当前位置:文档之家› 化工原理课程设计(乙醇和水的分离)

化工原理课程设计(乙醇和水的分离)

化工原理课程设计(乙醇和水的分离)
化工原理课程设计(乙醇和水的分离)

化工原理课程设计

课题名称乙醇-水分离过程筛板精馏塔设计院系可再生能源学院

班级应用化学0901班

学号1091100128

学生姓名蔡文震

指导老师覃吴

设计周数 1

目录

一、化工原理课程设计任务书 (4)

1.1设计题目 (4)

1.2原始数据及条件: (4)

二、塔板工艺设计 (4)

2.1精馏塔全塔物料衡算 (4)

2.2乙醇和水的物性参数计算 (5)

2.2.1 温度 (5)

2.2.2 密度 (6)

2.2.3相对挥发度 (9)

2.2.4混合物的黏度 (9)

2.2.5混合液体的表面张力 (9)

2.3塔板的计算 (10)

2.3.1 q、精馏段、提留段方程计算 (10)

2.3.2理论塔板计算 (12)

2.3.3实际塔板计算 (12)

2.4操作压力的计算 (13)

三、塔体的工艺尺寸计算 (13)

3.1塔径的初步计算 (13)

3.1.1气液相体积流量计算 (13)

3.1.2塔径计算 (13)

3.2塔体有效高度的计算 (15)

3.3精馏塔的塔高计算 (16)

3.4溢流装置 (16)

3.4.1堰长 (16)

3.4.2溢流堰高度 (16)

3.4.3弓形降液管宽度和截面积 (17)

3.5塔板布置 (17)

3.5.1塔板的分块 (17)

3.5.2边缘区宽度的确定 (18)

3.5.3开孔区面积计算 (18)

3.5.4筛孔计算及其排列 (18)

四、筛板的流体力学验算 (19)

4.1塔板压降 (19)

4.1.1干板阻力 (19)

4.1.2气体通过液层的阻力 (19)

4.1.3液体表面张力的阻力(很小可以忽略不计) (20)

4.1.4气体通过每层板的压降 (20)

4.2液沫夹带 (20)

4.3漏液 (21)

4.4液泛 (21)

五、塔板负荷性能图 (22)

5.1漏液线 (22)

5.2液沫夹带线 (22)

5.3液相负荷下限线 (24)

5.4液相负荷上限线 (24)

5.5液泛线 (24)

5.6图表汇总及负荷曲线图 (26)

六、主要工艺接管尺寸的计算和选取 (26)

七、课程设计总结 (27)

八、参考文献 (28)

一、化工原理课程设计任务书

1.1设计题目

分离乙醇一水筛板精馏塔的设计

1.2原始数据及条件:

生产能力:年处理乙醇一水混合液2.6万吨/年(约为87吨/天)。 原料:来自原料罐,温度20℃,乙醇含量为46%(质量分率,下同)。 分离要求:塔顶乙醇含量不低于95%。 塔底乙醇含量不高于0. 05%。 塔顶压力P=105KPa 。 进料状态为冷进料。

塔釜为饱和蒸汽直接加热。

二、塔板工艺设计

2.1精馏塔全塔物料衡算

F :进料量(Kmol/s ) 原料组成:F X D :塔顶产品流量(Kmol/s ) 塔顶组成:D X W :塔底残液流量(Kmol/s ) 塔底组成:W X

原料乙醇组成:%25185446464646

=+=

F X 塔顶组成:%14.8818

546954695

=+=

D X

塔底组成:%020.018

5

.994605.04605.0≈+=W X 进料量:s Kmol F /540.003600

243001895

.04605.010********.2/6.2≈??+???==)(

年万吨

物料衡算式:F=D+W

W D F X W X D X F ?+?=?

联立求解:D =0.0153Kmol/s W =0.0387Kmol/s

2.2乙醇和水的物性参数计算 2.2.1 温度

根据表中数据可以求得F t D t W t

1.31

.23257

.8208.2631.233.827.82:--=--F

F t t ℃46.82=F t 2.72.7414.8841

.7843.8972.7415.7841.78:

--=--D

D t t ℃17.78=D t

3.0

020.0100

90.105.95100:--=

--W W t t ℃95.99=W t

4.精馏段平均温度:℃32.8021=+=D

F t t t

5.提留段平均温度:℃21.912

2=+=

W

F t t t 2.2.2 密度

已知:混合液密度:

B

B

A

A

l

a a ρρρ+

=

1

混合气密度:

004.22TP M P T V =

ρ

塔顶温度:℃17.78=D t 气相组成:43

.8910015

.7817.7843.8915.7815.7841.78:--=--D D y y %56.88=D y

进料温度:℃46.82=F t 气相组成:45

.541007

.8246.8280.5545.543.827.82--=--=F F y y %26.55=F y

塔底温度:℃95.99=W t

气相组成:W

W y y 100095

.991000.1705.95100:--=-- %19.0≈W y

(1) 精馏段

液相组成:%57.5621=+=

F

D x x x 气相组成:%91.712

1=+=F

D y y y

所以mol kg M L /84.33)5657.01(185657.0461=-?+?= mol kg M V /13.38)7191.01(187191.0461=-?+?= (2) 提留段

液相组成:%51.1222=+=

F

W x x x 气相组成:%72.272

2=+=F

W

y y y 所以mol kg M L /50.21)1251.01(181251.0462=-?+?= mol kg M V /76.25)2772.01(182772.0462=-?+?=

℃46.82=F t

3

.7428046.821.7303.7429080:

--=--CF CF ρρ 3

/3.739m kg CF =ρ

8

.9718046.823.9658.9719080:

--=--wF wF ρρ 3

/2.970m kg wF =ρ

2

.97046.013.73946.01

-+=

F

ρ 3

/3.848m kg F =ρ ℃17.78=D t

2

.7547017.783.7422.7548070:

--=--CD CD ρρ 3

/5.744m kg CD =ρ

8

.9777017.788.9718.9778070:

--=--wD wD ρρ 3

/9.972m kg wD =ρ

9

.97292.015.74492.01

-+=

D

ρ 3

/75.758m kg D =ρ ℃95.99=W t

1

.7309095.994.7171.73010090:

--=--CW CW ρρ 3

/46.717m kg CW =ρ

3

.9659095.994.9583.96510090:

--=--wW wW ρρ 3

/43.958m kg wD =ρ

43

.958005.0146.717005.01

-+=

W

ρ 3

/54.952m kg W =ρ

所以31/53.8032m kg D

F L =+=ρρρ

32

/65.8552

m kg W F L =+=ρρρ

mol kg x x M D D LD /68.42)1(1846=-?+?= mol kg x x M F F LF /25)1(1846=-?+?=

mol kg x x M W W LW /00.18)1(1846=-?+?=

mol kg M M M LF

LD L /84.3321=+=

mol kg M M M LF

LW L /5.212

2=+=

mol kg y y M D D VD /80.42)1(1846=-?+?= mol kg y y M F F VF /47.33)1(1846=-?+?=

mol kg y y M W W VW /05.18)1(1846=-?+?=

mol kg M M M VF

VD V /14.3821=+=

mol kg M M M VF

VW V /76.252

2=+=

31

1

01/32.14.22m kg t M T V V ==

ρ

32

2

02/86.04.22m kg t M T V V ==

ρ

2.2.3相对挥发度

%25=F x %26.55=F y 71.325

.015526.0125.05526.0==

--F α

%14.88=D x %56.88=D y 04.18814

.018856.018814.08856.0==

--D α

%020.0=W x %19.0=W y 52.9%

02.01%19.01%02.0%19.0==

--W α

(1)精馏段平均相对挥发度

38.22

1=+=

D

F ααα

(2)提留段平均挥发度

62.62

2=+=

W

F ααα

2.2.4混合物的黏度

6℃32.801=t 查手册得s mpa ?=3565.0水μ s mpa ?=954.0乙醇μ

℃21.912=t 查手册得s mpa ?=3130.0水μ s mpa ?=254.0乙醇μ

(1)精馏段黏度:

s mpa x x ?=+=4348.0-1111)(水乙醇μμμ

(2)提留段黏度:

s mpa x x ?=+=2703.0-1222)(水乙醇μμμ

2.2.5混合液体的表面张力

查物理化学手册可得

水的表面张力的经验公式:)]291(002.01[07275.0--?=T σ

所以可以求得m mN WF /37.63=σ,m mN WD /99.63=σ,m mN WW /83.60=σ

m mN WF /07.17`=σ,m mN WD /47.17`=σ,m mN WW /51.15`=σ

塔顶表面张力:444`)1(WD D WD D D x x σσσ+-=, m mN D /87.20=σ

444

`)1(WF F WF F F x x σσσ+-=, m mN F /42.47=σ

444

`)1(WW D WW W W x x σσσ+-=, m mN W /82.60=σ

(1)精馏段的平均表面张力:m mN /15.342

42

.4787.201=+=

σ

(2)提馏段的平均表面张力:m mN /12.542

42

.4782.602=+=σ

2.3塔板的计算

2.3.1 q 、 精馏段、提留段方程计算

25.0=F x 泡点温度82.46℃

平均温度:

℃23.512

20

46.822+=+t T 乙醇的摩尔热容K kmol kJ c mA ?=?=/92.1384602.3 乙醇的摩尔汽化焓kmol kJ r A /2.42053462.914=?= 水的摩尔热容K kmol kJ c mB ?=--?-+?=/2.75]50

6051

23.51)178.4183.4(178.4[18

水的汽化潜热kmol kJ r B /43056182392=?=

)/(13.91K kmol kJ x c x c c B mB A mA mP ?=+=

平均汽化热

kmol kJ x r x r r B B A A /3.42805=+=

13.1)(1=-+

=t T r

c q mP

对25.0=F x 不论q=1还是q=1.13 挟点均是切点。所以最小回流比一样,在x=0.和x=1.0之间拟合平衡曲线

2557.0)1963.1exp(2173.0+=x y

液相中乙醇的摩尔分数 气相中乙醇的摩尔分数 液相中乙醇的摩尔分数 气相中乙醇的摩尔分数 0.0 0.0 0.25 0.551 0.01 0.11 0.30 0.575 0.02 0.175 0.40 0.614 0.04 0.273 0.50 0.657 0.06 0.34 0.60 0.698 0.08 0.392 0.70 0.755 0.10 0.43 0.80 0.82 0.14 0.482 0.894 0.894 0.18 0.153 0.95 0.942 0.20

0.525

1.0

1.0

计算得)6726.0,5445.0(),(=q q y x

19944.0)(min min ≈==D

L

R

min )0.2~2.1(R R opt =根据工艺要求取1.8 s kmol RD L /0275.00153.08.1=?==

s kmol D R V /0428.00153.08.2)1(=?=+= s kmol qF L L /0885.0`=+=

s kmol F q V V /0358.0)1(`=-+=

精馏段方程:

3148.0643.011+=+++=

x y R X

X R R y D

提留段方程:

0002.047.2`

``-=-=

x y X V W x V L y W

2.3.2理论塔板计算

58.3lg )11lg(

1min =-?-=

αF

F

D D x x x x N 精馏

29.3lg )11lg(

2

min =-?-=

αW

W F F

x x x x N 提馏

87.6min =全塔N

根据吉利兰关联图,已知

29.01

min

≈+-R R R 对应41.01min =+-T T

N N N 33.12=T N 取13块板,精馏段7块,提留段5块(塔釜一块)

2.3.3实际塔板计算

39.0lg 616.0-17.01==μT E 精馏

47.0lg 616.0-17.01==μT E 提馏

实际塔板数:2947

.05

39.07=+=q N 全塔效率:%3.4129

12===

q T T N N E

化工原理乙醇水_课程设计汇总

化工原理课程设计 分离乙醇-水混合物精馏塔设 计 学院:化学工程学院 专业: 学号: 姓名: 指导教师: 时间: 2012年6月13日星期三 化工原理课程设计任务书 一、设计题目:分离乙醇-水混合物精馏塔设计 二、原始数据: a)原料液组成:乙醇 20 % 产品中:乙醇含量≥94% 残液中≤4% b)生产能力:6万吨/年 c)操作条件 进料状态:自定操作压力:自定 加热蒸汽压力:自定冷却水温度:自定 三、设计说明书内容: a)概述 b)流程的确定与说明 c)塔板数的计算(板式塔);或填料层高度计算(填料塔) d) 塔径的计算 e)1)塔板结构计算; a 塔板结构尺寸的确定; b塔板的流体力学验算;c塔板的负荷性能图。 2)填料塔流体力学计算;

a 压力降; b 喷淋密度计算 f )其它 (1) 热量衡算—冷却水与加热蒸汽消耗量的计算 (2) 冷凝器与再沸器传热面的计算与选型(板式塔) (3) 除沫器设计 g )料液泵的选型 h )计算结果一览表 第一章 课程设计报告内容 一、精馏流程的确定 乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽向沸热器供热,塔底产品经冷却后送入贮槽。 二、塔的物料衡算 (一) 料液及塔顶、塔底产品含乙醇摩尔分数 (二) 平均摩尔质量 (三) 物料衡算 总物料衡算 F W D =+ 易挥发组分物料衡算 F x W x D x F w D =+ 联立以上三式得 三、塔板数的确定 (一) 理论塔板数T N 的求取 根据乙醇、水的气液平衡数据作y-x 图 乙醇—水气液平衡数据

化工原理课程设计任务书 zong (修复的)共32页

2012年 06月 工业背景及工艺流程 乙醛是无色、有刺激性气味的液体,密度比水小,沸点20.8℃,易挥

发、易燃烧且能和水、乙醇、乙醚、氯仿等互溶,因其分子中具有羰基,反应能力很强,容易发生氧化,缩合,环化,聚合及许多类型加成反应。乙醛也是一种重要的烃类衍生物在合成工业有机化工产品上也是一种重要的中间体。其本身几乎没有直接的用途,完全取决于市场对它的下游产品的需求及下游产品对生产路线的选择,主要用于醋酸、醋酐、醋酸乙烯等重要的基本有机化工产品,也用于制备丁醇、异丁醇、季戊四醇等产品。这些产品广泛应用于纺织、医药、塑料、化纤、染料、香料和食品等工业。 国内乙醛生产方法有乙烯氧化法、乙醇氧化法和乙炔氧化法三种技术路线。工业上生产乙醛的原料最初采用乙炔,以后又先后发展了乙醇和乙烯路线。乙炔水化法成本高,因其催化剂——汞盐的污染难以处理等致命缺点,现以基本被淘汰。乙醇氧化或脱氢法制乙醛虽有技术成熟,不需要特殊设备,投资省,上马快等优点,但成本高于乙烯直接氧化法。乙烯直接氧化法制乙醛。由于其原料乙烯来源丰富而价廉,加之反应条件温和,选择性好,收率高,工艺流程简单及“三废”处理容易等突出优点,深受世界各国重视,发展非常迅速,现以成为许多国家生产乙醛的主要方法。 精馏方案的确定: 精馏塔流程的确定; 塔型的选择; 操作压力的选定; 进料状态选定; 加热方式等

所选方案必须: (1)满足工艺要求; (2)操作平稳、易于调节; (3)经济合理; (4)生产安全。 包括:流程的确定;塔型的选择;操作压力的选定;进料状态选定;加热方式等 操作压力选择 ●精馏可在常压、加压或减压下进行。 ●沸点低、常压下为气态的物料必须选用加压精馏;热敏性、高沸点 物料常用减压精馏。 进料状态的选择 ●一般将料液预热到泡点或接近泡点后送入塔内。这样可使: ● (1)塔的操作比较容易控制; ● (2)精馏段和提馏段的上升蒸汽量相近,塔径相似,设计制造比 较方便。 加热方式: ●(1)间接蒸汽加热 ●(2)直接蒸汽加热 ●适用场合:待分离物系为某轻组分和水的混合物。 ●优点:可省去再沸器;并可利用压力较低的蒸汽进行加热。操作 费用和设备费用均可降低。

(完整版)化工原理概念汇总

化工原理知识 绪论 1、单元操作:(Unit Operations): 用来为化学反应过程创造适宜的条件或将反应物分离制成纯净品,在化工生产中共有的过程称为单元操作(12)。 单元操作特点: ①所有的单元操作都是物理性操作,不改变化学性质。②单元操作是化工生产过程中共有的操作。③单元操作作用于不同的化工过程时,基本原理相同,所用设备也是通用的。单元操作理论基础:(11、12) 质量守恒定律:输入=输出+积存 能量守恒定律:对于稳定的过,程输入=输出 动量守恒定律:动量的输入=动量的输出+动量的积存 2、研究方法: 实验研究方法(经验法):用量纲分析和相似论为指导,依靠实验来确定过程变量之间的关系,通常用无量纲数群(或称准数)构成的关系来表达。 数学模型法(半经验半理论方法):通过分析,在抓住过程本质的前提下,对过程做出合理的简化,得出能基本反映过程机理的物理模型。(04) 3、因次分析法与数学模型法的区别:(08B) 数学模型法(半经验半理论)因次论指导下的实验研究法 实验:寻找函数形式,决定参数

第二章:流体输送机械 一、概念题 1、离心泵的压头(或扬程): 离心泵的压头(或扬程):泵向单位重量的液体提供的机械能。以H 表示,单位为m 。 2、离心泵的理论压头: 理论压头:离心泵的叶轮叶片无限多,液体完全沿着叶片弯曲的表面流动而无任何其他的流动,液体为粘性等于零的理想流体,泵在这种理想状态下产生的压头称为理论压头。 实际压头:离心泵的实际压头与理论压头有较大的差异,原因在于流体在通过泵的过程中存在着压头损失,它主要包括:1)叶片间的环流,2)流体的阻力损失,3)冲击损失。 3、气缚现象及其防止: 气缚现象:离心泵开动时如果泵壳内和吸入管内没有充满液体,它便没有抽吸液体的能力,这是因为气体的密度比液体的密度小的多,随叶轮旋转产生的离心力不足以造成吸上液体所需要的真空度。像这种泵壳内因为存在气体而导致吸不上液的现象称为气缚。 防止:在吸入管底部装上止逆阀,使启动前泵内充满液体。 4、轴功率、有效功率、效率 有效功率:排送到管道的液体从叶轮获得的功率,用Ne 表示。 效率: 轴功率:电机输入离心泵的功率,用N 表示,单位为J/S,W 或kW 。 二、简述题 1、离心泵的工作点的确定及流量调节 工作点:管路特性曲线与离心泵的特性曲线的交点,就是将液体送过管路所需的压头与泵对液体所提供的压头正好相对等时的流量,该交点称为泵在管路上的工作点。 流量调节: 1)改变出口阀开度——改变管路特性曲线; 2)改变泵的转速——改变泵的特性曲线。 2、离心泵的工作原理、过程: 开泵前,先在泵内灌满要输送的液体。 开泵后,泵轴带动叶轮一起高速旋转产生离心力。液体在此作用下,从叶轮中心被抛向 g QH N e ρ=η/e N N =η ρ/g QH N =

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

化工原理课程设计(乙醇_水溶液连续精馏塔优化设计)

专业资料 化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计

目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7.参考文献 (23) 8.课程设计心得 (23)

精馏塔优化设计任务书 一、设计题目 乙醇—水溶液连续精馏塔优化设计 二、设计条件 1.处理量: 16000 (吨/年) 2.料液浓度: 40 (wt%) 3.产品浓度: 92 (wt%) 4.易挥发组分回收率: 99.99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强:1.03 atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务 a) 流程的确定与说明; b) 塔板和塔径计算; c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计 (某大学化学化工学院) 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。 关键词:精馏塔,浮阀塔,精馏塔的附属设备。 (Department of Chemistry,University of South China,Hengyang 421001) Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme. Keywords: rectification column, valve tower, accessory equipment of the rectification column.

化工原理课程设计简易步骤

《化工原理》课程设计说明书 设计题目 学生姓名 指导老师 学院 专业班级 完成时间

目录 1.设计任务书……………………………………………() 2.设计方案的确定与工艺流程的说明…………………() 3.精馏塔的物料衡算……………………………………() 4.塔板数的确定………………………………………() 5.精馏段操作工艺条件及相关物性数据的计算………() 6.精馏段的汽液负荷计算………………………………() 7.精馏段塔体主要工艺尺寸的计算…………………() 8.精馏段塔板主要工艺尺寸的计算…………………………() 9.精馏段塔高的计算…………………………………() 10.精馏段塔板的流体力学验算…………………………() 11.精馏段塔板的汽液负荷性能图………………………() 12.精馏段计算结果汇总………………………………() 13.设计评述……………………………………………() 14.参考文献………………………………………………() 15.附件……………………………………………………() 附件1:附图1精馏工艺流程图………………………() 附件2:附图2降液管参数图……………………………()附件3:附图3塔板布孔图………………………………()

板式塔设计简易步骤 一、 设计方案的确定及工艺流程的说明 对塔型板型、工艺流程、加料状态、塔顶蒸汽冷凝方式、塔釜加热方式等进行说明,并 绘制工艺流程图。(图可附在后面) 二、 精馏塔物料衡算:见教材P270 计算出F 、D 、W ,单位:kmol/h 三、 塔板数的确定 1. 汽液相平衡数据: 查资料或计算确定相平衡数据,并绘制t-x-y 图。 2. 确定回流比: 先求出最小回流比:P 266。再确定适宜回流比:P 268。 3. 确定理论板数 逐板法或梯级图解法(塔顶采用全凝器)计算理论板层数,并确定加料板位置:P 257-258。(逐板法需先计算相对挥发度) 确定精馏段理论板数N 1、提馏段理论板数N 2 4. 确定实际板数: 估算塔板效率:P 285。(①需知全塔平均温度,可由 t-x-y 图确定塔顶、塔底温度,或通过试差确定塔顶、塔底温度,再取算术平均值。②需知相对挥发度,可由安托因方程求平均温度下的饱和蒸汽压,再按理想溶液计算。) 由塔板效率计算精馏段、提馏段的实际板层数N 1’,N 2’:P 284式6-67。 四、 精馏段操作工艺条件及相关物性数据的计算 1. 操作压力m p :取2 F D m p p p += 2. 精馏段平均温度m t :查t-x-y 图确定塔顶、进料板温度,再取平均值。或由泡点方程试差法确定塔顶、进料板温度。 3. 平均摩尔质量M Vm 、M Lm :由P 8式0-27分别计算塔顶、进料板处的摩尔质量,再分别 取两处的算术平均值。汽相的摩尔分率查t-x-y 图。 4. 平均密度Vm ρ、Lm ρ: Lm ρ:用P 13式1-7分别计算塔顶、进料板处液相密度,再 取算术平均值。m Vm m Vm T R M p ??= ρ 5. 液体表面张力m σ:由B B A A m x x σσσ+=分别计算塔顶mD σ与进料板mF σ,再取 平均值。 6. 液体粘度m μ:与表面张力的计算类似。 五、 精馏段汽液负荷(Vs 、Ls )计算 V=(R+1)D L=RD

乙醇水精馏塔设计化工原理课程设计

题目:乙醇水精馏筛板塔设计 设计时间: 化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4) 1概述 (5) 1.1设计目的 (5) 1.2塔设备简介 (6) 2设计说明书 (7) 2.1流程简介 (7) 2.2工艺参数选择 (8) 3工艺计算 (8) 3.1物料衡算 (8) 3.2理论塔板数的计算 (8) 3.2.1查找各体系的汽液相平衡数据 (8) 如表3-1 (8) 3.2.2q线方程 (9) 3.2.3平衡线 (9) 3.2.4回流比 (10) 3.2.5操作线方程 (11) 3.2.6理论板数的计算 (11) 3.3实际塔板数的计算 (11) 3.3.1全塔效率ET (11) 3.3.2实际板数NE (12) 4塔的结构计算 (13)

化工原理乙醇水课程设计汇总定稿版

化工原理乙醇水课程设 计汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

化工原理课程设计 分离乙醇-水混合物精馏塔设计 学院:化学工程学院 专业: 学号: 姓名: 指导教师: 时间: 2012年6月13日星期三 化工原理课程设计任务书 一、设计题目:分离乙醇-水混合物精馏塔设计 二、原始数据: a)原料液组成:乙醇 20 % 产品中:乙醇含量≥94% 残液中≤4% b)生产能力:6万吨/年 c)操作条件 进料状态:自定操作压力:自定

加热蒸汽压力:自定冷却水温度:自定 三、设计说明书内容: a)概述 b)流程的确定与说明 c)塔板数的计算(板式塔);或填料层高度计算(填料塔) d) 塔径的计算 e)1)塔板结构计算; a 塔板结构尺寸的确定; b塔板的流体力学验算;c塔板的负荷性能图。 2)填料塔流体力学计算; a 压力降; b 喷淋密度计算 f)其它 (1)热量衡算—冷却水与加热蒸汽消耗量的计算 (2)冷凝器与再沸器传热面的计算与选型(板式塔) (3)除沫器设计 g)料液泵的选型 h)计算结果一览表

第一章 课程设计报告内容 一、精馏流程的确定 乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽向沸热器供热,塔底产品经冷却后送入贮槽。 二、塔的物料衡算 (一) 料液及塔顶、塔底产品含乙醇摩尔分数 (二) 平均摩尔质量 (三) 物料衡算 总物料衡算 F W D =+ 易挥发组分物料衡算 F x W x D x F w D =+ 联立以上三式得 三、塔板数的确定 (一) 理论塔板数T N 的求取 根据乙醇、水的气液平衡数据作y-x 图 乙醇—水气液平衡数据

化工原理课程设计任务书

(封面) XXXXXXX学院 化工原理课程设计任务书 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日

目录 1、工艺生产流程线 (4) 2、流程及方案的说明和论证 (4) 3、换热器的设计计算及说明 (5) 4、计算校核 (6) 5、设计结果概要表 (9) 6、设计评价及讨论 (11) 参考文献 (11) 附图:主体设备结构图和花版设计图

化工原理课程设计任务书 一、设计题目:列管式换热器设计。 二、设计任务:将自选物料用河水冷却至生产工艺所要求的温度。 /d; 三、设计条件:1.处理能力:G=29*300 t 物料 2. 冷却器用河水为冷却介质,考虑广州地区可取进口水温度为 20~30℃; 3.允许压降:不大于105 Pa; 4.传热面积安全系数5~15%; 5.每年按330天计,每天24小时连续运行。 四、设计要求:1.对确定的工艺流程进行简要论述; 2.物料衡算、热量衡算; 3.确定列管式换热器的主要结构尺寸; 4.计算阻力; 5.选择适宜的列管式换热器并进行核算; 6.用Autocad绘制列管式冷却器的结构图(3号图纸)、花板布 置图(4号图纸)。 7.编写设计说明书(包括:①封面;②目录;③设计题目(任务 书);④流程示意图;⑤流程及方案的说明和论证;⑥设计计 算及说明(包括校核);⑦主体设备结构图;⑧设计结果概要 表;⑨对设计的评价及问题讨论;⑩参考文献。) 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码 专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码 例:潘继红等.管壳式换热器的分析和计算.北京:科学出版社,1996,70~90 陈之瑞,张志耘.桦木科植物叶表皮的研究.植物分类学报,1991,29(2):127~135 1.工艺生产流程: 物料通过奶泵被送入冷却器后,经管盖进行多次往返方向的流动。冷却后由出料管流出,不合格的物料由回流阀送回冷却器重新冷却,直至符合要求。经过处理的河水由冷却器的进口管流入,由出口管流出,其与牛奶进行逆流交换热量。 牛奶灭菌后温度高达110~115℃,然后进行第一阶段的冷却,冷却到均质温度55~75℃,而后进行均质。无菌均质后,牛奶经过第二阶段的冷却,最终由冷却水冷却至所需的出口温度。本实验所设计的就是第一阶段冷却的列管式换热器。

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的氯苯140000t,塔顶馏出液中含氯苯不高于%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计乙醇水精馏塔设计

化工原理课程设计 题目:乙醇水精馏筛板塔设计 设计时间:2010、12、20-2011、1、6

化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2 图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4)

1概述 (5) 1.1 设计目的 (5) 1.2 塔设备简介 (6) 2设计说明书 (7) 2.1 流程简介 (7) 2.2 工艺参数选择 (8) 3 工艺计算 (9) 3.1物料衡算 (9) 3.2理论塔板数的计算 (10) 3.2.1 查找各体系的汽液相平衡数据 (10) 如表3-1 (10) 3.2.2 q线方程 (9) 3.2.3 平衡线 (11) 3.2.4 回流比 (12) 3.2.5 操作线方程 (12) 3.2.6 理论板数的计算 (12) 3.3 实际塔板数的计算 (13) 3.3.1全塔效率ET (13) 3.3.2 实际板数NE (14) 4塔的结构计算 (15) 4.1混合组分的平均物性参数的计算 (15) 4.1.1平均分子量的计算 (15) 4.1.2 平均密度的计算 (16) 4.2塔高的计算 (17) 4.3塔径的计算 (17) 4.3.1 初步计算塔径 (17) 4.3.2 塔径的圆整 (18) 4.4塔板结构参数的确定 (19) 4.4.1溢流装置的设计 (19) 4.4.2塔盘布置(如图4-4) (20) 4.4.3 筛孔数及排列并计算开孔率 (21) 4.4.4 筛口气速和筛孔数的计算 (21) 5 精馏塔的流体力学性能验算 (22) 5.1 分别核算精馏段、提留段是否能通过流体力学验算 (22) 5.1.1液沫夹带校核 (22) 5.2.2塔板阻力校核 (23) 5.2.3溢流液泛条件的校核 (25) 5.2.4 液体在降液管内停留时间的校核 (26) 5.2.5 漏液限校核 (26) 5.2 分别作精馏段、提留段负荷性能图 (26) 5.3 塔结构数据汇总 (29) 6 塔的总体结构 (30) 7 辅助设备的选择 (31) 7.1塔顶冷凝器的选择 (31) 7.2塔底再沸器的选择 (32) 7.3管道设计与选择 (33)

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:90 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 热量传递的概念与意义 热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

是自然界和工程技术领域中极普遍的一种传递现象。 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为了达到并保持一定温度,就需要向反应器输入或输出热量;又如在蒸发、蒸馏、干燥等单元操作中,都要向这些设备输入或输出热量。此外,化工设备的保温,生产过程中热能的合理利用以及废热的回收利用等都涉及到传热的问题,由此可见;传热过程普遍的存在于化工生产中,且具有极其重要的作用。总之,无论是在能源,宇航,化工,动力,冶金,机械,建筑等工业部门,还是在农业,环境等部门中都涉及到许多有关传热的问题。 应予指出,热力学和传热学既有区别又有联系。热力学不研究引起传热的机理和传热的快慢,它仅研究物质的平衡状态,确定系统由一个平衡状态变成另一个平衡状态所需的总能量;而传热学研究能量的传递速率,因此可以认为传热学是热力学的扩展。 传热的基本方式 根据载热介质的不同,热传递有三种基本方式: 热传导(又称导热)物体各部分之间不发生相对位移,仅借分子、原子和自由电子等微观粒子的热运动而引起的热量传递称为热传导。热传导的条件是系统两部分之间存在温度差。

《化工原理》第3章 机械分离 复习题

《化工原理》第三章“机械分离”复习题 一、填空题 1.(2分)悬浮液属液态非均相物系,其中分散相是指______;分散介质是指__________。 ***答案*** 固体微粒,包围在微粒周围的液体 2.(3分)悬浮在静止流体中的固体微粒在重力作用下,沿重力方向作自由沿降时,会受到_____________三个力的作用。当此三个力的______________时,微粒即作匀速沉降运动。此时微粒相对于流体的运动速度,称为____________ 。 ***答案*** 重力、阻力、浮力;代数和为零;沉降速度 3.(2分)沉降操作是使悬浮在流体中的固体微粒,在_________力或__________力的作用下,沿受力方向发生运动而___________ ,从而与流体分离的过程。 ***答案*** 重;离心;沉积 4.(3分)气体的净制按操作原理可分为________,_______,______.旋风分离器属_____________ 。***答案*** 重力沉降、离心沉降、过滤;离心沉降。 5.(2分)过滤是一种分离悬浮在____________________的操作。 ***答案*** 液体或气体中固体微粒 6.(2分)悬浮液中加入助滤剂进行过滤的目的是__________________ __________________。 ***答案*** 在滤饼中形成骨架,使滤渣疏松,孔隙率加大,滤液得以畅流 7.(2分)过滤阻力由两方面因素决定:一方面是滤液本身的性质,即其_________;另一方面是滤渣层本身的性质,即_______ 。***答案*** μ;γL 8.(3分)某板框压滤机的框的尺寸为:长×宽×厚=810×810×25 mm,若该机有10块框,其过滤面积约为_______________ m2。***答案*** 13.12。 9.(3分)转鼓真空过滤机,转鼓每旋转一周,过滤面积,的任一部分都顺次经历___________________________________等五个阶段。 ***答案*** 过滤、吸干、洗涤、吹松、卸渣 10.(3分)离心分离因数是指_________________________________。为了提高离心机的分离效率,通常使离心机的___________增高,而将它的________减少。 ***答案***物料在离心力场中所受的离心力与重力之比; 转速;直径适当。 二、选择题 1.(2分)欲提高降尘宝的生产能力,主要的措施是()。***答案*** C A. 提高降尘宝的高度; B. 延长沉降时间; C. 增大沉降面积 2.(2分)为使离心机有较大的分离因数和保证转鼓有关足够的机械强度,应采用()的转鼓。***答案*** B A. 高转速、大直径; B. 高转速、小直径; C. 低转速、大直径; D. 低转速,小直径; 3.(2分)旋风分离器的临界粒径是指能完全分离出来的()粒径。*答案* A A. 最小; B. 最大; C. 平均; 4.(2分)要使微粒从气流中除去的条件,必须使微粒在降尘室内的停留时间()微粒的沉降时间。*** A. ≥; B. ≤; C. <; D. >答案*** A 5.(2分)板框过滤机采用横穿法洗涤滤渣时,若洗涤压差等于最终过滤压差,洗涤液粘度等于滤液粘度,则其洗涤速率为过滤终了速率的()倍。***答案*** C A. 1; B. 0.5; C. 0.25 三、问答题 1.(8分)为什么旋风分离器的直径D不宜太大?当处理的含尘气体量大时,采用旋风分高器除尘,要达到工业要求的分离效果,应采取什么措施? 答案旋风分离器的临界直径d=(9μB/πN u0ρ)0.5,可见D↑时,B也↑(B=D/4),此时d也↑,则分离效率

化工原理分离工程知识点

说明分离过程与分离工程的区别? 答:分离过程:是生产过程中将混合物转变组成不同的两种或多种相对纯净的物质的操作;分离工程:是研究化工及其它相关过程中物质的分离和纯化方法的一门技术科学,研究分离过程中分离设备的共性规律,是化学工程学科的重要组成部分。 实际分离因子与固有分离因子的主要不同点是什么? 答:前者是根据实际产品组成而计算,后者是根据平衡组成而计算。两者之间的差别用级效率来表示。错误:固有分离因子与分离操作过程无关 怎样用分离因子判断分离过程进行的难易程度? 答:分离因子的大小与1相差越远,越容易分离;反之越难分离。 按所依据的物理化学原理不同,传质分离过程可分为哪两类? 答:平衡分离过程:采用平衡级(理论板)作为处理手段,利用两相平衡组成不相等的原理,即达到相平衡时,原料中各组分在两个相中的不同分配,并将其它影响参数均归纳于级效率之中,如蒸发、结晶、精馏和萃取过程等。大多数扩散分离过程是不互溶的两相趋于平衡的过程。速率分离过程:通过某种介质,在压力、温度、组成、电势或其它梯度所造成的强制力的推动下,依靠传递速率的差别来操作,而把其它影响参数都归纳于阻力之中。如超滤、反渗透和电渗析等。通常,速率控制过程所得到的产品,如果令其互相混合,就会完全互溶。 分离过程常借助分离剂将均相混合物变成两相系统,举例说明分离剂的类型。 答:分离过程的原料可以是一股或几股物料,至少必须有两股不同组成的产品,这是由分离过程的基本性质决定的。分离作用是由于加入(媒介)而引起的,分离剂可以是能量(ESA)或物质(MSA),分离剂有时也可两种同时应用。例如,要把糖水分为纯净的糖和水需要供给热量,使水分蒸发,水蒸气冷凝为纯水,糖在变浓的溶液中结晶成纯糖。或供给?令量,使纯水凝固出来,然后在较高剃温度下使其隔出化;这里所加入的分离剂为ESA。也可将糖水加压,通过特殊的固体膜将水与糖分离。这里所加入的分NEW口e录制小视频离剂为MSA。此外,ESA还可以是输入或输出的功,以驱动泵、压缩机;在吸收、萃取、吸附、离子交换、液膜固膜分离中,均须加入相应的MSA。

化工原理课程设计乙醇和水

设计任务书 (一) 设计题目: 试设计一座乙醇-水连续精馏塔提纯乙醇。进精馏塔的料液含乙醇25% (质量分数,下同),其余为水;产品的乙醇含量不得低于94% ;残液中乙醇含量不得高于0.1% ;要求年产量为17000吨/年。 (二) 操作条件 1) 塔顶压力4kPa(表压) 2) 进料热状态自选 3) 回流比自选 4) 塔底加热蒸气压力0.5Mpa(表压) 5) 单板压降≤0.7kPa。 (三) 塔板类型 自选 (四) 工作日 每年工作日为300天,每天24小时连续运行。 (五) 设计内容 1、设计说明书的内容 1) 精馏塔的物料衡算; 2) 塔板数的确定; 3) 精馏塔的工艺条件及有关物性数据的计算; 4) 精馏塔的塔体工艺尺寸计算; 5) 塔板主要工艺尺寸的计算; 6) 塔板的流体力学验算; 7) 塔板负荷性能图; 8) 精馏塔接管尺寸计算; 9) 对设计过程的评述和有关问题的讨论。 2、设计图纸要求: 1) 绘制生产工艺流程图(A2号图纸); 2) 绘制精馏塔设计条件图(A2号图纸)。

目录 1. 设计方案简介 (1) 1.1设计方案的确定 (1) 1.2操作条件和基础数据 (1) 2.精馏塔的物料衡算 (1) 2.1 原料液及塔顶、塔底产品的摩尔分率 (1) 2.2原料液及塔顶、塔底产品的平均摩尔质量 (1) 2.3物料衡算 (2) 3.塔板数的确定 (2) 3.1理论板层数N T的求取 (2) 3.1.1 求最小回流比及操作回流比 (2) 3.1.2 求精馏塔的气、液相负荷 (3) 3.1.3 求操作线方程 (3) 3.1.4 图解法求理论板层数 (3) 3.2 塔板效率的求取 (4) 3.3 实际板层数的求取 (5) 4.精馏塔的工艺条件及有关物性数据的计算 (5) 4.1操作压力计算 (5) 4.2 操作温度计算 (5) 4.3 平均摩尔质量的计算 (5) 4.4 平均密度的计算 (6) 4.4.1 气相平均密度计算 (6) 4.4.2 液相平均密度计算 (6) 4.5液体平均表面张力计算 (7) 4.6液体平均黏度计算 (7) 5.精馏塔的塔体工艺尺寸计算 (8) 5.1塔径的计算 (8)

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

(完整版)化工原理各章节知识点总结

第一章流体流动 质点含有大量分子的流体微团,其尺寸远小于设备尺寸,但比起分子自由程 却要大得多。 连续性假定假定流体是由大量质点组成的、彼此间没有间隙、完全充满所占空间的连续介质。 拉格朗日法选定一个流体质点,对其跟踪观察,描述其运动参数(如位移、速度等)与时间的关系。 欧拉法在固定空间位置上观察流体质点的运动情况,如空间各点的速度、压强、密度等,即直接描述各有关运动参数在空间各点的分布情况和随时间的变化。定态流动流场中各点流体的速度u 、压强p不随时间而变化。 轨线与流线轨线是同一流体质点在不同时间的位置连线,是拉格朗日法考察的结果。流线是同一瞬间不同质点在速度方向上的连线,是欧拉法考察的结果。系统与控制体系统是采用拉格朗日法考察流体的。控制体是采用欧拉法考察流体的。 理想流体与实际流体的区别理想流体粘度为零,而实际流体粘度不为零。粘性的物理本质分子间的引力和分子的热运动。通常液体的粘度随温度增 加而减小,因为液体分子间距离较小,以分子间的引力为主。气体的粘度随温度上升而增大,因为气体分子间距离较大,以分子的热运动为主。 总势能流体的压强能与位能之和。 可压缩流体与不可压缩流体的区别流体的密度是否与压强有关。有关的称为可压缩流体,无关的称为不可压缩流体。 伯努利方程的物理意义流体流动中的位能、压强能、动能之和保持不变。平均流速流体的平均流速是以体积流量相同为原则的。 动能校正因子实际动能之平均值与平均速度之动能的比值。 均匀分布同一横截面上流体速度相同。 均匀流段各流线都是平行的直线并与截面垂直,在定态流动条件下该截面上

的流体没有加速度, 故沿该截面势能分布应服从静力学原理。 层流与湍流的本质区别是否存在流体速度u、压强p的脉动性,即是否存在流体质点的脉动性。 稳定性与定态性稳定性是指系统对外界扰动的反应。定态性是指有关运动参数随时间的变化情况。 边界层流动流体受固体壁面阻滞而造成速度梯度的区域。 边界层分离现象在逆压强梯度下,因外层流体的动量来不及传给边界层,而形成边界层脱体的现象。 雷诺数的物理意义雷诺数是惯性力与粘性力之比。 量纲分析实验研究方法的主要步骤: ①经初步实验列出影响过程的主要因素; ②无量纲化减少变量数并规划实验; ③通过实验数据回归确定参数及变量适用范围,确定函数形式。 摩擦系数 层流区,λ与Re成反比,λ与相对粗糙度无关; 一般湍流区,λ随Re增加而递减,同时λ随相对粗糙度增大而增大; 充分湍流区,λ与Re无关,λ随相对粗糙度增大而增大。 完全湍流粗糙管当壁面凸出物低于层流内层厚度,体现不出粗糙度过对阻 力损失的影响时,称为水力光滑管。Re很大,λ与Re无关的区域,称为完全湍流粗糙管。同一根实际管子在不同的Re下,既可以是水力光滑管,又可以是完全湍流粗糙管。 局部阻力当量长度把局部阻力损失看作相当于某个长度的直管,该长度即为局部阻力当量长度。 毕托管特点毕托管测量的是流速,通过换算才能获得流量。 驻点压强在驻点处,动能转化成压强(称为动压强),所以驻点压强是静压强与动压强之和。 孔板流量计的特点恒截面,变压差。结构简单,使用方便,阻力损失较大。转子流量计的特点恒流速,恒压差,变截面。 非牛顿流体的特性 塑性:只有当施加的剪应力大于屈服应力之后流体才开始流动。

相关主题
文本预览
相关文档 最新文档