际质点抽象为纯粹的几何点,称之为点阵或节点。 2 晶胞 1 晶胞定义 晶胞:单位格子圈出的晶体结构.即将单位格子中的格点换成基元该格子就成为晶胞. 图2-2 2 晶格常数 晶胞的边长度一般称为晶格常数或点阵常数,在X,Y,Z轴上分别以表示。 3 棱间夹角 晶胞间夹角又称轴间夹角,通常用Y-Z轴,z-x轴和x-y轴之间的夹角分别用表示. 2.1.2 晶向指数和晶面指数 为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶 向指数与晶面指数。

固体物理(黄昆)第一章总结

第一章晶体结构1.晶格实例 1.1面心立方(fcc)配位数12 格点等价格点数4 致密度0.74 原胞基矢: () () () 1 2 3 2 2 2 a a j k a a k i a a i j =+ =+ =+ v v v v v v v v v 原胞体积3 123 ()/4 Ωa a a a =??= v v v NaCl: 两组面心立方格子平行穿套而成的复式格子基元= Na+ + Cl- 具有面心立方:简单格子(Al、Cu、Ag;Ar Kr Xe Ne)、复式格子(Cao MgS 碱卤族等) 1.2简单立方(SC)配位数6 格点等价格点数1 致密度0.52 CsCl两组简单立方格子穿套而成的复式结构基元= Cs+ + Cl- 钙钛矿结构:CaTiO3五个简单立方穿套而成基元:Ca、Ti、OI、OII、OIII (OI、OII、OIII 的化学环境各不相同,氧八面体) 典型晶体:BaTiO3、PbZrO3、LiNbO3、LiTaO3?? 氯化铯型结构:CsCl, CsBr, CsI, TlCl, TlBr, TlI 等 1.3体心立方(bcc)配位数8 格点等价格点数2 致密度0.68 原胞基矢: 1 2 3 () 2 () 2 () 2 a a i j k a a i j k a a i j k =-++ =-+ =+- v v v v v v v v v v v v 原胞体积:3 123 ()/2 Ωa a a a =??= v v v 体心立方晶体: 碱金属、W、Mo、Nb、V、Fe等 1.4六角密堆(hcp)配位数12 两种格点原子数6 基元数3 致密度0.74 典型晶体举例:He, Be, Mg, Ti, Zn, Cd, Co, Y, Lu 等 1.5金刚石结构最近邻原子数4 次近邻原子数12 致密度0.34 晶体结构=布拉维格子(面心立方)+ 基元(A+B) *将金刚石结构中的基元置换成一对硫离子和锌离子,则为两个面心立方复合而成的复式结构,典型晶体:SiC, ZnSe, AlAs, GaP, GaAs 等 2.晶体的周期性结构 2.1基本概念 晶体:1. 化学性质相同 2. 几何环境相同

第二章 固体中的相结构

第二章固体中的相结构 合金与相 1 合金 (1)合金:两种或两种以上的金属,或金属与非金属经一定方法合成的具有金属特性的物质。 (2)组元:组成合金最基本的物质。(如一元、二元、三元合金〕 (3)合金系:给定合金以不同的比例而合成的一系列不同成分合金的总称。 2 相 (1)相:材料中结构相同、成分和性能均一的组成部分。(如单相、两相、多相合金。) (2)相的分类 固溶体:晶体结构与其某一组元相同的相。含溶剂和溶质。 中间相(金属化合物):组成原子有固定比例,其结构与组成组元均不相同的相。 第一节固溶体 按溶质原子位置不同,可分为置换固溶体和间隙固溶体。 按固溶度不同,可分为有限固溶体和无限固溶体。 按溶质原子分布不同,可分为无序固溶体和有序固溶体。 1 置换固溶体 (1)置换固溶体:溶质原子位于晶格点阵位置的固溶体。 (2)影响置换固溶体溶解度的因素 a 原子尺寸因素 原子尺寸差越小,越易形成置换固溶体,且溶解度越大。 △r=(r A-r B)/r A 当△r<15%时,有利于大量互溶。 b 晶体结构因素 结构相同,溶解度大,有可能形成无限固溶体。 c 电负性因素 电负性差越小,越易形成固溶体,溶解度越大。 d 电子浓度因素 电子浓度e/a越大,溶解度越小。e/a有一极限值,与溶剂晶体结构有关。一价面心立方金属为1.36,一价体心立方金属为1.48。 (上述四个因素并非相互独立,其统一的理论的是金属与合金的电子理论。) 2 间隙固溶体 (1)影响因素:原子半径和溶剂结构。 (2)溶解度:一般都很小,只能形成有限固溶体。 3 固溶体的结构 (1)晶格畸变。 (2)偏聚与有序:完全无序、偏聚、部分有序、完全有序。 4 固溶体的性能 固溶体的强度和硬度高于纯组元,塑性则较低。 (1)固溶强化:由于溶质原子的溶入而引起的强化效应。 (2)柯氏气团 (3)有序强化 第二节金属间化合物

固体结构习题

第一章 固体结构 1.1 习题 1. 金属键、离子键、共价键和分子键的主要区别是什么?为什么金属具有良好的导电性、导热性、良好的延展性和金属光泽? 2. 何谓原子间结合力,原子间结合能?何谓激活能?试用三原子作用模型(或双原子模型)说明,金属中的原子为什么呈周期性的规则排列,而且是紧密的排列? 3. 解释名词:晶体、非晶体、单晶体、多晶体、晶粒。 4. 何谓空间点阵、晶格、晶体结构和晶胞?常用金属的晶体结构是什么?画出其晶胞,并分别计算其原子半径、配位数和致密度。 5. 面心立方和密排六方晶格都是最紧密排列方式,绘图说明它们的排列方式有何不同? 6. 体心六方晶格是次紧密排列方式,绘图说明它的排列特点。 7. 何谓晶面、晶向,它们的表示方法如何?立方晶格的晶面指数和晶向指数如何确定? 8. 密排六方晶格的晶面指数和晶向指数如何确定? 9. 在六方晶格中,当某一晶向和某一晶面垂直时,它们的密勒指数有何特点? 10.在立方晶格中,当某一晶向位于(或平行于)某一晶面时,它们的密勒指数有何特点? 11.已知立方晶格的某一晶面的密勒指数,如何写出空间位向不同,但原子排列情况与其完全相同的所有晶面的密勒指数? 12.已知立方晶格的某一晶向的密勒指数,如何写出与其原子排列情况相同但空间位向不同的其他晶向的密勒指数? 13.何谓理想晶体和实际晶体?为什么单晶体呈各向异性而多晶体在大多数情况下没有各向异性现象? 14.何谓同素异晶转变?试以铁为例说明之? 1.2思考题 1. 画出立方晶格的下列密勒指数的晶面和晶向: a. (001)与[210] b. (110)与[111] c. (321)与[214] 2. 某晶体的原子位于正方晶格的结点上,晶胞的三个棱边长分别为:a=b,c=23 a 。今有一晶面在X 、Y 和Z 轴上的截距分别位5个原子截距、2个原子截距和3个原子截距,试求该晶面的密勒指数。 3. 计算面心立方晶格中下述晶面的致密度,并指出哪个晶面的致密度高: a. (111) b. (110) c. (100) 4. 试证明:理想密集六方晶格的轴比c/a=1.633。 5. 已知铁和铜在室温下的晶格常数分别为2.86°A 和3.607° A ,求1cm 3中铁和铜的原子数。

相关主题
文本预览
相关文档 最新文档