当前位置:文档之家› 太阳能中高温光热利用技术

太阳能中高温光热利用技术

太阳能中高温光热利用技术
太阳能中高温光热利用技术

太阳能中高温光热利用技术

摘要:太阳能中高温热利技术是太阳能光热利用技术的发展趋势,中温热利用可用于80℃~250℃的工农业用热等领域,高温热利用主要应用250℃~800℃的太阳能发电技术。本文主要介绍了力诺光热集团研发的中温太阳能真空集热管和高温真空太阳集热管,对其关键技术如中高温涂层、真空维持、玻璃金属封接等进行了具体介绍。该两项科研成果已得到业内专家的认可,其吸收比均高达0.96,中温太阳能真空集热管180℃时发射比仅为0.05,最高工作温度可达150℃,高温真空太阳集热管400℃发射比小于0.14,且长时间工作在400℃各性能无明显衰减,极大的拓展了太阳能光热利用领域,为中国太阳能光热产业做出了巨大的贡献。

关键词:太阳能、中高温、热利用、光热发电

引言

太阳能热利用按温度划分,目前可分为三领域:其中40℃~80℃为低温领域、80℃~250℃为中温领域、250℃~800℃为高温领域。低温领域热利用技术目前国内外已经比较成熟,主要提供生活用水,其产品为平板型或真空管型集热器;中温领域热利用技术主要以提供工农业用热为主,目前较为先进的应用是空调制冷、区域建筑供暖及部分工业用热等等,国际上普遍采用平板集热器或玻璃-金属封接式集热管集热器;高温领域热利用技术主要应用是太阳能热发电,集热管结构方式为高温真空太阳集热管。目前国际光热应用发展趋势正从传统的低温热水应用逐步向中高温工业应用和热发电应用转变。

1 太阳能中高温应用国内外发展现状

1.1 太阳能中高温应用国外发展现状

目前,随着全球能源供应问题日显突出和可持续发展战略的积极推行,国际国内对太阳能中温技术的开发应用已掀起新一轮高潮。美国等工业化先进国家早在八十年代即开始了将太阳能中高温技术应用到纺织、建筑、食品加工、木材烘干等工农业生产和日常取暖、开水等方面,以获得100℃以上的热水和蒸汽。近年来,太阳能中温技术在欧美发达国家增长更加迅猛,根据欧盟委员会发布的《能源的未来:可再生能源》白皮书,到2010年,欧盟将安装1亿m2的太阳能集热器,其中太阳能供暖系统将占1900万m2。国外太阳能中温热利用技术中所使用的集热器大部分以金属—玻璃封接式集热器、平板太阳能集热器为主,其制作成本较高、制作工艺复杂且热效率较低,技术和设备工艺没有得到突破性进展,造成太阳能中温热利用技术无法形成产业规模化,只能依托在国家政府补助与颁布新能源法来强制实施。

太阳能热发电是指利用大规模阵列镜面收集太阳热能,通过换热装置提供蒸汽,然后结合传统汽轮发电机技术,达到发电的目的,主要有三种发电方式:塔式、碟式和槽式聚焦系统。其中槽式太阳能热发电实现了商业化运行,其主要集热部件是高温真空太阳集热管。目前高温真空太阳集热管成熟的生产技术掌握在以德国的SCHOTT和Siemens等少数公司手中,并为全球太阳能热发电工程提供核心极热部件。2009年7月启动的“欧洲沙漠行动”,堪称可再生能源领域最具野心的计划。多个欧洲财团和企业,计划在未来十年内投资4000亿,在中东及北非地区建立一系列并网的太阳能热发电站,来满足欧洲15%的电力需求,以及电站所在地的部分电力需求;西班牙的可再生能源规划中,设定了2005年~2010年装机容量500兆瓦的目标。这一目标已经提前实现。于是,西班牙部长会议在2009年11月通过决议,提出2010年~2013年太阳能热发电装机容量2440兆瓦的新目标。太阳能热发电在可再生能源发电技术中具有发电成本较低、绿色无

污染等特点,相信随着可再生能源技术的发展、应用的扩大,将有着广阔的市场前景。

1.2 太阳能中高温国内发展现状

我国对太阳能中高温集热管及其应用技术的研究起步较晚,一直局限于小型部件和材料的攻关项目,研发远远落后于一些发达国家。国际上普遍采用金属-玻璃式集热管做为太阳能中温热利用中的集热部件,使用成本较高,是制约我国太阳能中温应用的主要因素之一。力诺光热集团最新研制的中温全玻璃真空太阳集热管是由集热管发明人——清华大学殷志强教授亲自指导,由山东力诺光热集团与清华大学联合历经3年时间研发的最新产品,该产品是集热管应用的升级产品,其应用温度为80℃~150℃,彻底解决了集热管长期在高温下工作的真空维持问题,该产品具有热效高、耐高温、抗衰减、寿命长等特点,标志着太阳能热水应用时代迈入热能应用时代。此产品被力诺瑞特应用于开发太阳能空调制冷、区域建筑供暖等太阳能中温应用相关技术。

太阳能高温发电技术方面,与国外对聚光太阳能热发电技术在材料、设计、工艺及理论方面进行了长达50多年的研究相比,我国太阳能热发电起步较晚。槽式太阳能热发电系统中的核心部件,如兆瓦级槽式太阳能聚光器、高温真空太阳集热管、储热单元等尚处于研发阶段。以高温真空太阳集热管为例,目前此技术处于领先地位的几家单位及企业包括清华大学、力诺光热集团、皇明、东南大学等,清华大学和力诺目前已掌握4m长高温真空太阳集热管的相关技术,成功解决了玻璃-金属非匹配封接这一技术难题,预计2010年底能完成中试。

随着国家新能源法的颁布,一些太阳能中高温应用的示范性项目相继上马,如2010年太阳能光热联盟申请的太阳能储热技术研究及大规模应用项目(科技部支撑项目),构建一个万平米级区域性太阳能供暖的示范项目;2010年4月内蒙古鄂尔多斯50MW槽式热发电项目开始招标,此项目总投资16亿元人民币。项目建成后,年可发电1.2亿度,实现产值1.8亿元,实现税收1530万元;另据科技部“十二五”规划将在5年内建成1MW槽式热发电示范项目;中国华电集团也规划在甘肃建设4×50MW槽式发电站等。

因此山东力诺光热集团有限公司制定了中温太阳能真空集热管和高温真空太阳集热管开发发展战略规划,通过建立中高温集热管技术研发平台——中高温集热管光热材料实验室来拓展全玻璃集热管的应用领域范围和研制适合国内高温发电应用的高温真空太阳集热管。以期提高国内太阳能中高温集热管生产水平,缩短与国外同行差距。

2 太阳能中高温光热利用的核心部件关键技术突破

2.1 中温太阳能真空集热管技术

目前工业上中温应用的温度范围大多集中在80℃~150℃之间,从材料承受能力上讲,全玻璃真空太阳集热管可以满足在此温度范围内的使用要求。为此,我公司与清华大学就中温涂层、增透膜技术以及真空维持技术进行深入研究,并研制开发出中温太阳能真空集热管。关键技术开发情况如下:

2.1.1 中温涂层的设计开发

在中温涂层的设计开发中,我们淘汰了含有重金属铬的不锈钢溅射材料,选用高熔点、环保型的金属钛做为磁控溅射材料,借鉴“钛金太阳集热管”的成功经验,通过大量试验调整确定了涂层工艺参数,制备出适用于中温范围(80℃~150℃)的选择性吸收涂层。

2.1.2 罩玻璃管增透技术的开发

本公司作为国内最大的集热管专业生产厂家,大力引进国内外领先技术和设备,一方面通过引进德国公司的精密设备进行增透涂层的初步研发,另一方面我公司增透膜实验室与清华大学和国内知名玻璃增透膜研究所共同合作,引进一系列先进设施共同开发出中温太阳能真空集热管的增透技术(专利申请:一种太阳集热管增透涂层的制备方法,申请号:200810237834.9)。罩玻璃管太阳透射比可提高至94%,大大提高中温太阳能真空集热管集热性能。

2.1.3 双效真空维持技术

全玻璃真空太阳集热管的真空夹层设计有效避免了因空气对流、热传递造成的热量损失,使集热管的保温能力显著提高,也是决定集热管寿命的主要因素之一。而中温太阳能真空集热管由于正常使用过程中温度较高,其夹层中各部件的放气量相比普通集热管大数倍,为了保证其能够稳定工作,并具有较长的使用寿命,因此中温太阳能真空集热管对真空维持技术提出了更高的要求。

我公司真空维持实验室通过大量试验,自行设计双效吸气剂激活和测试仪器,同时确定两种吸气剂的激活工艺条件,选型用量及安装位置等,最终达到两种吸气剂双效合一,优势互补;同时开发了中温太阳能真空集热管风循环式连续排气系统,温场温差<20℃,实现排气工艺自动化,保证排气工艺稳定性。并结合中温太阳能真空集热管设计的各因素和全自动排气系统对其排气工艺进行了具体研究,如:研究升温时夹层真空度对吸气剂和中温选择性吸收涂层的影响,确定升温真空度;测试夹层温度和排气台温场温度的差异;研究温场温度和保温时间对特效吸气剂的激活程度,确定合理的保温温度和保温时间等等,从而完成整个中温太阳能真空集热管的排气工艺研究。

采用双效真空维持技术有效解决了中温太阳能真空集热管长期在中温环境下的真空维持问题,其使用寿命明显提高。对普通集热管与中温太阳能真空集热管进行400℃,2500h真空老化试验,测试夹层真空度在老化试验过程中的变化。

2.1.4 中温太阳能真空集热管相关检测系统

目前太阳能集热管国家标准中只规定了低温领域集热管的相关标准,对中温领域相关性能参数、检测设备及检测方法没有明确的规定。我公司在开发研究中温太阳能真空集热管的过程中,就各性能参数检测方法及检测设备进行了探索,逐渐形成一套适用于中温太阳能真空集热管的测试系统与检测标准。如通过改进半球向发射比测试系统将测试温度由80℃提高到180℃稳定测试,并有望将其测试温度提高至350℃;开发了业内首创的中温吸气剂检测系统及真空校准系统,经国家计量一级站验证,能够模拟排气工艺对中温吸气剂的激活过程来开展试验;改进了集热管真空品质测试系统,使其控温精确,温场温差小于5℃,可实现智能化控制,并具有分段控温功能,以满足中温太阳能真空集热管的真空品质测试要求等。同时该中温太阳能真空集热管的各测试系统与测试方法已经得到业内专家的一致认可,认为方法科学、数据合理。

2.2 高温真空太阳集热管

高温真空太阳集热管作为槽式太阳能热发电的核心器件其制作技术目前被国外少数几家公司垄断。我公司与清华大学就高温涂层、玻璃-金属封接以及真空维持等相关技术进行深入研究,并研制开发出高温真空太阳集热管。关键技术开发情况如下:

2.2.1 高温涂层的设计开发

高温真空太阳集热管内工质工作温度可达400℃,普通的太阳能选择性吸收涂层已无法满足在此高温下的长期工作。我公司与清华大学共同研制的高温太阳能选择性吸收涂层采用金属红外反射层、金属陶瓷吸收层和介质减反层的多层干涉吸收薄膜结构。涂层的金属材料涉及W、Mo、Ni、Pt、Cu、Al、Y等,介质材料采用低折射率的Al、Si氮氧化物。可承受500℃以上的高温工作环境,涂层太阳吸收比不低于0.94±0.02,400℃时发射比不高于0.14±0.02。

2.2.2 玻璃-金属封接技术研发

罩玻璃管与金属封接环采用两种封接方式:(1)开发出非匹配直接熔封技术,罩玻璃管为硼硅3.3玻璃,其特点是高透过、高抗机械冲击强度和耐水、酸碱性能,低线性膨胀系数等,金属封接环为不锈钢材料。一方面,通过精密加工、表面处理等方法调整金属封接环的结构参数、应力状态;另一方面,优化熔封工艺条件和后期处理技术,从而实现硼硅玻璃与金属封接环直接熔封。玻璃金属封接处牢固,可承受450℃缓变高温和200℃急速热冲击,漏率小于﹤1×10-11Pam3/s;(2)匹配封接,自主开发设计玻璃窑炉,开发出硼硅5.0玻璃做为罩玻璃管,金属封接环为可伐合金。硼硅5.0玻璃兼具硼硅3.3玻璃的高透过、高抗机械冲击强度和耐水、酸碱性能和高温环境下的低放气量,又具有与金属匹配的线性膨胀系数,可实现金属-玻璃匹配封接,从而大大降低封接难度。

2.2.3 真空维持性能

通过研究高温环境下材料的出气特性及残余气体成分分析,对高温吸气材料进行吸气量、吸气速率检测和筛选,理论分析计算并结合试验确定高温真空太阳集热管排气工艺、吸气剂的用量及激活工艺。排气后真空度﹤5×10-3Pa,经450℃~500℃高温环境试验1000h,真空度﹤5×10-2Pa,且各性能无明显衰减。

2.3 高温真空太阳集热管结构图(略)

注:1-金属吸热管;2-高温太阳选择性吸收涂层;3-真空夹层;4-罩玻璃管(硼硅3.3玻璃);5-增透膜涂层;6-新型吸气剂;7-特效吸气剂;8-玻璃金属封接环;9-波纹管;10-吸气剂环;11-排气尾嘴;12/13-法兰。

3 结论

2010年7月21日在力诺集团总部举行的中温太阳能真空集热管科技成果鉴定会,由中国工程院三位院士参与组成的鉴定专家组对该项产品给予了高度评价,鉴定委员会专家一致认为:“该成果具有多项创新,填补了全玻璃真空太阳集热管和集热器150℃温区的技术空白,达到了国际领先水平”。中温太阳能真空集热管的研制成功将极大地拓展了太阳能光热利用领域,引领太阳能由低温热水应用时代迈入热能应用时代,为国内外中温热利用技术的发展奠定了基础。

同时力诺光热集团与清华大学在高温真空太阳集热管的研发也已取得突破性进展,已研制出高温真空太阳集热管,其高温膜层、玻璃金属封接、真空维持性能等关键技术进行了深入研究,且高温真空太阳集热管项目即将在力诺科技园开工建设,该生产线配套德国JSJ玻璃窑炉、德国劳赫等离子减反射设备、玻璃金属封接系统、总装车床、镀膜机、排气系统等生产设备和检测仪器设备。计划2010年底试产,2011年可实现年产5万支高温真空太阳集热管的产能。届时,力诺光热将成为国内首个规模化生产高温真空太阳集热管的太阳能企业,这必将进一步推动整个太阳能热利用行业的快速提升。

2009年11月26日国家正式对外宣布控制温室气体排放的行动目标,到2020年单位国内生产总值二氧化碳排放比2005年下降40%--45%,非化石能源占一次能源消费比例15%左右。这将意味着国家将在新能源、可再生能源领域投入更大的支持,太阳能热利用的研究是开发和利用新能源的重要手段。

我们研究太阳能中高温应用技术,其目的就是扩大太阳能应用范围,积极响应国家产业政策,为国家的节能减排做出应有的贡献。

参考文献

[1]. 殷志强,全玻璃真空太阳集热管[J].科学出版社1998年3月第1版

[2]. 管伟,殷志强,溅射TiN薄膜的机械性能与光学性能[J].真空科学与技术学报,1993,13(2):116-123

[3].史月艳、那鸿悦,太阳光谱选择性吸收膜系设计、制备及测评[J],清华大学出版社,2009 225-228

[4]. 胡汉全,王迁,真空物理与技术及其在电子器件总的应用[M].北京:国防工业出版社,1982.

[5]. 周小雯,全玻璃真空太阳集热管中非蒸散型吸气剂性能的研究[J].2005.9.

[6] 张梅梅,太阳能高温热发电技术[J],高科技与产业化. 2008,7:22-24.

(完整版)太阳能利用技术常考题目及答案

0、太阳常数的定义:太阳常数是指在日地平均距离处,地球大气层外(大气上界)垂直于太阳光线的平面上,单位时间、单位面积内所接受的所有波长的太阳总辐射能量值,它基本上是一个常数,所以这个辐照度称为太阳常数。 1、太阳赤纬角的定义:太阳光线与地球赤道面的交角就是太阳的赤纬角。 2、太阳高度角和太阳方位角的定义:高度角:太阳中心直射到地面的光线与当地水平面间夹角(h),表示太阳的高度。方位角:太阳光线在地平面上的投影与当地正南方的夹角,向西为正,向东为负,变化范围正负180;它表示太阳的方位,决定太阳光的入射方向。 3、大气质量和大气透明系数的定义:太阳光线通过的大气路程与太阳在天顶时太阳光线通过的大气路程之比;表征大气对于太阳光线透过程度的一个参数 4、大气对太阳辐射的影响,详细了解答:大气辐射具有削弱作用,太阳光线在大气中经过的路程越长能量损失的就越多,大气对太阳辐射的作用一共有三种方式:吸收反射散射作用。具体来说,吸收作用变现在平流层的臭氧吸收紫外线,水汽,二氧化碳吸收红外线。反射作用:较大的颗粒尘埃,还有云层对阳光的反射。散射:主要是大气分子还有微小的尘埃对波长较短的可见光,还有颗粒较大的尘埃,雾粒,小水滴对各种波长的散射。 5、太阳辐射产生的物理机制是什么?答:太阳辐射分为两种:一种是从光球表面发射出来的光辐射,因为它以电磁波的形式传播光热,所以又叫做电磁辐射。另外一种是微粒辐射,它是由正电荷的质子和大致等量的带负电荷的电子以及其他粒子做组成的粒子流。 6、什么是太阳辐射年总量:一年内地面所接受的太阳辐射短波总辐射量,是衡量一个地方太阳能资源丰富的重要标志。 7、什么是春分秋分夏至冬至:上半年,太阳从低纬度到高纬度逐日升高,春分指春天昼夜均分的一天,随后昼长夜短,直到夏至,太阳走到北回归线,白昼时间最长的一天,随后白粥时间慢慢变短,到秋天,昼夜均分的一天是为秋分,随后昼短夜长直至冬至,太阳走到南回归线,白天最短的一天。 8、太阳光谱的特点:太阳光谱包括紫外区、可见区、红外区,其中,波长小雨0.4um的紫外区占大约8.03%和波长大于0.76um的红外区占45.54%,是人眼看不见的紫外线和红外线,波长为0.4~~0.76um的可见区是我们能见的可见光区46.43%. 9、太阳房的定义以及它的分类:太阳房是利用太阳能进行采暖和空调的环保型生态建筑。太阳房可分为三类:主动太阳房,被动太阳房和热泵式太阳能采暖系统。 10、被动式太阳房的特点是什么以及被动太阳房建筑设计的几个基本原则分别是什么?答:特点:根据当地的气象条件,在基本上不添置附加设备的条件下,只在建筑物构造和材料性能上下功夫,使房屋达到一定采暖效果的方法。原则:构造简单,造价便宜。 11、太阳能储热的方式及原理:方式:自然循环集热,强制循环集热,定温放水集热。原理:冷水经过补冷水系统,进入循环水箱达设定水位后,之后不冷水系统停止工作,低温水进入集热器阵,受太阳能辐射加热水温升高,当集热器上循环管内水温与储热水箱底部水温之温差达到设定值时,启动强制循环泵,将水箱中低温水送到集热器阵,同时将集热器阵中热水送到储热水箱,当上述温差等于和地于设定值时,强制循环泵停止工作。低温水在集热器中继续吸收太阳能辐射,加热。如此循环,是储热水箱中水温不断升高。 12、太阳灶的原理:太阳灶是利用太阳辐射能,通过聚光传热储热等方式获得热量,进行炊事烹饪食物的一种装置。 13、利用太阳能进行海水淡化的常用方法:1被动式太阳能蒸馏系统,如单级或多级倾斜式太阳能蒸馏器,回热式,球面聚光式太阳能蒸馏器等。2主动式太阳能蒸馏系统,有单级或多级附加集热器的盆式,自然或强迫循环式太阳能蒸馏器。3利用太阳能发电进行反渗透法进行海水淡化,此外,还有太阳能多级闪蒸,太阳能多级沸腾蒸馏技术。 14、太阳能热水器的主要组成部分包括那几个部分:集热器,储热水箱,循环水泵,管道,支架,控制系统及相关附件组成。 15、太阳能利用按地域划分的几类地区,按+··················+接受太阳能辐射量的大小,全国大致上可分为五类:一类地区,主要包括青藏高原,甘肃北部,宁夏北部,新疆南部等地。二类地区:包括河北西北部,山西北部,内蒙古南部,宁夏南部,甘肃中部,青海东部,西藏东南部和新疆南部等地。三类地区,包括:山东河南河北东南部,山西南部,新疆北部,吉林辽宁云南陕西北部,甘肃东南部,广东南部,福建南部,苏北,皖北,台湾西南。四类地区,包括湖南湖北广西江西浙江福建北部广东北部陕西南部江苏北部安徽南部以及黑龙江台湾东北等地。五类地区,包括:四川重庆贵州。 16、什么是太阳能制冷,根据不同的能量转换方式,太阳能驱动制冷主要有以下两种方式,一是先实现光─电转换,再以电力制冷;二是进行光─热转换,再以热能制冷。 17、太阳能发电的定义和基本形式:通过水或其他工质和装置将太阳能辐射能转换为电能的发电方式,称为太阳能发电。形式有两种:一种实现将太阳辐射能转换成热能,在按照某种发电方式转化为电能。另一种是通过光电器件

太阳能光热技术在建筑节能中的应用

太阳能光热技术在建筑节能中的应用 刘业凤☆ 代彦军 王如竹 (上海交通大学) [摘要] 在建筑节能中利用太阳能光热技术是一种有效而环保的手段。本文结合国内外太阳能建筑节能中应用的最新动态,对各种技术和应用方案进行了总结和探讨,并对这种技术的应用发展提出一些建议。 [关键词] 建筑节能 太阳能光热技术 应用方案 1 概述 建筑能耗是指建筑物使用过程中用于供暖、通风、空调、照明、家用电器、输送、动力、烹饪、给排水和热水供应等的能耗。在发达国家,建筑能耗约占总能耗的39%-40%。这一比例的高低反映了一个国家的经济发展和人民生活水平。我国是最大的发展中国家,建筑能耗约为全国总能耗的11.7%,而北方地区供暖能耗就占了其中的80%[1-2]。随着我国的经济腾飞和气候变暖,这一比例正不断提高。自二十世纪70年代中东石油危机以来,建筑节能成为发达国家关注的热点。而90年代提出可持续发展理论和环境资源保护的紧迫性以后,建筑节能更成为世界各国的关注热点。 人类对建筑的需求,经历了掩蔽所?舒适建筑?健康建筑?绿色建筑这样四个阶段。第一阶段是低能耗甚至无能耗的阶段,第二和第三阶段是高能耗阶段,第四阶段则是高能量效率、大量利用可再生能源和未利用能源、亲近自然和保护环境的阶段。绿色建筑又称可持续建筑,发达国家已处于从第三阶段向第四阶段过渡的时期。我国普遍而言尚处于第一到第二阶段之间,因此我国的能源消费结构中建筑能耗的比重还不大。但我从国经济发展和人民生活水平提高的速度来看,本世纪初必然会走到第二和第三阶段,必然会给能源和环境带来巨大的压力。建筑节能主要是运用现代科技手段降低建筑能耗,减少环境污染,而并不意味着限制发展、降低建筑物的服务标准,而是以提高建筑物的能量效率、用有限的资源和最小的能源消费代价来取得取得最大的经济和社会效益,满足日益增长的需求目标。同时应尽力减少或消除建筑物的固有能耗。 目前工业和民用建筑物中绝大多数的空调系统均采用压缩制冷的方式,它具有使用方便、效率高的优点,但也有两个主要缺点:第一是需要消耗大量的机械能,并且其中大部分是由高品位的电能提供的;第二是环境污染问题污染来自于两方面:一是为生产高品位能源燃烧大量石化燃料产生的C O、C O2、S O2及NO x;二是压缩机中采用的工质CFC/HCFC均会不同程度地破坏臭氧层。含氯氟烃中的R11、R12对臭氧层的破坏特别严重,R22次之。太阳能资源在时间上的变化规律和制冷空调用能在时间上的动规律高度匹配,太阳能资源的地域分布与制冷空调需求的地域分布高度吻合,以及太阳能资源丰富、清洁和无污染性,使得太阳能技术成为一个极为诱人的研究领域,在环保、节能方面显示出无与伦比的优越性。太阳能技术在建筑节能方面的应用展现出了光明的前景。太阳能技术在建筑节能方面的应用根据使用方式可分为直接利用太阳能的方式和间接利用太阳能的方式。 2 直接利用太阳能的方式 2.1 建筑通风与太阳能利用 2.1.1 利用热压实现自然通风 迈克尔.霍普金斯设计的英国国内税务中心位于诺丁汉市的传统街区。他设计了一组顶帽可经升降的圆柱形玻璃通风塔[3],用作建筑的入口和楼梯间(见图1)。 玻璃通风塔可以最大限度地吸收太阳的能量,提高塔内空气温度,从而进一步加强烟囱效应,带动各楼层的空气循环,实现自然通风。冬季时可以将顶帽降下以封闭排风口,这样通风塔便成为一个玻璃暖房,有利于节省采暖能耗。 2.1.2机械辅助式自然通风 在冬季,利用机械装置将位于屋顶太阳能集热器中的热空气吸到房间的地板处,并通过地板上的气孔进入室内,实现利用太阳能采暖的目的,此后利用热压原理实现气体在房间内循环;而在夏季的夜晚,则利用天空背景辐射使太阳能集热器冷却(可比 ? 9 3 ? 建筑热能通风空调

太阳能光热系统应用实例简析

太阳能光热系统应用实例简析 摘要:太阳能是一种清洁、高效而且可持续的可再生能源,充分利用太阳能是当前的大势所趋;深圳市属太阳能资源中等类型区,太阳能利用自然资源优越,本文根据深圳一个大型商住项目,对包括太阳能热水器,电热棒,热泵,燃气热水器,燃油热水器做了一个简要的经济技术分析比较,体现出太阳能热水器的一些优势。 摘要:太阳能光热系统实例简析 太阳能热利用是可再生能源技术领域商业化程度最高、推广应用最普遍的技术之一,我国太阳能热水器平均每平方米每年可节约100-150公斤标准煤。20多年来,太阳能热水器在我国得到了快速发展和推广应用,目前我国家用太阳能热水器产量占世界第一位。 深圳市地处南海之滨,属南副热带季风气候,夏长冬短,夏无酷暑,冬无严寒。深圳市年平均气温为23.7℃,最低气温为1.9℃,最高气温为37.1℃;全年平均总太阳辐射量为5225MJ/m2,年日照时数1975.0小时,年日照百分率为47%,属太阳能资源中等类型区。其中5~9月份太阳辐射总量占全年的48%,7月份日照总量最大,月总辐射量为588.6 MJ/m2,2月份日照总量最小,月总辐射量为293.4 MJ/m2。全年约80%的白天具有采集太阳热能的条件,太阳能利用自然资源优越。以下将以具体工程来说明太阳能热水器的优势。 1.工程概况: 本工程地处深圳市福龙路西侧,总占地面积60,900m2总建筑面积238,908m2 ,由11栋高层住宅、部分多层住宅、裙房商业、地下车库等组成,最高一栋建筑高度为64.9m,为一类商住楼。其中多层住宅、高层塔楼屋顶复式、公共酒楼及恒温泳池需要热水供应。 2.太阳能热水器系统简介 太阳能热水器就是吸收太阳的辐射热能,加热冷水提供给人们在生活、生产中使用的节能设备。它是我国太阳能热利用中最为成熟和最为先进的产品。为百姓提供环保、安全、节能、卫生的新型热水器产品。 2.1太阳能热水系统主要设备选型: 太阳能热利用系统中,接受太阳能辐射并向水传递热量的部件,称为太阳能集热器。目前主要有平板型、全玻璃真空管、真空热管三种太阳能集热器,各种太阳能集热器各有优缺点,分别适用不同的地区、不同的用途,性能价格比也不同。 2.1.1平板型太阳能集热器

太阳能利用现状

太阳能利用现状 化学三班xxxxxx 一、太阳能技术的历史 现代世界太阳能利用的发展过程大致可划分为8个阶段。从1615年法国工程师所罗门·德·考克斯发明世界上第一台利用太阳能驱动的抽水泵算起;1901~1920年这一阶段世界太阳能研究的重点仍然是太阳能动力装置。 1921~1945年由于化石燃料的大量开采应用及爆发了第二次世界大战,此阶段太阳能利用的研究开发处于低潮,参加研究工作的人数和研究项目及研究资金大为减少;1946~1965年这一阶段,太阳能利用的研究开始复苏,加强了太阳能基础理论和基础材料的研究,在太阳能利用的各个方面都有较大进展;1966~1973年此阶段由于太阳能利用技术还不成熟,尚处于成长阶段,世界太阳能利用工作停滞不前,发展缓慢;1973~1980年这一时期爆发的中东战争引发了西方国家的“石油危机”,大家开始重视太阳能的利用,向新的能源结构过渡,客观上使这一阶段成了太阳能利用前所未有的大发展时期;1981~1991年由于世界石油价格大幅度回落,而太阳能产品价格居高不下,缺乏竞争力,太阳能利用技术无重大突破;1992年至今为第八阶段, 1992年6月联合国“世界环境与发展大会”在巴西召开之后,世界各国加强了对清洁能源技术的研究开发,使太阳能的开发利用工作走出低谷,得到越来越多国家的重视和加强。 二、太阳能技术现状 截至到2015年底,中国以累计光伏发电量4318万千瓦,一跃成为全球光伏发电装机容量的最大国家,其中分布式光伏606万千瓦(占比14.03%)。但根据最新《电力发展“十三五”规划》的公布,分布式光伏将达到6000万千瓦以上,达到占比将近50%。 这一信号,可以看出在未来中国光伏市场,分布式光伏将重点发展。2016年国内光伏装机仍有望表现强劲,预计2016年国内光伏装机将突破19GW,将再度成为最大的太阳能光伏市场。随着我国西北部地区地面电站的逐渐饱和,

太阳能光热发电与光伏发电对比分析

传统的火力发电是通过燃烧,把化石中储存的能量,转化为热能,再转化为电能。而太阳能光热发电则是通过数量众多的反射镜,将太阳的直射光聚焦采集,通过加热水或者其他工作介质,将太阳能转化为热能,然后利用与传统的热力循环一样的过程,即形成高温高压的水蒸气推动汽轮机工作,最终将热能转化成为电能,典型太阳能光热发电热力循环系统原理如图所示。 太阳能光热发电热力循环系统原理图 正是通过这样的环节,太阳能光热发电技术和传统技术顺利地集成在一起。由于火力发电技术早已非常成熟,从而降低了太阳能光热发电整体技术开发的风险。 中国产业信息网发布的《》指出:技术主要包括太阳能光伏发电和太阳能光热发电两种,光伏发电的原理是当太阳光照射到上时,电池吸收光能,产生光生伏打效应,在电池的两端出现异号电荷积累。若引出电极并接上负载,便有功率输出。光伏发电是目前太阳能发电产业的主流技术,较为成熟,国家已明确其上网电价(不同地区在~1 元/度范围变化),发电成本也下降至元/度左右;光热发电在我国发展时间较短,在太阳能聚光方法及设备、高温传热储热、电站设计等集成以及控制方面,已经取得实质性进展,但商业化业绩较小,上网电价政策尚未落实,发电成本也较高,约为元/度左右。但太阳能光热发电与光伏发电相比具有以下优点: 1)太阳能光热发电输出电力稳定,电力具有可调节性,易于并网 目前太阳能光热发电系统可以通过增加储热单元或通过补燃或与常规火电联合运行改善出力特性。而受日光照射强度影响较大,上网后给电网带来较大压力,其发电形式独特,和传统电厂合并难度大。 通过储热改善光热发电出力特性(槽式和塔式光热发电)。白天将多余热量储存,晚间再用储存的热量释放发电,这样可以实现光热发电连续供电,保证电流稳定,避免了光伏发电与风力发电难以解决的入网调峰问题。根据不同储热模式,可不同程度提高电站利用小时数和发电量,提高电站调节性能。 通过补燃或与常规火电联合运行改善光热发电出力特性。太阳能热可利用化石燃料补燃或与常规火电联合运行,使其可以在晚上或连续阴天时持续发电,甚至可以以稳定出力承担基荷运行,从而使年发电利用得到7000 小时左右。 2)太阳能光热发电无污染 光热发电是清洁生产过程,基本采用物理手段进行光电能量转换,对环境危害极小,太阳能光热发电站全生命周期的CO2 排放仅为13~19g/kWh。而技术存在致命弱点为在生产过程中对环境的损耗较大,是高能耗、高污染的生产过程。业内专家认为,太阳能电池在生命周期所能节约的能源与生产太阳能电池本身所要消耗的资源相比,并不经济。 和光热发电对比

太阳能热利用论文:太阳能热利用技术概述

太阳能热利用论文:太阳能热利用技术概述【摘要】太阳能是一种洁净和可再生的能源,太阳能热利用技术发展迅速。本文对太阳能利用成熟技术、先进技术和当前研究的热点技术进行了简要介绍。在发电过程中使用矿物燃料,从而减轻空气污染及全球暖化的问题,环境保护的发展趋势。成熟技术部分主要包括集热器、热水系统、太阳灶、太阳能暖房等传统的太阳能热利用技术;先进技术部分主要阐述了尚处于研究试验阶段的高品位太阳能热利 用技术,包括太阳能空调降温/制冷、太阳能制氢、太阳能热发电等;在当前研究的热点问题部分,主要论述太阳能建筑热利用的技术问题。 【关键词】太阳能热利用;太阳能建筑;太阳能热发电;太阳能集热器 1.引言 太阳能的利用已日益广泛,它包括太阳能的光热利用,太阳能的光电利用和太阳能的光化学利用等。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能热利用是一种较成熟的可再生能源利用方式。太阳能热利用是可再生能源技术领域商业化程度最高、推广应用最普遍的技术之一。现代的太阳能热技术将阳光聚合,并运用其能量产生热水、蒸汽和电力。除了运用适当的科技来收集太阳能外,

建筑物亦可利用太阳的光和热能。太阳能资源总量相当于现在人类所利用的能源的一万多倍,太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。但是太阳能有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。太阳能热利用研究和开发方兴未艾,随着常规能源供给的有限性及地球环保压力的增加,世界上许多国家掀起开发利用太阳能的热潮,开发利用太阳能成为各国可持续发展战略的重要内容,太阳能先进技术已成为世界当前及未来研究、开发和利用的主要方向。 2.太阳能热利用技术 太阳能热利用的基本原理是用集热器将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的集热器,主要有平板型集热器、真空管集热器、热管式集热器和聚焦型集热器等4种。通常太阳能热利用可分为:低温(80℃以下)、中温(80-350℃)和高温(350℃以上)三类热利用方式。低温热利用包括最简单的地膜、塑料大棚以及干燥器、蒸馏、供暖、太阳热水器。中温热利用有太阳能建筑、空调制冷、制盐以及其它工业用。热高温热

太阳能光热发电技术

太阳能光热发电技术的应用与发展 摘要:太阳能是一种用之不尽、取之不竭的清洁能源,在能源与环境问题日趋严峻的今天,很多国家都对太阳能发电技术进行了研究和实践,并取得了一些成果。太阳能光热发电是太阳能利用的一种有效方式,目前有槽式、碟式和塔式三种典型的太阳能光热发电方式。比之传统的火力发电方式,太阳能有其环保的优势,但是也存在一些问题需要去克服。随着人类对清洁能源的需求太阳能发电技术将会得到更加深入的发展。 1.太阳能热发电技术概述 能源与环境问题是当今世界面临的两个重要问题,随着化石能源的日趋枯竭,一次能源的利用成本也不断增加,由于大量的燃烧矿石燃料,使环境问题日益严重,温室效应、空气污染越来越引起人们的重视。近年来一些可再生能源受到了人们的推崇,为各国所重视。太阳能是一种取之不尽、用之不竭的清洁能源,利用太阳能直接发电是缓解甚至解决能源问题的一种有效方式,世界各国也都在做积极的努力,已经有很多太阳能发电项目投入运行,太阳能发电技术在未来有着广阔的发展前景。 太阳能是太阳通过辐射的方式想宇宙空间释放的能量,人类所需能量的绝大部分都直接或间接地来自太阳。正是各种植物通过光合作用把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代形成的。它们实质上是由古代生物固定下来的太阳能。此外,水能、风能、等也都是由太阳能转换来的。地球轨道上的平均太阳辐射强度为1369W/ m2。地球赤道的周长为40000km,从而可计算出,地球获得的能量可达173000TW。在海平面上的标准峰值强度为1kW/m2,地球表面某一点24h的年平均辐射强度为 0.20kW/m2,相当于有 102000TW的能量,人类 依赖这些能量维持生存, 其中包括所有其他形式的 可再生能源(地热能资源 除外),虽然太阳能资源总 量相当于现在人类所利用 的能源的一万多倍,但太 阳能的能量密度低,而且 它因地而异,因时而变, 这是开发利用太阳能面临 的主要问题。太阳能的这图 1 世界各国太阳能发电装机容量些特点会使它在整个综合能源体系中的作用受到一定的限制。

太阳能光热发电几种创新型储热技术简述

太阳能光热发电几种创新型储热技术 光热电站相比光伏电站的核心优势即在于光热电站可配置储热系统,与传统的火力发电厂一样,生产出电网友好型的可调度电力,满足连续的用电需求。目前,商业化光热发电项目的储能市场仍然以二元熔盐为工质的熔盐储能技术为主流,但其凝固点过高,易冻堵管道的缺陷也饱受诟病。 2016年下半年接连发生的美国新月沙丘电站熔盐罐熔盐泄露事故以及西班牙Gemasolar光热电站熔盐热罐损毁事故,均造成了熔盐罐维修费用及售电收入方面的巨大损失,熔盐储热系统的安全性、可靠性再次受到行业关注。 那么,有没有一种更先进的储热技术,可替代传统的熔盐储热技术进而成为主流?近年来,创新型储能技术层出不穷,尽管其大多停留在实验室或小型示范阶段,在理论层面已证明了其发展潜力,但其商业化价值仍尚待发掘。 1. 挪威Energy Nest公司新型固态混凝土储能技术 挪威科技公司Energy Nest与德国Heidelberg水泥公司(德国跨国建材公司,全球四大水泥生产商之一)展开合作,耗时五年半研发出一种全新的特殊混凝土HEATCRETE储能技术。HEATCRETE混凝土经国际权威独立第三方实验室测试,具有高比热容和高热导率的特性。与之前最为先进的混凝土储能系统相比,HEATCRETE系统的导热系数提高了70%,比热容值提高了15%,这对电站的热力性能和传热介质来说意义重大。该公司表示,其HEATCRETE混凝土储能系统能使整个光

热电站的成本下降10%,针对熔盐储能系统则能节约60%的成本。HEATCRETE混凝土储能技术还能应用于风电和生产高温设备的工厂,但光热电站是该公司的主要目标市场。 2. 麻省理工学院新型液态金属储能技术 2014年9月,麻省理工学院的研究人员公开一种新型全液态金属电池储能系统。该液态金属储能系统内部没有使用任何固体材料制作,全部的储能元件也都采用融化的液体来制作。该系统造价低廉,且使用寿命较长。研究团队称该储能系统可使风能和太阳能这些可再生能源具备与传统能源相竞争的能力。 3. 瑞典查尔姆斯大学新型含碳化学液体高效储能 2017年3月,瑞典查尔姆斯理工大学研究者成功验证了以一种含碳化学液体作为介质,来高效存储太阳能的新型储能技术的可行性。通过这种化学液体,能够实现能量的自由传输以及随时释放。值得一提的是,该化学液体释放能量时,几乎可以实现能量的零损耗。研究小组将这个过程叫做“分子式太阳能储热系统”。目前,此项新技术已成功登上《能源与环境科学》(英国皇家化学院发行的学术期刊)的封面。

太阳能光热光电综合利用

本文由hpshu贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 2009 年第 1 期 上海电力 可再生能源发电 太阳能光热光电综合利用 倪明江 ,骆仲泱 ,寿春晖 ,王 ,赵佳飞 ,岑可法涛 ( 浙江大学能源清洁利用国家重点实验室 ,浙江杭州 310027) 摘 : 太阳能光热光电的综合利用技术是将聚光、要分光、热电联用等技术集成 ,通过对太阳能全波段能量进行一体化地利用 ,可极大地提高太阳能的利用效率 ,降低成本 ,具有重要的研究价值和市场应用价值。文章介绍了太阳能光热光电综合利用系统的技术情况 ,分别对集中式和分布式两种技术路线作了阐述 ,分析了聚光 PV/ T 系统以及与建筑一体化设计的 PV/ T 系统的未来发展方向。最后 , 结合各类太阳能利用系统的特点 , 比较分析了各种光热光电技术存在的问题 ,提出了综合利用各种光热光电技术来提高应用效果的理念。关键词 : 太阳能利用技术 ; 热发电 ; 聚光热电联用 ; 光热光电综合利用中图分类号 : T K513 文献标识码 :A 基金项目 : 国家自然科学基金资助项目(50676082) 1 引言 传统化石能源的大量使用 , 不仅造成了化石能源本身的短缺 , 也给世界环境带来了极大的危害 ,给人类生存空间造成了严重威胁。寻求可再生能源的高效清洁利用成了目前人类面临的共同问题 [ 1 ,2 ] 发展。而以现今的发展趋势来看 , 太阳能热力发电和光伏发电将是世界各国在太阳能利用领域研究的新重点。 2. 1 热利用 太阳能热利用方面 , 中国已成为世界上最大的太阳能热利用产品的生产、应用和出口的国家。 2007 年 ,集热器总保有量约为 10 800 万 m2 。热 。太阳能作为可再生清洁能源蕴藏着巨 15 大能量 ,被普遍认为是理想的新能源。太阳辐射到达地球表面的能量高达 4 ×1 0 5 利用形式多样 , 包括了太阳能热水器、太阳能空调、太阳能干燥和太阳能海水淡化等。 ( 1 ) 太阳能热水器太阳能热水器是太阳能热利用中最常见的一种装置。其基本原理是将太阳辐射能收集起来 , 通过与物质的相互作用转换成热能供生产和生活利用。我国是世界上最大的太阳能热水器制造中心 , 由我国生产的集热器推广面积约占世界的 76 % 。随着太阳能热水器的发展 ,出现了闷晒式、 M W , 相当于 每年 3. 6 ×亿 t 标准煤 ,约为全球能耗的 2000 10 倍。太阳能可以免费使用 ,又不需要运输 ,对环境无任何污染。在传统化石能源储备减少、价格快速上升 ,在温室气体排放引发的气候环境问题愈来愈显著的今天 , 太阳能作为可再生能源和新能源的代表 , 得到越来越多的关注 , 太阳能的利用、太阳能材料及相关技术的开发在世界范围内引起了重视

太阳能光热光电综合利用

太阳能光热光电综合利用 倪明江,骆仲泱,寿春晖,王 涛,赵佳飞,岑可法 (浙江大学能源清洁利用国家重点实验室,浙江 杭州 310027) 摘 要:太阳能光热光电的综合利用技术是将聚光、分光、热电联用等技术集成,通过对太阳能全波段能量进行一体化地利用,可极大地提高太阳能的利用效率,降低成本,具有重要的研究价值和市场应用价值。文章介绍了太阳能光热光电综合利用系统的技术情况,分别对集中式和分布式两种技术路线作了阐述,分析了聚光PV/T系统以及与建筑一体化设计的P V/T系统的未来发展方向。最后,结合各类太阳能利用系统的特点,比较分析了各种光热光电技术存在的问题,提出了综合利用各种光热光电技术来提高应用效果的理念。 关键词:太阳能利用技术;热发电;聚光热电联用;光热光电综合利用 中图分类号:T K513 文献标识码:A 基金项目:国家自然科学基金资助项目(50676082) 1 引言 传统化石能源的大量使用,不仅造成了化石能源本身的短缺,也给世界环境带来了极大的危害,给人类生存空间造成了严重威胁。寻求可再生能源的高效清洁利用成了目前人类面临的共同问题[1,2]。太阳能作为可再生清洁能源蕴藏着巨大能量,被普遍认为是理想的新能源。太阳辐射到达地球表面的能量高达4 1015MW,相当于每年3.6 105亿t标准煤,约为全球能耗的2000倍。太阳能可以免费使用,又不需要运输,对环境无任何污染。在传统化石能源储备减少、价格快速上升,在温室气体排放引发的气候环境问题愈来愈显著的今天,太阳能作为可再生能源和新能源的代表,得到越来越多的关注,太阳能的利用、太阳能材料及相关技术的开发在世界范围内引起了重视[3~5]。 我国太阳能资源丰富,辐射总量约3.3 103 ~8.4 106kJ/(m2a),全国2/3以上地区年日照时数大于2000h[6]。太阳能的有效利用,对缓解我国能源问题、减少CO2排放、保护生态环境都有着重大意义。 2 太阳能利用技术概况 目前利用太阳能的方法,主要有:太阳能集热利用、热力发电、光伏发电、光利用、海水淡化、建筑一体化技术、制氢、干燥技术等。其中太阳能集热利用技术以及太阳能光伏技术已经得到了长足发展。而以现今的发展趋势来看,太阳能热力发电和光伏发电将是世界各国在太阳能利用领域研究的新重点。 2.1 热利用 太阳能热利用方面,中国已成为世界上最大的太阳能热利用产品的生产、应用和出口的国家。2007年,集热器总保有量约为10800万m2。热利用形式多样,包括了太阳能热水器、太阳能空调、太阳能干燥和太阳能海水淡化等。 (1)太阳能热水器 太阳能热水器是太阳能热利用中最常见的一种装置。其基本原理是将太阳辐射能收集起来,通过与物质的相互作用转换成热能供生产和生活利用。我国是世界上最大的太阳能热水器制造中心,由我国生产的集热器推广面积约占世界的76%。随着太阳能热水器的发展,出现了闷晒式、平板式、玻璃真空管式和热管真空管式等多种应用形式。太阳能热水器以其经济、节能、环保等优点,备受世人瞩目。太阳能热水器在国内市场得到了迅速推广。目前城市太阳能热水器的平均普及率约为15%,部分地区达到31%~60%。随着太阳能热水器关键技术的不断突破,该技术已广泛运用于家庭、宾馆、学校、部队和医院等供淋浴、洗漱及其它需用热水的场所。 (2)太阳能空调 太阳能空调以太阳能作为制冷空调的热源,利用太阳辐射产生中高温蒸气(热水),进而驱动制冷机工作。太阳能制冷首先通过集热器收集太 ! 1 !

太阳能光热转换技术在建筑中的利用

太阳能光热转换技术在建筑中的应用 1、前言 太阳能光热转换技术在建筑中的应用,实际上是利用建筑构本身所形成的集热、蓄热和隔热系统以及附加建筑物上的专用太阳能部件,对太阳光进行光—热转换等来满足建筑物的热水供应、采暖、空调等方面的能耗需求,从而达到减少建筑能耗,节约常规能源,改善生态环境的目的。太阳能光热转换技术和建筑结合具有很高的研究价值,热水、供暖、空调对太阳能的利用已成为太阳能与建筑结合的关键之一。 2、我国太阳能资源储量与分布 一般以全年总辐射量(单位为兆焦/米2·年)和全年日照总时数表示。我国属太阳能资源丰富的国家之一地球上太阳能资源的分布与各地的纬度、海拔高度、地理状况和气候条件有关。资源丰,辐射总量在3.3′ 103~8.4′ 106兆焦/米2·年之间。全国总面积2/3以上地区年日照时数大于2000小时。属世界太阳能资源丰富地区之一;各地区资源分类见表1 表1 我国各地区的太阳能资源及分布 研究成果表明,在太阳能利用方面具有经济价值的地区是年辐射总量高于2200小时的地区。各区的分界情况可见太阳能资源分布图。

3、太阳能光热转换技术 根据我国的实际情况,在建筑中大力推广应用太阳能光热转换技术必将会把我国的建筑节能推广到一个新的阶段。在这些新技术中从其成熟的程度来讲,首推太阳能热水器,其次是太阳能采暖和太阳能空调。一下从这三个方面逐一进行介绍。 (1)太阳能热水器 1、太阳能热水器的结构 太阳能热水器从结构上分类可分为整体式和分体式。见下图 整体式分体式 整体式是将其主要部件集热器和水箱安装在统一的支架上由用户选用,这种型式只考虑了自身的结构和功能,而没有考虑与建筑的一体化结合,因此只适用于四周空旷的低层建筑,

槽式太阳能中高温技术的应用与发展

本文由新能源利用贡献 doc文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 槽式太阳能中高温技术 一、研究背景目前,随着全球能源供应问题日显突出和可持续发展战略的积极推行,国际国内对太阳能中高温技术的开发应用已掀起新一轮高潮。尽管美国等工业化先进国家早在八十年代即开始了将太阳能中高温技术应用到纺织、建筑、食品加工、木材烘干等工农业生产和日常用高温取暖、开水等方面,以获得 100℃以上的热水和蒸汽,但技术和设备工艺一直未获突破,产业规模化因而是不可能的。国内对此项技术的研究起步较晚,大多研究机构的研究也尚未突破以通过转动聚光镜来实现光跟踪这一传统技术路线,技术的商业化和设备的国产化难题一直解不开。德州华园新能源应用技术研究所经过几年的不断探索和实践,成功地解决了准静态光跟踪这一问题,为技术商业化和产业规模化及设备国产化奠定了基础。使用这一技术,利用国产材料制造的设备系统,在太阳辐射 0.7~1.2KW/㎡的条件下(适合我国绝大部分地区),实际产生 100~300℃热水和蒸汽;反射板反射率达 0.92 以上,设计寿命 15 年;单位面积造价比普通型真空管热水器还要低,是一种热效率高、经济实用,制造、安装、操作管理方便的新型太阳能中高温集热装置,系国内首创,其技术和应用方面的先进性已领先于国际,为太阳能中高温工程化、产业规模化提供了完全可能。太阳能取之不尽、用之不竭,属于绿色洁净能源。从长远来看,在各种可再生能源中太阳能将是最主要的可再生能源,其资源远大于人类对能源的总需求,应用前景十分广阔。广义地讲,地球上的能源约 99.8%来自太阳能。而通常说太阳能利用是指太阳能的直接转化和利用,如利用半导体光伏器件将太阳能转换为电能的太阳能光伏发电,把太阳能转换成热能的太阳能热利用和热发电等。美国是最早把太阳能中温系统用在工业加工的国家,80 年代就在加里福尼亚洲的帕萨尤纳,建造了一座 600m2 太阳能中温装置,产生 170℃蒸汽供洗衣房用热,可以满足洗衣房蒸汽需要量的 75%。美国德克萨斯州达拉斯北 80 公里处,建造一座 1070m2 中温装置,产生 173℃汽漂洗布匹,可满足工厂漂洗布匹需要量的 60%。美国勘萨斯 AAI 公司建造一座太阳能蒸汽混凝土实验厂,产生 150℃汽对混凝土养护。加拿大一家罐头食品加工厂,建造了一座太阳能中温系统装置,提供 150 -180℃蒸汽,每年可节省全厂电力消耗的 20%。澳大利亚太 阳能中温把导热油加热至 200 -250℃,用来熔化沥青。在日本除利用太阳能中温在工业普遍应用外,还在农业上利用太阳能中温对农药解毒,以进行有毒废物的处理。在罗马尼亚太阳能中温实际应用总量已达 18000 平方米,等等。近年来,我国太阳能热利用得到快速发展。特别是近几年,太阳能热水器产业得到快速发展。2003 年全行业太阳能热水器总产量在 1200 平方米,总保有量 5000 平方米;截止 2003 年底,全国热水器企业已经超过三千多家,年总产值达 120 亿元,年交税金达 4-6 亿元,太阳能热水器与燃气热水器、电热水器并列已经成为三大热水器产品之一。目前,我国已成为太阳能热水器应用的绝对大国,总保有量已超过 7500 万平方米,企业 5000 多家,年产值达 300 亿元。但是,这仅是太阳能的低温热利用一个方面,通常用来提供 40℃—80℃的生活用热水。 二、应用领域太阳能热利用更为广阔的领域是工农业生产中的中高温热利用,太阳能热利用更为广阔的领域是工农业生产中的中高温热利用,见表 1 所示。 表 1:太阳能中高温系统可应用的领域 用途工业利用领域 能源发电 热能形式 蒸汽 温度

太阳能光电_光热综合利用系统

引言 随着节能减碳问题的日益紧迫,可再生能源的 开发利用受到了越来越多的关注。 而太阳能作为一种储量巨大,分布广泛,清洁安全的新能源,已经在世界范围引起了广泛的重视。太阳辐射到达地球表面的能量高达4×1015MW ,约为全球能耗的2000倍。目前太阳能的主要利用方式有:太阳能光伏发 电、太阳能热发电、太阳能制氢、太阳烟囱、太阳能 制冷、 太阳能热水器等。其中太阳能光伏利用技术已经日益成熟,从光伏电站到太阳能路灯,太阳能光伏技术已经被广泛应用。但在太阳能光伏利用方面仍存在两个亟待解决的问题:光伏发电成本较高以及光电转化效率相对较低。 工业生产的晶体硅太阳电池转化效率大约在16%~17%,转化效率较高 摘 要:太阳能储量巨大,分布广泛,清洁安全。但太阳能光伏发电存在成本较高和能量转化效率较 低的问题。因此本文提出太阳能光电-光热综合利用方式。通过聚光降低成本,通过分频综合利用提高系统效率。在分频利用技术上,寻找具有特定吸收发射特性的纳米流体流经光伏电池上层,吸收光伏电池不能加以利用的部分能量。此外,利用光学薄膜,将光伏电池可利用的波段反射给光伏电池,其余部分的能量透射用以其他形式的能量转换。文章对两种太阳能光电-光热综合利用系统进行了设计和探索。结果表明,通过光电-光热综合利用能够对太阳能利用效率实现有效提升。 关键词:太阳能;分频;纳米流体;光学薄膜;综合利用 Solar Energy Optic-Electro and Optic-Thermal Composite Utilization System Wei wei ,Luo zhong yang ,Zhao jia fei ,Shou chun hui ,Zhang yan mei ,Wu ting ting ,Ni ming jiang Abstract:solar energy is enormously reserved,widespread,safe and clean.But solar energy photovoltaic power cost is high and its conversion efficiency is low.So this article brings up Solar energy optic-electro and optic-thermal composite utilization.Through spotlights cost reducing and frequency division utilization it improves system efficiency.Based on frequency division technology,some specific absorption -emission characteristic nanometer fluid passing above photovoltaic battery will absorb some energy which can not be used by photovoltaic batter.Otherwise it will use optical thin-film to reflect some wave band which photovoltaic battery can use to photovoltaic battery,as for the rest energy,it will transmit into other means of conversion.This article discuss two ways of solar energy,designs and explores optic -electro and optic -thermal composite utilization system.The results shows that solar energy use efficiency improves a lot through optic-electro and optic-thermal composite utilization. Keywords:solar energy,frequency division,nanometer fluid,optical thin -film,composite utilization 太阳能光电-光热综合利用系统 魏 葳1骆仲泱1赵佳飞1,2寿春晖1张艳梅1武婷婷1倪明江1 1浙江大学能源清洁利用国家重点实验室 2大连理工大学海洋能源利用与节能教育部重点实验室

太阳能热利用综述

太阳能热利用技术发展 摘要:太阳能是理想的可再生能源.太阳能热利用技术目前还处于发展时期。文章对太阳能热利用成熟技术、先进技术以及当前研究的中心问题进行了简要的概述。成熟技术部分主要包括热水器、太阳灶、太阳房等广为人们使用的太阳能热利用技术;先进技术部分主要阐述了尚处于研究试验阶段的高品位太阳能热利用技术,包括太阳能热发电、太阳能空调制冷、太阳能制氢、太阳能梅水淡化及太阳能烟囱发电等;在当前研究的中心问题部分,主要论述解决太阳能热利用的关键技术问题。 关键词:太阳能,热利用,发电 The development of solar thermal technology Shen Fang (Ningbo Engineering College of Information and Engineering, Ningbo, Zhejiang 3150000) Abstract: Solar energy is an ideal renewable energy source and its thermal utilization is the one of its most important applications. we review the status of solar thermal utilization, including: (1) developed technologies which are already widely used all over the world, such as solar assisted water heaters, solar cookers, solar heated buildings and so on;(2) advanced technologies which are still in the development or laboratory stage and could have more innovative applications, including thermal power generation, refrigeration, hydrogen production, desalination, and chimneys; (3) major problems which need to be resolved for advanced utilization of solar thermal energy. Keywords: solar energy, thermal utilization, power generation 引言 由于人类对能源需求的日益增长,常规能源的日益短缺,石油价格不断上涨,全球气候变暖以及环境的压力,世界各国为寻求能源安全和人类社会可持续发展,将战略目光转向可再生能源的开发新能源要同时符合两个条件:一是蕴藏丰富不会枯竭;二是安全、干净,不会威胁人类和破坏环境。目前找到的新能源主要有两种,一是太阳能,二是燃料电池。另外,风力发电也可算是辅助性的新能源。其中,最理想的新能源是大阳能。太阳能是最理想的可再生能源,具有清洁、无污染、辐射总功率巨大且取之不尽的优点,开发和利用太阳能是人类社会可持续发展的重要举措。

中高温太阳能锅炉

中高温太阳能太阳能锅炉 一、概念 太阳能锅炉是相对于民用太阳能热水器而言的太阳能中、高温利用。联合国能源署研究资料显示:人类消耗掉的化石能源当中,50% 以上是为了获得工业蒸汽。传统工业锅炉(电炉、油炉、汽炉等)假如用“太阳热能”替代,将节约50%的传统能源。由此对太阳能中高温利用(100-300度)就称谓太阳能锅炉。 工业蒸汽的温度大多在100-250度之间,普通的脱水烘干的温度在80度左右,这样的温度利用“太阳热能工业锅炉”是完全可以顺利实现并且比较容易商业化推广。“太阳热能工业锅炉”可以轻松实现。太阳能锅炉是一种新兴的锅炉装置,由太阳能集热器和锅炉组成。太阳能集热器将吸收的热量转换为水、油、空气等介质的热能,热能再循环到锅炉供工业使用。 二、国家的扶持政策 太阳能为无污染的可再生能源,太阳能锅炉前景可观,投资回收率较高,设备折旧率较低,所以进行太阳能锅炉改造是各企事业单位较为理想的选项,而这也正是国家对此类项目工程给予扶持政策和优惠措施的原因。 二、技术存在问题 (1)光热转换效率低 目前太阳能锅炉大多采用太阳能热水器使用的真空加热管或平板集热器,这种集热方式采光面积大,因此热损失很大。如图1所示。 图1 太阳能锅炉

(2)温度低 采用低温集热方式,加热介质温度低,无法满足工业上更高温度的使用要求。 三、中、高温太阳能锅炉 这个技术也是目前我们团队开发的太阳能锅炉,如图2所示,真空集热管以圆柱形式排布形成一个集热装置,从上往下流过的蒸汽蒸汽通过侧面就、高温集热管加热。这种太阳能锅炉是将高温太阳能集热管和塔式聚光系统集合在一起。它综合利用高温真空集热管工作温度高、效率低和塔式聚光灵活多变特定。根据采光面积、锅炉大小不同(圆柱形锅炉直径和长度不同),工作温度在100-600℃。 四、投资成本和市场前景 以300m2采光面积为例,每年产生的热量Q=300*0.8*5*300=360000KW小时的热量(一年300天、每天5小时光照计算,单位面积1KWH辐射强度,光热效率高达80%以上),这相当于每年节省超过36W元以上的电费(产生这么多热量应该消耗更多电量,每度电1元计算)。而初步估算整个热发电系统成本不超过150W,不超过5年即可收回所有成本。本成果处于研发阶段,但高温真空管及采光场系统设计均已有成熟样品。由于采光面积增大,对聚光系统要求非常低。产品应用前景广泛,可以在晴天时代替燃煤锅炉。 随着这几年全国雾霾天气恶化,国家对于传统燃煤锅炉改造迫在眉睫,太阳能锅炉可以改善北方采暖导致的污染。

相关主题
文本预览
相关文档 最新文档