当前位置:文档之家› 化工原理课程设计乙醇水精馏塔毕业设计

化工原理课程设计乙醇水精馏塔毕业设计

化工原理课程设计乙醇水精馏塔毕业设计
化工原理课程设计乙醇水精馏塔毕业设计

化工原理课程设计

题目:乙醇水精馏筛板塔设计

设计时间:

化工原理课程设计任务书(化工1)

一、设计题目板式精馏塔的设计

二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计

三、工艺条件

生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年

进料热状况:自选

回流比:自选

加热蒸汽:低压蒸汽

单板压降:≤0.7Kpa

工艺参数

组成浓度(乙醇mol%)

塔顶78

加料板28

塔底0.04

四、设计内容

1.确定精馏装置流程,绘出流程示意图。

2.工艺参数的确定

基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

3.主要设备的工艺尺寸计算

板间距,塔径,塔高,溢流装置,塔盘布置等。

4.流体力学计算

流体力学验算,操作负荷性能图及操作弹性。

5.主要附属设备设计计算及选型

塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。

料液泵设计计算:流程计算及选型。

管径计算。

五、设计结果总汇

六、主要符号说明

七、参考文献

八、图纸要求

1、工艺流程图一张(A2 图纸)

2、主要设备工艺条件图(A2图纸)

目录

前言 (4)

1概述 (5)

1.1 设计目的 (5)

1.2 塔设备简介 (6)

2设计说明书 (7)

2.1 流程简介 (7)

2.2 工艺参数选择 (8)

3 工艺计算 (9)

3.1物料衡算 (9)

3.2理论塔板数的计算 (10)

3.2.1 查找各体系的汽液相平衡数据 (10)

如表3-1 (10)

3.2.2 q线方程 (9)

3.2.3 平衡线 (11)

3.2.4 回流比 (12)

3.2.5 操作线方程 (12)

3.2.6 理论板数的计算 (12)

3.3 实际塔板数的计算 (13)

3.3.1全塔效率ET (13)

3.3.2 实际板数NE (14)

4塔的结构计算 (15)

4.1混合组分的平均物性参数的计算 (15)

4.1.1平均分子量的计算 (15)

4.1.2 平均密度的计算 (16)

4.2塔高的计算 (17)

4.3塔径的计算 (17)

4.3.1 初步计算塔径 (17)

4.3.2 塔径的圆整 (18)

4.4塔板结构参数的确定 (19)

4.4.1溢流装置的设计 (19)

4.4.2塔盘布置(如图4-4) (19)

4.4.3 筛孔数及排列并计算开孔率 (20)

4.4.4 筛口气速和筛孔数的计算 (21)

5 精馏塔的流体力学性能验算 (21)

5.1 分别核算精馏段、提留段是否能通过流体力学验算 (21)

5.1.1液沫夹带校核 (21)

5.2.2塔板阻力校核 (22)

5.2.3溢流液泛条件的校核 (24)

5.2.4 液体在降液管内停留时间的校核 (25)

5.2.5 漏液限校核 (25)

5.2 分别作精馏段、提留段负荷性能图 (25)

5.3 塔结构数据汇总 (28)

6 塔的总体结构 (29)

7 辅助设备的选择 (30)

7.1塔顶冷凝器的选择 (30)

7.2塔底再沸器的选择 (31)

7.3管道设计与选择 (32)

7.4 泵的选型 (33)

7.5 辅助设备总汇................................................................................................................ (33)

前言

化工生产中所处理的原料中间产品几乎都是由若干组分组成的混合物,其中大部分是均相混合物。生产中为满足要求需将混合物分离成较纯的物质。精馏是分离液体混合

物(含可液化的气体混合物)最常用的一种单元操作,在化工、炼油、石油化工等工业中得到广泛应用。精馏过程在能量剂的驱动下(有时加质量剂),使气、液两相多次直接接触和分离,利用液相混合物中各组分挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。该过程是同时进行传质、传热的过程。

乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。

要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。

1概述

1.1 设计目的

蒸馏是分离均相混合物的单元操作,精馏是最常用的蒸馏方式,是组成化工生产过程的主要单元操作。精馏是典型的化工操作设备之一。进行此次课程设计的目的是为了培养综合运用所学知识,来解决实际化工问题的能力,做到能独立进行化工初步设计;掌

握化工设计的基本程序和方法;学会查阅技术资料、选用公式和数据;用简洁文字和图表表达设计结果;用CAD制图以及计算机辅助计算等能力方面得到一次基本训练,为以后从事设计工作打下坚实的基础。

1.2 塔设备简介

塔设备是化工、石油化工和炼油等生产中最重要的设备之一,他可以使气(或汽)或液液两相紧密接触,达到相际传质及传热的目的。在化工厂、石油化工厂、炼油厂等中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各方面都有重大影响。

塔设备中常见的单元操作有:精馏、吸收、解吸和萃取等。此外,工业气体的冷却和回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等。

最常见的塔设备为板式塔和填料塔两大类。作为主要用于传质过程的塔设备,首先必须使气(汽)液两相能充分接触,以获得高的传质效率。此外,为满足工业生产的需要,塔设备还必须满足以下要求:1、生产能力大;2、操作稳定,弹性大;3、流体流动阻力小;4、结构简单、材料耗用量少,制造和安装容易;5、耐腐蚀和不易阻塞,操作方便,调节和检修容易。

在本设计中我使用筛板塔,筛板塔的突出优点是结构简单造价低。合理的设计和适当的操作筛板塔能满足要求的操作弹性,而且效率高采用筛板可解决堵塞问题适当控制漏液。

筛板塔是最早应用于工业生产的设备之一,五十年代之后通过大量的工业实践逐步改进了设计方法和结构,近年来与浮阀塔一起成为化工生中主要的传质设备。为减少对传质的不利影响,可将塔板的液体进入区制成突起的斜台状这样可以降低进口处的速度使塔板上气流分布均匀。筛板塔多用不锈钢板或合金制成,使用碳钢的比率较少。

它的主要优点是:结构简单,易于加工,造价为泡罩塔的60左右,为浮阀塔的80%左右;在相同条件下,生产能力比泡罩塔大20%~40%;塔板效率较高,比泡罩塔高15%左右,但稍低于浮阀塔;气体压力降较小,每板降比泡罩塔约低30%左右。缺点是:小孔筛板易堵塞,不适宜处理脏的、粘性大的和带固体粒子的料液;操作弹性较小(约2~3)。

2设计说明书2.1 流程简介

图1-1 精馏过程流程图

2.2 工艺参数选择

(1) 处理能力:5000T/y ,年开工7200小时

(2) 进料浓度:X f=0.15(mol%)

(3) 进料温度:t f=18 ℃

(4) 塔顶冷凝水采用12℃深井水, 塔釜间接蒸汽加热

(5) 压力:常压操作单板压降≤0.7 kPa

(6) 要求:x d=86 mol % x w= 1mol %

3 工艺计算3.1物料衡算

进料浓度为X F=0.15(mol%),

则MF=46*0.15+18*0.85=22.2Kg/Kmol

F=5000T/y=5000000/(M F*7200)=31.28Kmol/h

由F=D+W

FX F=DX D+WX W

得:D=5.152 Kmol/h

W=26.128 Kmol/h

3.2理论塔板数的计算

3.2.1 查找各体系的汽液相平衡数据

如表3-1

表3-1 乙醇-水汽液平衡组成

温度液相组成气相组成℃x/% y/% 100 0 0 95.5 1.90 17.00 89.0 7.21 38.91 86.7 9.66 43.75 85.3 12.38 47.04 84.1 16.61 50.89 温度液相组成气相组成

℃x/% y/%

82.7 23.37 54.45

82.3 26.08 55.80

81.5 32.73 59.26

80.0 39.65 61.22

79.8 50.97 65.64

79.7 51.98 65.99

温度液相组成气相组成

℃x/% y/%

79.3 57.32 68.41

78.74 67.63 73.85

78.41 74.72 78.15

78.15 89.43 89.43

3.2.2 q

线方程

18℃进料:

查物性数据:易挥发组分比热c1= 2.453 kJ/kgK

难挥发组分比热c2= 4.184 kJ/kgK

易挥发组分汽化潜热r1=902 kJ/kgK

难挥发组分汽化潜热r2=2458 kJ/kgK

进料温度t1=18 ℃,进料组成对应的泡点温度t2=83 ℃则平均r =z f r1*M轻组分+(1- z f) r2*M重组分

=0.15*902*46+0.85*2458*18=43831.2 KJ/Kmol

平均c p = z f c 1*M 轻组分+(1- z f ) c 2*M 重组分

=0.15*2.453*46+85*4.184*18=80.941KJ/KmolK

得q=(c p *Δt+r )/r=[80.941*(83-18)+43831.2]/43831.2=1.119 则q 线方程:11---=

q x x q q

y F =9.396x-1.259

3.2.3 平衡线

根据表3.1作出平衡线图,并画出理论塔板数,如图3-1和3-2。

图3-1乙醇-水的气液平衡x-y 图

图3-2乙醇-水的气液平衡局部放大图

3.2.4 回流比

由0.259=x D /(R min +1) 得最小回流比R min =2.32 又R=(1.1-1.8)R min 取回流比R=4

3.2.5 操作线方程

精馏段操作线方程为: 11

11

n n D R y x x R R +=

+++ =0.8x n +0.2x D

提馏段操作线方程为: W m m x W

qF L W x W qF L qF L y -+--++=

+'

'

1

=1.887x m -0.00887

3.2.6 理论板数的计算

用作图法(如图3-1),总塔板数=20+(0.0241-0.01)/(0.0241-0.0036)=20.69块

第19块板与q 线相交,为进料板。 精馏段理论板数= 18 ,第 19 块为进料板 提馏段= 2.69 总理论板数N T = 20.69

3.3 实际塔板数的计算

3.3.1全塔效率ET

塔顶x D =0.86查表得平衡温度t=78.21℃ 塔底x W =0.01查表得平衡温度t=97.63℃ 平均粘度的计算:

塔顶塔底平均温度t=87.92℃,查得乙醇粘度μ1=0.39mPa/s,

图3-2 O’connel 关联图

水的粘度μ2=0.3242mPa/s ;

则μav = μ1x F + μ2(1-x F )=0.39*0.15+0.3242*0.85=0.334 查得平均温度下的平衡组分:x=0.0937,y=0.0433, 又: y=αx/[1+(α-1)x] 得:

α=7.388

由αμav=2.47,

查O’connel 关联图(图3-2)

得全塔效率E T=38%

3.3.2 实际板数N E

N E=N T/E T=20.69/38%=54.4块

表3-1 塔内气液流率汇总

气相流率(kmol/h)液相流率(kmol/h)精馏段25.76 20.608

提馏段29.48 55.6

4塔的结构计算

板式塔主要尺寸的设计计算,包括塔高、塔径的设计计算,板上液流形式的选择、溢流装置的设计,塔板布置、气体通道的设计等工艺计算。

板式塔为逐级接触式的气液传质设备,沿塔方向,每层板的组成、温度、压力都不同。设计时,分别计算精馏段、提馏段平均条件下的参数作为设计依据,以此确定塔的尺寸,然后再作适当调整,但应尽量保持塔径相同,以便于加工制造。

4.1混合组分的平均物性参数的计算

4.1.1平均分子量的计算

(1) 塔顶的平均分子量 (x 1为与y 1=X D 平衡 的液相组成)

M VDM = X D ×M 轻组分+(1-X D )×M 重组分

Kmol Kg /8.042184.10466.80=?+?=

M LDM = x 1×M 轻组分+(1-x 1)×M 重组分

Kmol Kg /864.4118477.1046523.80=?+?=

(2)进料板的平均分子量 进料板对应的组成X n 和y n

M VFM = yn ×M 轻组分+(1-y n )×M 重组分

Kmol

Kg /844.30185413.0465874.0=?+?=

M LFM = X n ×M 轻组分+(1-X n )×M 重组分

Kmol

Kg /170.21188868.046.11320=?+?=

(3)塔底的平均分子量(y w 为与x w 平衡的气相组成)

M VWM = y w ×M 轻组分+(1-y w )×M 重组分

Kmol Kg /73.20180250.046.09750=?+?=

M LWM = x w ×M 轻组分+(1-x w )×M 重组分

Kmol

Kg /28.181899.046.010=?+?=

(4)精馏段、提馏段的平均分子量

精馏段平均分子量

Kmol Kg LM /517.31)/2M M (M LFM LD M =+=

Kmol Kg /36.462)/2M M (M V FM V D M V M =+=

提馏段平均分子量

Kmol Kg /725.19)/2M M (M'LFM LWM LM =+= Kmol Kg /787.25)/2M M (M'V FM V WM V M =+=

4.1.2 平均密度的计算 (1)液相平均密度

查物性数据: 易挥发组分密度ρ1= 790 Kg/m 3

难挥发组分密度ρ2= 998.595 Kg/ m 3

塔顶易挥发组分质量百分比a 1=94.11% 进料易挥发组分质量百分比a 2=24.598% 塔底易挥发组分质量百分比a 3=2.516%

塔顶液相密度:ρLD =1/[a 1/ρ1+(1-a 1) /ρ2]= 800.008Kg/ m 3 进料液相密度:ρLF =1/[a 2/ρ1+(1-a 2) /ρ2]= 937.69Kg/ m 3 塔底液相密度:ρLW =1/[a 3/ρ1+(1-a 3) /ρ2]= 922.005Kg/ m 3 精馏段的平均液相密度:ρLM =(ρLD +ρLF )/2=868.849Kg/ m 3 提馏段的平均液相密度:ρ’LM =(ρLF +ρLW )/2=964.85Kg/ m 3 (2)汽相平均密度

根据塔顶组成查平衡数据计算 塔顶温度T D =78.21℃ 根据进料板组成查平衡数据计算 进料板温度T F =85.85℃ 根据塔底组成查平衡数据计算 塔底温度T W =97.63℃ 精馏段:T M =(T F +T D )/2=82.03℃ ρVM =PM V /RT M =1.456Kg/ m 3 提馏段:T ’M =(T F +T W )/2=91.74℃

ρ’VM =PM ’V /RT ’M =1.16K4g/ m 3

表 4-1 塔内气液流率汇总

气相流率(m 3/h )

液相流率(m 3/h )

精馏段

750.624

0.7475

提馏段

882.49 1.1055

4.2塔高的计算

①板式塔的有效高度是指安装塔板部分的高度,按下式计算: (

1)T

T T

N Z H E =- 式中 Z ——塔的有效高度,m ;

E T ——全塔总板效率;

N T ——塔内所需的理论板层数; H T ——塔板间距,m 。 ① H T 的初选

选取时应考虑塔高、塔径、物系性质、分离效率、操作弹性及塔的安装检修等因素。

表4-2 塔板间距与塔径的关系

塔 径/D ,m

0.3~0.5

0.5~0.8 0.8~1.6 1.6~2.4 2.4~4.0 板间距/H T ,mm 200~300 250~350

300~450

350~600

400~600

化工生产中常用板间距为:200,250,300,350,400,450,500,600,700,800mm 。在决定板间距时还应考虑安装、检修的需要。

此设计中我取H T =300mm

4.3塔径的计算

计算塔径的方法有两类:一类是根据适宜的空塔气速,求出塔截面积,即可求出塔径。另一类计算方法则是先确定适宜的孔流气速,算出一个孔(阀孔或筛孔)允许通过的气量,定出每块塔板所需孔数,再根据孔的排列及塔板各区域的相互比例,最后算出塔的横截面积和塔径。本次数据采用第一种方法。

4.3.1 初步计算塔径 精馏段:

图中V ,L ——分别为塔内气、液两相体积流量,m 3/s ; ρV ,ρL ——分别为塔内

气、液相的密度,kg/m 3

图 4-1 史密斯关联图

由:()02624.02/1)^(=V

L

V L ρρ,查图4-1得,C 20=0.06

又有精馏段平均温度T M =82.03,查得乙醇和水的表面张力分别为: σ1=0.0168N/m ,σ2=0.06257N/m ,从而算出混合液体的表面张力σ=0.04N/m 。 →2.020)02

.0(

σ

C C ==0.069→max L V

V

u C

ρρρ-==1.8266m/s ,又max (0.6~0.8)u u = 取u=1.2m/s ,则u

V

D 785.0/==0.470m

提馏段:

与精馏段同样的方法算得塔的直径为0.4165m 4.3.2 塔径的圆整

综合精馏段与提留段,圆整后的塔径取500mm

4.4塔板结构参数的确定

4.4.1溢流装置的设计

溢流装置包括降液管、溢流堰、授液盘等几个部分,是液体的通道,其结构和尺寸对塔的性能有着重要影响。

A 降液管截面积A f

B溢流堰包括堰高hw、堰长lw及how

C 受液盘和底隙h0

r

图4-2溢流装置图4-3 塔盘布置

4.4.2塔盘布置(如图4-4)

A 受液区或降液区A f=0.01396m2

B 入口安定区和出口安定区Ws=50 mm

C 边缘区Wc=30 mm

D 有效传质区:塔板上布置有筛孔的区域,称有效传质区,面积为A a

结合我的设计任务,由于流量较小,我选用U型塔板,如图4-4:

图4-4 U 形流型

参数选择,取:h b =30mm,h w =50mm,l w =200mm.

在CAD 软件中求得:A T =0.19625m 2,A F =0.01396m 2,A a =0.1185m 2 则A F /A T =0.07,在(0.06,0.12)的范围内。

3

/231084.2???

? ???=-W

VL ow l

q E h h

=6.84mm>6mm,,符合要求。

4.4.3 筛孔数及排列并计算开孔率

取孔径d 0=6mm,开孔率取0.1,带入上述公式,得出孔距t=18mm , t/d 0=3,在(2.5,5)范围内,符合基本要求。

乙醇水精馏塔设计

⑴综合运用“化工原理”和相关选修课程的知识,联系化工生产的实际完成单元操作的化工设计实践,初步掌握化工单元操作的基本程序和方法。 ⑵熟悉查阅资料和标准、正确选用公式,数据选用简洁,文字和工程语言正确表达设计思路和结果。 ⑶树立正确设计思想,培养工程、经济和环保意识,提高分析工程问题的能力。二、设计任务及操作条件在一常压操作的连续精馏塔分离乙醇-水混合物。 生产能力(塔顶产品)3000 kg/h 操作周期 300 天/年 进料组成 25% (质量分数,下同) 塔顶馏出液组成≥94% 塔底馏出液组成≤0.1% 操作压力 4kPa(塔顶表压) 进料热状况泡点 单板压降:≤0.7 kPa 设备型式筛板 三、设计容: (1) 精馏塔的物料衡算; (2) 塔板数的确定: (3) 精馏塔的工艺条件及有关物件数据的计算; (4) 精馏塔的塔体工艺尺寸计算; (5) 塔板主要工艺尺寸的计算; (6) 塔板的流体力学验算: (7) 塔板负荷性能图; (8) 精馏塔接管尺寸计算; (9) 绘制生产工艺流程图; (10) 绘制精馏塔设计条件图; (11) 对设计过程的评述和有关问题的讨论。 [ 设计计算 ] (一)设计方案选定 本设计任务为分离水-乙醇混合物。 原料液由泵从原料储罐中引出,在预热器中预热至84℃后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却至25℃后送至产品槽;塔釜采用热虹吸立式再沸器提供气相流,塔釜残液送至废热锅炉。 1精馏方式:本设计采用连续精馏方式。原料液连续加入精馏塔中,并连续收集产物和排出残液。其优点是集成度高,可控性好,产品质量稳定。由于所涉浓度围乙醇和水的挥发度相差较大,因而无须采用特殊精馏。 2操作压力:本设计选择常压,常压操作对设备要求低,操作费用低,适用于乙醇和水这类非热敏沸点在常温(工业低温段)物系分离。 3塔板形式:根据生产要求,选择结构简单,易于加工,造价低廉的筛板塔,筛板塔处理能力大,塔板效率高,压降较低,在乙醇和水这种黏度不大的分离工艺中有很好表现。 4加料方式和加料热状态:加料方式选择加料泵打入。由于原料温度稳定,为减少操作成本采用30度原料冷液进料。

(完整版)年产45万吨乙醇精馏工段工艺设计毕业设计

年产45万吨乙醇精馏工段工艺设 计 The Process Design of Ethanol Refining Section of 450 kt/a

目录 摘要 ....................................................................................................................... Abstract ................................................................................................................引言 .......................................................................................................................第一章绪论....................................................................................................... 1.1 国内乙醇工业的发展现状 ....................................................................................... 1.2 精馏塔的相关概述 ................................................................................................... 1.2.1精馏原理及其在化工生产上的应用..................................................................... 1.2.2精馏塔对塔设备的要求......................................................................................... 1.2.3常用板式塔类型及本设计的选型......................................................................... 1.2.4本设计所选塔的特性.............................................................................................第二章工艺流程选择与原材料的计算............................................................. 2.1 乙醇精馏工艺流程的概述 ....................................................................................... 2.2 乙醇原料的计算 ..................................................................................................... 2.2.1理论玉米秸秆葡萄糖消耗量................................................................................. 2.2.2实际玉米秸秆耗量 .................................................................................................第三章精馏设备的设计内容............................................................................. 3.1 塔板的工艺设计 ....................................................................................................... 3.1.1精馏塔全塔物料衡算............................................................................................. 3.1.2理论塔板数的确定 ................................................................................................. 3.1.3精馏塔操作工艺条件及相关物性数据的计算..................................................... 3.1.4塔板主要工艺结构尺寸的计算.............................................................................

化工原理课程设计乙醇水精馏塔设计说明书

化工原理课程设计 题目:乙醇水精馏筛板塔设计 ( 设计时间:2010、12、20-2011、1、6 / 》 :

化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 } 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤ 工艺参数 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 ` 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。 3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 | 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2 图纸) 2、主要设备工艺条件图(A2图纸) ^

~ 目录 前言 (3) 1概述 (4) 设计目的 (4) 塔设备简介 (4) 2设计说明书 (6) 流程简介 (6) 工艺参数选择 (7) ) 3 工艺计算 (8) 物料衡算 (8) 理论塔板数的计算 (8) 查找各体系的汽液相平衡数据 (8) 如表3-1 (8) q线方程 (9) 平衡线 (9) 回流比 (10) … 操作线方程 (10) 理论板数的计算 (11) 实际塔板数的计算 (11) 全塔效率ET (11) 实际板数NE (12) 4塔的结构计算 (13) 混合组分的平均物性参数的计算 (13) 平均分子量的计算 (13) 】 平均密度的计算 (14) 塔高的计算 (15) 塔径的计算 (15) 初步计算塔径 (16) 塔径的圆整 (17) 塔板结构参数的确定 (17) 溢流装置的设计 (17) 塔盘布置(如图4-4) (17) ` 筛孔数及排列并计算开孔率 (18) 筛口气速和筛孔数的计算 (19) 5 精馏塔的流体力学性能验算 (20) 分别核算精馏段、提留段是否能通过流体力学验算 (20) 液沫夹带校核 (20)

化工原理乙醇水_课程设计汇总

化工原理课程设计 分离乙醇-水混合物精馏塔设 计 学院:化学工程学院 专业: 学号: 姓名: 指导教师: 时间: 2012年6月13日星期三 化工原理课程设计任务书 一、设计题目:分离乙醇-水混合物精馏塔设计 二、原始数据: a)原料液组成:乙醇 20 % 产品中:乙醇含量≥94% 残液中≤4% b)生产能力:6万吨/年 c)操作条件 进料状态:自定操作压力:自定 加热蒸汽压力:自定冷却水温度:自定 三、设计说明书内容: a)概述 b)流程的确定与说明 c)塔板数的计算(板式塔);或填料层高度计算(填料塔) d) 塔径的计算 e)1)塔板结构计算; a 塔板结构尺寸的确定; b塔板的流体力学验算;c塔板的负荷性能图。 2)填料塔流体力学计算;

a 压力降; b 喷淋密度计算 f )其它 (1) 热量衡算—冷却水与加热蒸汽消耗量的计算 (2) 冷凝器与再沸器传热面的计算与选型(板式塔) (3) 除沫器设计 g )料液泵的选型 h )计算结果一览表 第一章 课程设计报告内容 一、精馏流程的确定 乙醇、水混合料液经原料预热器加热至泡点后,送入精馏塔。塔顶上升蒸汽采用全凝器冷凝后,一部分作为回流,其余为塔顶产品经冷却器冷却后送至贮槽。塔釜采用间接蒸汽向沸热器供热,塔底产品经冷却后送入贮槽。 二、塔的物料衡算 (一) 料液及塔顶、塔底产品含乙醇摩尔分数 (二) 平均摩尔质量 (三) 物料衡算 总物料衡算 F W D =+ 易挥发组分物料衡算 F x W x D x F w D =+ 联立以上三式得 三、塔板数的确定 (一) 理论塔板数T N 的求取 根据乙醇、水的气液平衡数据作y-x 图 乙醇—水气液平衡数据

乙醇-水连续浮阀式精馏塔的设计方案

乙醇-水连续浮阀式精馏塔的设计方案 第1章前言 1.1精馏原理及其在化工生产上的应用 实际生产中,在精馏柱及精馏塔中精馏时,上述部分气化和部分冷凝是同时进行的。 对理想液态混合物精馏时,最后得到的馏液(气相冷却而成)是沸点低的B物质,而残液是沸点高的A物质,精馏是多次简单蒸馏的组合。精馏塔底部是加热区,温度最高;塔顶温度最低。精馏结果,塔顶冷凝收集的是纯低沸点组分,纯高沸点组分则留在塔底。 1.2精馏塔对塔设备的要求 精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下: 一:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流 动。 二:效率高:气液两相在塔保持充分的密切接触,具有较高的塔板效率或传质效率。 三:流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。 四:有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。 五:结构简单,造价低,安装检修方便。

六:能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。 1.4常用板式塔类型及本设计的选型 常用板式塔类型有很多,如:筛板塔、泡罩塔、舌型塔、浮阀塔等。而浮阀塔具有很多优点,且加工方便,故有关浮阀塔板的研究开发远较其他形式的塔板广泛,是目前新型塔板研开发的主要方向。近年来与浮阀塔一直成为化工生中主要的传质设备,浮阀塔多用不锈钢板或合金。实际操作表明,浮阀在一定程度的漏夜状态下,使其操作板效率明显下降,其操作的负荷围较泡罩塔窄,但设计良好的塔其操作弹性仍可达到满意的程度。 浮阀塔塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了两者的优点。所以在此我们使用浮阀塔,浮阀塔的突出优点是结构简单,造价低,制造方便;塔板开孔率大,生产能力大等。 乙醇与水的分离是正常物系的分离,精馏的意义重大,在化工生产中应用非常广泛,对于提纯物质有非常重要的意义。所以有必要做好本次设计 1.4.本设计所选塔的特性 浮阀塔的优点是: 1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力 比泡罩塔板大 20%~40%,与筛板塔接近。 2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许 的负荷波动围比筛板塔,泡罩塔都大。 3.塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹 带量小,塔板效率高。 4.气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差

乙醇—水溶液精馏塔设计[精选.]

第一章绪论 (2) 一、目的: (2) 二、已知参数: (2) 三、设计内容: (2) 第二章课程设计报告内容 (3) 一、精馏流程的确定 (3) 二、塔的物料衡算 (3) 三、塔板数的确定 (4) 四、塔的工艺条件及物性数据计算 (6) 五、精馏段气液负荷计算 (10) 六、塔和塔板主要工艺尺寸计算 (10) 七、筛板的流体力学验算 (15) 八、塔板负荷性能图 (18) 九、筛板塔的工艺设计计算结果总表 (22) 十、精馏塔的附属设备及接管尺寸 (22) 第三章总结 (23) .

乙醇——水连续精馏塔的设计 第一章绪论 一、目的: 通过课程设计进一步巩固课本所学的内容,培养学生运用所学理论知识进行化工单元过程设计的初步能力,使所学的知识系统化,通过本次设计,应了解设计的内容,方法及步骤,使学生具有调节技术资料,自行确定设计方案,进行设计计算,并绘制设备条件图、编写设计说明书。 在常压连续精馏塔中精馏分离含乙醇25%的乙醇—水混合液,分离后塔顶馏出液中含乙醇量不小于94%,塔底釜液中含乙醇不高于0.1%(均为质量分数)。 二、已知参数: (1)设计任务 ●进料乙醇 X = 25 %(质量分数,下同) ●生产能力 Q = 80t/d ●塔顶产品组成 > 94 % ●塔底产品组成 < 0.1 % (2)操作条件 ●操作压强:常压 ●精馏塔塔顶压强:Z = 4 KPa ●进料热状态:泡点进料 ●回流比:自定待测 ●冷却水: 20 ℃ ●加热蒸汽:低压蒸汽,0.2 MPa ●单板压强:≤ 0.7 ●全塔效率:E T = 52 % ●建厂地址:南京地区 ●塔顶为全凝器,中间泡点进料,筛板式连续精馏 三、设计内容: (1)设计方案的确定及流程说明 (2)塔的工艺计算

化工原理课程设计(乙醇_水溶液连续精馏塔优化设计)

专业资料 化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计

目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7.参考文献 (23) 8.课程设计心得 (23)

精馏塔优化设计任务书 一、设计题目 乙醇—水溶液连续精馏塔优化设计 二、设计条件 1.处理量: 16000 (吨/年) 2.料液浓度: 40 (wt%) 3.产品浓度: 92 (wt%) 4.易挥发组分回收率: 99.99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强:1.03 atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务 a) 流程的确定与说明; b) 塔板和塔径计算; c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计 (某大学化学化工学院) 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。 关键词:精馏塔,浮阀塔,精馏塔的附属设备。 (Department of Chemistry,University of South China,Hengyang 421001) Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme. Keywords: rectification column, valve tower, accessory equipment of the rectification column.

乙醇水精馏塔设计化工原理课程设计

题目:乙醇水精馏筛板塔设计 设计时间: 化工原理课程设计任务书(化工1) 一、设计题目板式精馏塔的设计 二、设计任务:乙醇-水二元混合液连续操作常压筛板精馏塔的设计 三、工艺条件 生产负荷(按每年7200小时计算):6、7、8、9、10、11、12万吨/年 进料热状况:自选 回流比:自选 加热蒸汽:低压蒸汽 单板压降:≤0.7Kpa 工艺参数 组成浓度(乙醇mol%) 塔顶78 加料板28 塔底0.04 四、设计内容 1.确定精馏装置流程,绘出流程示意图。 2.工艺参数的确定 基础数据的查取及估算,工艺过程的物料衡算及热量衡算,理论塔板数,塔板效率,实际塔板数等。

3.主要设备的工艺尺寸计算 板间距,塔径,塔高,溢流装置,塔盘布置等。 4.流体力学计算 流体力学验算,操作负荷性能图及操作弹性。 5.主要附属设备设计计算及选型 塔顶全凝器设计计算:热负荷,载热体用量,选型及流体力学计算。 料液泵设计计算:流程计算及选型。 管径计算。 五、设计结果总汇 六、主要符号说明 七、参考文献 八、图纸要求 1、工艺流程图一张(A2图纸) 2、主要设备工艺条件图(A2图纸) 目录 前言 (4) 1概述 (5) 1.1设计目的 (5) 1.2塔设备简介 (6) 2设计说明书 (7) 2.1流程简介 (7) 2.2工艺参数选择 (8) 3工艺计算 (8) 3.1物料衡算 (8) 3.2理论塔板数的计算 (8) 3.2.1查找各体系的汽液相平衡数据 (8) 如表3-1 (8) 3.2.2q线方程 (9) 3.2.3平衡线 (9) 3.2.4回流比 (10) 3.2.5操作线方程 (11) 3.2.6理论板数的计算 (11) 3.3实际塔板数的计算 (11) 3.3.1全塔效率ET (11) 3.3.2实际板数NE (12) 4塔的结构计算 (13)

乙醇精馏塔设计(1)资料

化工原理课程设计 设计题目:乙醇精馏塔 前言 精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。有板式塔与填料塔两种主要类型。根据操作方式又可分为连续精馏塔与间歇精馏塔。 蒸气由塔底进入,与下降液进行逆流接触,两相接触中,下降液中的易挥发(低沸点)组分不断地向蒸气中转移,蒸气中的难挥发(高沸点)组分不断地向下降液中转移,蒸气愈接近塔顶,其易挥发组分浓度愈高,而下降液愈接近塔底,其难挥发组分则愈富集,达到组分分离的目的。由塔顶上升的蒸气进入冷凝器,冷凝的液体的一部分作为回流液返回塔顶进入精馏塔中,其余的部分则作为馏出液取出。塔底流出的液体,其中的一部分送入再沸器,热蒸发后,蒸气返回塔中,另一部分液体作为釜残液取出。 精馏塔的工作原理是根据各混合气体的汽化点(或沸点)的不同,控制塔各节的不同温度,达到分离提纯的目的。 化工生产常需进行液体混合物的分离以达到提纯或回收有用组分的目的,精馏操作在化工、石油化工、轻工等工业生产中中占有重要的地位。为此,掌握气液相平衡关系,熟悉各种塔型的操作特性,对选择、设计和分析分离过程中的各种参数是非常重要的。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。 本次设计的筛板塔是化工生产中主要的气液传质设备。此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。 本设计包括设计方案的选取,主要设备的工艺设计计算——物料衡算、热量衡算、工艺参数的选定、设备的结构设计和工艺尺寸的设计计算,辅助设备的选型,工艺流程图,主要设备的工艺条件图等内容。通过对精馏塔的运算,调试出塔的工艺流程、生产操作条件及物性参数,以保证精馏过程的顺利进行并使效率尽可能的提高。

乙醇_水精馏塔设计说明

符号说明:英文字母 Aa---- 塔板的开孔区面积,m2 A f---- 降液管的截面积, m2 A T----塔的截面积 m C----负荷因子无因次 C20----表面力为20mN/m的负荷因子 d o----阀孔直径 D----塔径 e v----液沫夹带量 kg液/kg气 E T----总板效率 R----回流比 R min----最小回流比 M----平均摩尔质量 kg/kmol t m----平均温度℃ g----重力加速度 9.81m/s2 F----阀孔气相动能因子 kg1/2/(s.m1/2) h l----进口堰与降液管间的水平距离 m h c----与干板压降相当的液柱高度 m h f----塔板上鼓层高度 m h L----板上清液层高度 m h1----与板上液层阻力相当的液注高度 m ho----降液管底隙高度 m h ow----堰上液层高度 m h W----溢流堰高度 m h P----与克服表面力的压降相当的液注高度m H-----浮阀塔高度 m H B----塔底空间高度 m H d----降液管清液层高度 m H D----塔顶空间高度 m H F----进料板处塔板间距 m H T·----人孔处塔板间距 m H T----塔板间距 m l W----堰长 m Ls----液体体积流量 m3/s N----阀孔数目 P----操作压力 KPa △P---压力降 KPa △Pp---气体通过每层筛的压降 KPa N T----理论板层数 u----空塔气速 m/s V s----气体体积流量 m3/s W c----边缘无效区宽度 m W d----弓形降液管宽度 m W s ----破沫区宽度 m 希腊字母 θ----液体在降液管停留的时间 s υ----粘度 mPa.s ρ----密度 kg/m3 σ----表面力N/m φ----开孔率无因次 X`----质量分率无因次 下标 Max---- 最大的 Min ---- 最小的 L---- 液相的 V---- 气相的 m----精馏段 n-----提馏段 D----塔顶 F-----进料板 W----塔釜

乙醇精馏塔设计毕业论文

乙醇精馏塔设计毕业论文 目录 摘要................................................................. I Abstract............................................................. II 第一章绪论 (1) 1.1 设计的目的和意义 (1) 1.2 产品的性质及用途 (1) 1.2.1 物理性质 (1) 1.2.2 化学性质 (2) 1.2.3 乙醇的用途 (2) 第二章工艺流程的选择和确定 (3) 2.1 粗乙醇的精馏 (3) 2.1.1 精馏原理 (3) 2.1.2 精馏工艺和精馏塔的选择 (3) 2.2 乙醇精馏流程 (5) 第三章物料和能量衡算 (7) 3.1 物料衡算 (7) 3.1.1 粗乙醇精馏的物料平衡计算 (7) 3.1.2 主塔的物料平衡计算 (8) 3.2 主精馏塔能量衡算 (9) 3.2.1 带入热量计算 (9) 3.2.2 带出热量计算 (10) 3.2.3 冷却水用量计算 (10) 第四章精馏塔的设计 (11) 4.1 主精馏塔的设计 (11) 4.1.1 精馏塔全塔物料衡算及塔板数的确定 (11) 4.1.2 求最小回流比及操作回流比 (12) 4.1.3 气液相负荷 (12) 4.2 求操作线方程 (12) 4.3 图解法求理论板 (13) 4.3.1 塔板、气液平衡相图 (13) 4.3.2 板效率及实际塔板数 (14) 4.4 操作条件 (14) 4.4.1 操作压力 (14) 4.4.2 混合液气相密度 (15) 4.4.3 混合液液相密度 (16) 4.4.4 表面力 (16)

乙醇和水混合液精馏塔课程设计

新疆工程学院 化工原理课程设计说明书 题目名称:年产量为8000t的乙醇-水混合液 精馏塔的工艺设计 系部:化学与环境工程系 专业班级:化学工程与工艺13-1 学生姓名:杨彪 指导老师:杨智勇 完成日期: 2016.6.27

格式及要求 1、摘要 1)摘要正文 (小四,宋体) 摘要内容200~300字为易,要包括目的、方法、结果和结论。 2)关键词 XXXX;XXXX;XXXX (3个主题词) (小四,黑体) 2、目录格式 目录(三号,黑体,居中) 1 XXXXX(小四,黑体) 1 1.l XXXXX(小四,宋体) 2 1.1.1 XXXXX(同上) 3 3、说明书正文格式: 1. XXXXX (三号,黑体) 1.1 XXXXX(四号,黑体) 1.1.1 XXXXX(小四,黑体) 正文:XXXXX(小四,宋体) (页码居中) 4、参考文献格式: 列出的参考文献限于作者直接阅读过的、最主要的且一般要求发表在正式出版物上的文献。参考文献的著录,按文稿中引用顺序排列。 参考文献内容(五号,宋体) 示例如下: 期刊——[序号]作者1,作者2…,作者n.题(篇)名,刊名(版本),出版年,卷次(期次)。 图书——[序号]作者1,作者2…,作者n..书名,版本,出版地,出版者,出版年。 5、.纸型、页码及版心要求: 纸型: A4,双面打印 页码:居中,小五 版心距离:高:240mm(含页眉及页码),宽:160mm 相当于A4纸每页40行,每行38个字。 6、量和单位的使用: 必须符合国家标准规定,不得使用已废弃的单位。量和单位不用中文名称,而用法定符号表示。

新疆工程学院课程设计任务书

乙醇—水溶液精馏塔设计

乙醇-水溶液连续精馏塔设计 目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7., 8.参考文献 (23) 9.课程设计心得 (23) 精馏塔设计任务书 一、设计题目 乙醇—水溶液连续精馏塔设计 二、设计条件 1.处理量: 15000 (吨/年) 2.料液浓度: 35 (wt%) ! 3.产品浓度: 93 (wt%) 4.易挥发组分回收率: 99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强: atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务

a) 流程的确定与说明; b) 塔板和塔径计算; 、 c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。 乙醇——水溶液连续精馏塔优化设计 前言 ! 乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。 浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩

化工原理课程设计乙醇和水

(一)设计题目: 试设计一座乙醇-水连续精馏塔提纯乙醇。进精馏塔的料液含乙醇 25% (质 量分数,下同),其余为水;产品的乙醇含量不得低于 94% ;残液中乙醇含量不 得高于0.1% ;要求年产量为17000吨/年。 (二)操作条件 塔顶压力4kPa (表压) 进料热状态自选 回流比自选 塔底加热蒸气压力 0.5Mpa (表压) 单板压降W 0.7kPa 1) 2) 3) 4) 5) (三)塔板类型 自选 (四)工作日 每年工作日为300天,每天24小时连续运行。 (五)设计内容 设计说明书的内容 精馏塔的物料衡算; 塔板数的确定; 精馏塔的工艺条件及有关物性数据的计算; 精馏塔的塔体工艺尺寸计算; 塔板主要工艺尺寸的计算; 塔板的流体力学验算; 塔板负荷性能图; 精馏塔接管尺寸计算; 对设计过程的评述和有关问题的讨论。 1、 1) 2) 3) 4) 5) 6) 7) 8) 9) 2、 1) 2) 设计图纸要求: 绘制生产工艺流程图(A2号图纸); 绘制 精馏塔设计条件图(A2号图纸)。

目录 1. 设计方案简介??… 1.1设计方案的确定…… 1.2操作条件和基础数据.......... 2. ................................ 精馏塔的物料衡算 2.1原料液及塔顶、塔底产品的摩尔分率.......... 2.2 原料液及塔顶、塔底产品的平均摩尔质量 2.3物料衡算....... 3. .......................... 塔板数的确定 3.1 理论板层数Nr的求取…… 3.1.1 求最小回流比及操作回流比 (2) 3.1.2 求精馏塔的气、液相负荷 (3) 3.1.3 求操作线方程 (3) 3.1.4 图解法求理论板层数 (3) 3.2 塔板效率的求取……… 4 3.3 实际板层数的求取……… 4. 精馏塔的工艺条件及有关物性数据的计算……… 4.1 操作压力计算……… 4.2 操作温度计算……… 4.3 平均摩尔质量的计算……… 4.4 平均密度的计算……… 4.4.1 气相平均密度计算……… 4.4.2 液相平均密度计算……… 4.5 液体平均表面张力计算 4.6 液体平均黏度计算…… 5. 精馏塔的塔体工艺尺寸计算

乙醇精馏塔-毕业设计

摘要 乙醇是一种极重要的有机化工原料,也是一种燃料,在国民经济中占有十分重要的地位。随着乙醇工业的迅速成熟,各种制乙醇的方法相继产生。由于乙醇与水混合物的特殊性,即相对挥发度的不同且在一定浓度时生成共沸物,精馏操作一直是乙醇生产不可缺少的工序。 本设计的主要内容是根据20万吨乙醇生产工艺的需求,通过物料衡算和热量衡算以及板式浮阀塔设计的理论知识来设计浮阀塔,并由负荷性能图来进行校验。此外,本设计遵循经济、资源综合利用、环保的原则,严格控制工业三废的排放,充分利用废热,降低能耗,提高工艺的可行性。 关键词:乙醇精馏;浮阀塔;塔附件设计

Abstract Ethanol is a very important organic chemical raw material, but also a fuel, in the national economy occupied a very important position. With the rapid ethanol industry matures, various methods have been found. As a characteristic of a mixture of ethanol and water, the difference of the relative volatility and is generated in a certain concentration azeotrope, distillation operation has been indispensable step of ethanol production. The design of the main content is based on 200,000 tons of ethanol production technology,which needs through material balance and energy balance and the plate valve column design theory to design the float valve column by load performance diagrams for verification. In addition, the design follows the economy, resource utilization, environmental protection principles, strictly control industrial waste emissions, the full use of waste heat, reduce energy consumption and improve the feasibility of the process. Keywords: Ethanol distillation,Valve column,Design

乙醇——水筛板精馏塔工艺设计-课程设计

学院 化工原理课程设计任务书 专业: 班级: 姓名: 学号: 设计时间: 设计题目:乙醇——水筛板精馏塔工艺设计 (取至南京某厂药用酒精生产现场) 设计条件: 1. 常压操作,P=1 atm(绝压)。 2. 原料来至上游的粗馏塔,为95——96℃的饱和蒸汽。因沿 程热损失,进精馏塔时原料液温度降为90℃。 3. 塔顶产品为浓度92.41%(质量分率)的药用乙醇,产量为 40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03%(质量分 率)。 5.塔釜采用饱和水蒸汽加热(加热方式自选);塔顶采用全凝器,泡点回流。 。 6.操作回流比R=(1.1——2.0)R min 设计任务: 1. 完成该精馏塔工艺设计,包括辅助设备及进出口接管的计 算和选型。 2.画出带控制点的工艺流程图,t-x-y相平衡图,塔板负 荷性能图,筛孔布置图以及塔的工艺条件图。 3.写出该精流塔的设计说明书,包括设计结果汇总和对自己 设计的评价。 指导教师:时间

1设计任务 1.1 任务 1.1.1 设计题目乙醇—水筛板精馏塔工艺设计(取至南京某厂药用酒 精生产现场) 1.1.2 设计条件 1.常压操作,P=1 atm(绝压)。 2.原料来至上游的粗馏塔,为95-96℃的饱和蒸气。 因沿程热损失,进精馏塔时原料液温度降为90℃。 3.塔顶产品为浓度92.41%(质量分率)的药用乙醇, 产量为40吨/日。 4.塔釜排出的残液中要求乙醇的浓度不大于0.03% (质量分率)。 5.塔釜采用饱和水蒸气加热(加热方式自选);塔顶 采用全凝器,泡点回流。 6.操作回流比R=(1.1—2.0) R。 min 1.1.3 设计任务 1.完成该精馏塔工艺设计,包括辅助设备及进出口接 管的计算和选型。 2.画出带控制点的工艺流程示意图,t-x-y相平衡 图,塔板负荷性能图,筛孔布置图以及塔的工艺条 件图。 3.写出该精馏塔的设计说明书,包括设计结果汇总 和对自己设计的评价。 1.2 设计方案论证及确定 1.2.1 生产时日 设计要求塔日产40吨92.41%乙醇,工厂实行三班制,每班工作8小时,每天24小时连续正常工作。 1.2.2 选择塔型 精馏塔属气—液传质设备。气—液传质设备主要分为板式塔和填料塔两大类。该塔设计生产时日要求较大,由板式塔与填料塔比较[1]知:板式塔直径放大

化工原理课程设计(乙醇-水溶液连续精馏塔优化设计)

化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计

目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7.参考文献 (23) 8.课程设计心得 (23)

精馏塔优化设计任务书 一、设计题目 乙醇—水溶液连续精馏塔优化设计 二、设计条件 1.处理量: 16000 (吨/年) 2.料液浓度: 40 (wt%) 3.产品浓度: 92 (wt%) 4.易挥发组分回收率: 99.99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强:1.03 atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务 a) 流程的确定与说明; b) 塔板和塔径计算; c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计 (某大学化学化工学院) 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。 关键词:精馏塔,浮阀塔,精馏塔的附属设备。 (Department of Chemistry,University of South China,Hengyang 421001) Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme. Keywords: rectification column, valve tower, accessory equipment of the rectification column.

乙醇水溶液提纯精馏塔设计毕业设计

乙醇水溶液提纯精馏塔设计毕业设计 目录 1.绪论 (1) 1.1.设计背景 (1) 1.2.设计意义 (1) 1.3.设计步骤 (1) 2.精馏塔设计计算 (2) 2.1.精馏流程的确定 (2) 2.2.塔的物料衡算 (2) 2.2.1.查阅文献,整理有关物性数据 (2) 2.2.2.料液及塔顶、塔底产品的摩尔分数 (3) 2.2.3. 平均摩尔质量 (3) 2.2.4. 物料衡算 (3) 2.3. 塔板数的确定 (3) 2.3.1. 乙醇—水物系的气液平衡数据 (4) 2.3.2. 求最小回流比及操作回流比 (4) 2.3.3. 求精馏塔的气液相负荷 (4) 2.3.4. 求操作线方程 (4) 2.3.5. 图解法求理论塔板层数 (4) 2.3.6. 求实际塔板数 (5) 2.4 塔的工艺条件及物性数据计算 (6) 2.4.1. 操作压力 (6) 2.4.2. 平均摩尔质量 (7) 2.4.3. 平均密度 (7) 2.4. 3.1 .....................................................气相密度7 2.4. 3.2 ................................................. 液相平均密度7 2.4.4. 液体表面力 (8) 2.5 精馏塔的塔体工艺尺寸计算 (9) 2.5.1. 塔径的计算 (9) 2.5.2. 精馏塔有效高度的计算 (9) 2.6 塔板主要工艺尺寸的计算 (9) 2.6.1. 堰长 (9) 2.6.2. 溢流堰高度 (10) 2.6.3. 弓形降液管宽度和截面积 (10) 2.6.4. 降液管底隙高度 (11) 2.7 塔板布置 (11) 2.7.1. 塔板的分块 (12) 2.7.2. 边缘区宽度确定 (12)

相关主题
文本预览
相关文档 最新文档