当前位置:文档之家› 电线电缆绝缘材料的选择

电线电缆绝缘材料的选择

电线电缆绝缘材料的选择
电线电缆绝缘材料的选择

电线电缆绝缘材料的选择---转

1.0 塑料的分类

1.1 Thermosetting 热固定塑料:(电线极少用到)初期亦为直链分子,加热软化只有短时间的可塑性

,随后分子起交联反应 ( Cross Linking ) 变成三度的空间结构,使得热固性塑料一但固化后无法重新

使用,如:EP, PDAP, SI……等。

1.2 热塑性塑料:分子结构多为直链型,它在常温下是固态,加热后即软化或液化成为可塑态,成型冷却

后又恢复固态,这样的性质可重复使用。

2.0 塑料的加工原理

2.1 塑料是高分子材料,高分子是由许多单体分子连接而成的巨大分子,这些分子通常成直链状,但由于

结构上的差异,有时主链分支而成短侧链或长侧链,甚至由于架桥作用而形成三度空间的纲状结构。这些

分子经常以C―C, C,C―O的共价组合。如下图a、b、c共价结合,分子间则籍氢键等互相吸引,这些巨

大的分子链互相吸引、重叠、纠缠、卷缠,形成块状的高分子聚合体,由于分子之极性与立体规则性的影

响,聚合体的集合状态有结晶形,也有无定形。塑料的物理性质与加工性,即是这些分子结构现象的综合

表现。

2.2 塑料加工是利用塑料形态变化的特性先将塑料熔化或软化,塑造成特殊形状后,使之硬化固定,一般

塑料加工的功能可归纳如下四种方式。

2.2.1 赋予材料可塑性:使材料流动或软化。

2.2.2 赋予形状:软化或流动的塑料成特殊外形。

2.2.3 硬化定形:使变成特殊形状的塑料保持不变的形状通常有几种方法。

a 降温冷却,使硬化定形﹔

b 移去溶剂使硬化定形﹔

c 利用化学的交联反应 (cross linking) 而硬化定形。

2.2.4 材料改质:利用加工手段,使塑料的内部结构产生化学或物理变化而提高价值。

一般塑料加工技朮均包含2.2.1,2.2.2,2.2.3三项功能而2.2.4材料改质则视产品设计需要而定。

3.0 塑料的性质

3.1 基本物理性质

a 比重﹔

b 分子量﹔

c 粘度﹔

d 假比重及粒径分布﹔

e 游离单体含量 ( 聚合程度 ) ﹔

f 吸水率﹔

g 透气率。

3.2 机械性质

3.2.1 抗张强度及伸长率,参考 UL或ASTM D638﹔

3.2.2 弯曲强度,参考 ASTM D790﹔

3.2.3 压缩强度,参考 ASTM D695﹔

3.2.4 冲击强度,参考 ASTM D256﹔

3.2.5 硬度:

(a) Rock Well Durometa 法( ASTM D785 )﹔

(b) Barcol Impressor 法 ( ASTM D785 )﹔

(c) Shore Durometa 法 ( ASTM D2240 )。

3.2.6 弹性系数:受外力作用变形后回复原来形状能力

3.3 热性质

3.3.1 热变形温度:显示塑料在高温受压下能否保持不变的外形。

3.3.2 软化点:受热而硬度降低,即将开始流动温度。

3.3.3 热传导率:热量在塑料材料中传导的速率。

3.3.4 热膨胀系数:塑料加热时尺寸膨胀的比率。

3.3.5 收缩率:收缩后与原模具设计尺寸的比例。

3.3.6 熔态指数又称熔化指数:通常用来判断热塑性塑料的加工性质。

3.4 化学性质

3.4.1 抗溶剂性:对酸、碱、醚、醇、酮、芳香烃、脂肪烃……等抵抗性。

3.4.2 燃烧性:为改善塑料的耐烧性通常添加难燃剂。

3.4.3 耐候性:受光、热、空气……等影响而引起的变质,劣化的抵抗性,包含在紫外光、氧、臭氧影响

下之安定性。

3.5 光学性质

3.5.1 透明度:可视光域的光透过率,分为透明、半透明、不透明。

3.5.2 雾度 ( Haze ):透明塑料内部或表面呈现模糊状的、雾状外观程度,雾状外观是由于光线散射而

引起的。

3.5.3 尚有其它要求之光泽度、折光率、黄色指数等。

3.6 电气特性

3.6.1 导电率及电阻率,导电性越高表示导电率越好,导电性越低表示导电率越差即绝缘性越好。电阻率 102Ω/cm以下为导体﹔

电阻率 103?108Ω/ cm为半导体﹔

电阻率 108Ω以上为绝缘体,

以上依ASTM D257为测试方法。

3.6.1.1 容积电阻:将绝缘体内部1cm3的立方体在其相对两面施加电压的电阻,以Ω-cm表示,详细方法

可查 JIS K6911或ASTM D527规定。

3.6.2 介电强度(Dielectric Strength)

绝缘体所能承受的介电破坏电压与其厚度的商值,可参考ASTM D149方法测试。

3.6.3 介电常数 (Dielectric Constant)

介电常数亦称电容率,为物体中电容与真空中电容的比值,可参考ASTM D150。

3.6.4 功率因子(Power Factor)

散逸于物质中电力对正弦曲线电压(V)与电流(I)乘积的比例,即:PF=W/(VI)=sinδ,sinδ为损

失角度,可参考ASTM D150。

3.6.5 散逸因子(Dissipation Factor)

施于介电物质之交流电压的正弦曲线与流过介电物质的电压曲线的夹角的余角。δ的正切值

tanδ称为散

逸因子,可参考ASTM D150。

3.6.6 屏蔽效果(Shielding Effectiveness)

指减少电磁干扰(EMI)与射频干扰(RFI)的效应其,测定方法为:SE=20xLOG(Eb/Ea)。

Eb=:屏蔽前的电场强度﹔

Ea=:屏蔽后的电场强度。

3.7 加工性

要注意其流动性,热安定性,成型(押出)温度,融解温度点(融点),成形收缩率等问题。4.0 塑料添加剂

添加剂是指分散在塑料分子构造中,不会严重的影响塑料的分子结构,而能改善其性质或降低成本的化学

物质,依其功能可分下述各类。

4.1 抗氧化剂(Antionxidant)

主要是防止塑料中的不饱和双键受氧原子侵袭而引起的品质劣化,如芳香胺类,烷基酚……等。

4.2 抗静电剂(Antistatic agent)

主要是赋予塑料细微的导电性,以避免因磨擦而造成静电的积存,如乙氧化胺类……等。

4.3 发泡剂

发泡剂主要有三类:

(a)直接压入塑料熔胶中使发泡,压入气体有氮气、二氧化碳、空气……等。

(b)挥发性液体,升温后挥发膨胀,而使塑料体发泡。常见有聚苯乙烯泡棉。

(c)分解性化学发泡剂,一般为固体粉未,它们在加热时即分解放出气体(通常为氮或二氧化碳)常用

者为偶氮化合物(有机物)或无机盐类,如酸氢钠。

4.4 着色剂(染料)

分有机与无机两大类,又分为染料及颜料两大类。

4.5 难燃剂(又称防火剂)

当塑料暴露于火焰时,能压抑火焰之蔓延,防止烟雾形成,当火焰去掉时,燃烧便会停止,大致可分为二

大类型:

(a)反应型:难燃剂常是卤化的单体,它可以参加反应与聚合体形成化学结合。

(b)非反应型是含卤素、磷、氮、硼的化合物,它们与聚合体只作物理性的混合。

(c)其它,如三氧化二石弟……等。

4.6 安定剂(Heat Stabilizer)

一般塑料均会在高温时分解劣化,以PVC最严重,PVC在100℃以上长时间加热,有少量盐酸游离出来,开

始分解,因此安定剂的添加是非常重要的,PVC安定剂可分为五类

(a)铅盐安定剂——硬脂酸铅,三盐基硫酸铅,二盐基硬酯酸铅﹔

(b)金属皂类安定剂——硬脂酸镁,硬脂酸钙﹔

(c)镉钡液状安定剂有Cd—Ba系,Cd—Ba—Zn系, Ba—Zn系等﹔

(d)有机锡安定剂,如:二丁锡二月桂酸盐等﹔

(e)安定化助剂,如环氧化合物。

4.7 紫外光吸收剂(UV absorber)

受到高温能量的紫外光照射而发生劣化,因此户外使用的塑料必须添加此剂,将紫外光线吸收或遮断,如

水杨酸脂类。

4.8 冲击改质剂(Impact modifier)

加入具有特殊性质的树脂,可籍着混炼的方式增加,以改良塑料的耐冲击性,该剂也常影响到塑料的耐热

性,流动性,必须慎重选择。

4.9 滑剂(Lubricant)

可分内部与外部滑剂:内部滑剂的目的减少聚合分子间的磨擦,降低粘度,提高流动性﹔外部滑剂是使塑

料从金属模具表面易于脱模。常用滑剂有脂肪酸酯类或脂肪酯醯胺类、烃类(如天然石腊),金属皂类

4.10 可塑剂(Plasticizer)

可塑剂为挥发性低的物质,添加于塑料时,能使塑料的弹性系数增加或减少,而于常温时增加柔软性,高

温时易于加工,以PVC为例,添加量愈多时制品愈软。可塑剂又分为一次可塑(主可塑剂)通常与树脂兼

容性良好,可单独使用﹔而二次可塑料剂(辅助可塑剂),其兼容性有限,只能添加少许量以改良性质。

可塑剂的主要分类:

(一)酸酯类——如DOP, DBP等﹔

(二)直链二元酸酯类:此为耐寒一次可塑剂如DOA等﹔

(三)磷酸脂类:具有耐燃性,耐化学性如TCP﹔

(四)环氧化油类、无毒性、耐菌性差如环氧大豆油﹔

(五)苯三甲酸酯类,如TIDTM﹔

(六)高分子类(又称聚酯可塑剂)特点:挥发性及移行性低,如Polyglycoladipate等﹔(七)其它,如脂族羟类。

4.11 硬化剂(Curing agent)

硬化剂目的在促进塑料形成交联结构称之硬化,其目的提高机械强度、耐热性、耐溶剂性、与尺寸稳定性

,如DCP ……等。

4.12 填充剂(Filler)

改善机械强度作为补强剂,增加重量作为增量剂,以降低成本,如高岭土,碳酸钙等。

4.13 其它

4.13.1 成核剂(Nucleating agent)有些无机粉未在发泡中可使泡棉结构更为细致。

导电剂:如碳烟,金属粉未等。

5.0 塑料调配设备

原料(配方)→混合→混炼→冷却(气冷或水冷)→切断→胶粒

常用混合设备,如汉氏混合机(Henshel mixer)

常用混炼设备,有双螺杆或多段炼押出机﹔有捏合机(Kneader),以布氏双向捏合机(Buss Ko—

Kneader)最有名。

6.0 塑料的加工形式

有射出成型,押出成型……等。电线绝大部分用押出成形(Extrusion),是将热熔性塑料在加热筒内溶化

再用螺杆予以押出。

7.0 塑料之鉴别

7.1 燃烧法

依下述简易方法进行:

7.1.1 是否燃烧﹔

7.1.2 燃烧火焰颜色﹔

7.1.3 是否冒烟﹔

7.1.4 冒烟颜色﹔

7.1.5 烟为清烟或含炭灰之烟﹔

7.1.6 是否有溶胶滴落﹔

7.1.7 溶胶是否继续燃烧﹔

7.1.8 有何气味。

7.2 例举常用各种塑料性质

7.2.1 燃烧法

Teflon:遇火软化变形,有邹曲薄层,少量焦炭,微焦发味,不可燃性遇火软化。

PVC:绿色光罩,绿焰及黄焰滚滚冒出,软化冒出白烟并有盐酸味(自熄性塑料)。

PE:兰色光罩,燃烧区熔融透明,有熔胶滴落及蜡烛味(延烧性塑料)。

PP:兰色光罩,燃烧区熔融透明,有熔胶滴落及煤油味(延烧性塑料)。

PU:黑烟,有熔胶滴落,无焦灰,氮氧化合物味,延烧性。

Nylon:兰色光罩,熔融,头发焦味,自熄性。

Silicone类:无味,浓浓白烟,白色残余灰份,自熄性。

7.2.2 比重法

品名 PVC;Teflon;PE;PP

比重硬质1.30-1.58软质1.16-1.35; 2.08-2.2 ;0.917-0.965;0.90-0.92

品名 PU;Nylon ;Silicone PVDF

比重 1.1-1.5 1.12-1.15 / 1.76-1.78

7.2.3 其它法如光谱分析法、溶剂鉴别法……等。

8.0 架桥的应用

8.1 塑料因为分子结构的关系,一般绝缘材料有其基本上无可克服的缺点。由于高分子聚合物绝缘材料是

由一群左右连接的分子组成,受热时,分子距离增大,进而造成聚合物分子结构变弱,变软甚至融化。因

此,若能在相邻分子长链横间架一些固定链,必能防止或减轻聚合物分子受热后产生劣化的现象,进而增

加其物理与机械性能,用于电气绝缘必甚有价值。在化学上,这种改变高分子聚合物分子结构为三度空间

纲状组织的过程称为交连反应(Crosslinking)。

在电线制成中,电子照射是达成使绝缘材料分子交连最有效的方法﹔可*度、均匀性与化学反应速率及其

再现性都相当高。尤其对于薄绝缘电线或较小型电缆的交连,电子照射更是绝佳的方法。面对各种电线产

品轻、薄、短、小的严格要求,电子照射交连提供了最佳的方向。在电线绝缘材料的“光谱”上,照射材

料(耐热等级90~150℃)正好填补了现有其它绝缘材料的“空缺”(一般材料耐热等级为

60~105℃,高温

材料耐热等级为150~260℃)。照射绝缘材料同时兼顾了各项特性间的平衡,使电线使用者有了更宽广的

选择弹性与空

间。

8.2 架桥方法

(a) 电子照射 ( Electron Bean Irradiation ) ﹔

(b) 加硫﹔

(c) 空气,

以上以电子照射最好。

9.0 环境对策所衍生相关问题

因环境保护的重视,世界各国对于破坏环境的化学物质,法律明令禁止使用,如下所述物质皆为禁止使用

。镉和镉的化合物﹔PBB(多溴联苯)类和PBDE(多溴二苯醚)类﹔氯化石腊(氯阻燃剂 / 增塑剂)﹔

多氯联苯(PCB)类﹔多氯化奈类﹔有机锡化合物(三丁基锡类或三苯基锡类)﹔石棉﹔偶氮化合物﹔铅

和铅化合物﹔汞和汞化合物﹔六价铬及其化合物等其它有害环境物质。在世界各地(国)皆有相关法规和

政府管制法,及开始实施绿色伙伴制度的推动下,完全废止使用有害物质的推动已进入一个高速发展的阶

段。

9.1 塑料料金属含量管制

9.1.1 菲利蒲

菲利蒲内规管制镉含量小于5PPM,其内规有检测方法。

9.1.2 微软(microsoft)规范

(a) EN-71-1994 part3所规定﹔

(b) EN-1122检测方法镉含量5PPM以下﹔

(c) EPA-3050B检验方法铅含量小于90PPM。

9.1.3 日本Sony内规对其重金属含量有所规范

可详阅SS-00259规范。

不同。

9.1.4 重金属检出

参照各规范将重金属溶解出再利用AA法(原子吸收法)或ICP(感应藕合离子光谱分析法)进行检测。

9.2 低烟无卤材料(LSNH)

Low Smoke Non Halogen

9.2.1 卤素:氟(F),氯(Cl),溴(Br),碘(I),(At)

9.2.2 以PE+EVA为Base发展出低烟无卤素塑料材料须通过下述之试验,(尚无正确规范)以下仅拱参考。

1. Vertical Tray Flame Test 垂直架耐燃试验﹔

2. Smoke emission Test 烟浓度测试﹔

3. Toxicity index Test 毒气指数测试﹔

4. Corrosive gas Test 腐蚀气测试﹔

5. Oxygen index Test 氧指数测试。

说明:

1. 垂直架耐燃试验(IEEE 383)

仿真实际配线,多条电缆垂直并列在一起,下端用火焰烧20分钟,以检定电缆之耐燃性,耐燃测试中,电

缆若传导火焰,致使火源上之试样燃烧超过1.8M则判

定不合格,另若燃烧20分钟后关闭火源,电缆自行熄

灭则为合格,若继续燃烧,则记录持续时间及长度。

2. 烟浓度试验(ASTM E662)

于密闭燃烧室中用光线穿透率表来判定电缆材料焚烧(Flaming)或闷烧(Non-Flaming)所产生烟浓度。

3. 毒气指数测试(NES 713)

在指定条件下,材料在空气中燃烧之后所产生之某些特定气体之毒气因子(toxicity factor)的总和。

毒气因子系在1M3空间的空气中燃烧100g之试料产生之气体量(Co)与该气体在30分钟致人于死之气体浓

度(Cf)的比值。

Co:Toxicity Coefficient ( PPM ) ﹔

Cf:Danger Concertration ( PPM ) 。

4. 腐蚀气测试(AS 1660

5.4)

为间接测定自电缆上取下来之材料燃烧时所释放出来气体的腐蚀性,以酸碱值和导电度表示。

5. 氧指数测试(ASTM D2863)

在室温下刚好可以维持材料燃烧之氮氧混合气中氧的体积百分比。氧指数的测定可以用来选择最佳的添

加物以增加材料耐燃性,以及决定理想的添加量。

9.2.3 氧指数(OI)[oxygen index]

依JIS K7201 规定:试片燃烧3分钟或是燃烧长度50mm所需之必要的最低氧气浓度。

试片长度70~150mm宽6.5mm厚3.0mm

10.0 PVC胶粒

10.1 基本配方

PVC粉:主体一般常用 S60、S65、S70﹔

可塑剂:主要目的在调整软硬度,提高耐寒绝缘等作用﹔

填充剂:目的在增强加热,光之安全性,及绝缘性﹔

改质剂:依特性要求添加﹔

安定剂:抑制PVC内之少量游离Cl-分解﹔

防火剂:增强耐烧性﹔

染颜料:颜色调配。

10.2 硬度

国际上常以shore A表示之,而国内软硬度常以P%表示,例如:50kg之PVC料,可塑剂40kg 时是以80P,

50gPVC料,可塑剂55kg时是以110P表示即可塑剂愈多P数愈大,PVC胶粒愈软而萧氏硬度

(shore A)度数愈

大,PVC胶粒愈硬。

10.3 移行说明

电气用品之外壳……等常用的塑料材质大部份为PS,ABS,HIPS,电线为PVC塑材料时,由于含有可塑剂(

软化剂),而有此可塑剂会移行者,会将PS,ABS,HIPS塑料壳侵蚀,因此有非移行的要求,也就是PVC材

料不能移。

10.3.1 移行的试验方法

将试片(ABS,或PS或HIPS)两片(长50x宽50x厚20mm),中间夹PVC电线,再上下两层用玻璃盖住并用500±

5g砝码压住,施以不同时间(24,48,72小时)不同温度(50℃,60℃,70±2℃)之条件下,测试(条件由客

户设定),测试后取出试片,用肉眼观察,试片上不能很轻易的看出痕迹,亦即需极费眼力才能看出来。

ABS = Acrylonitrile Butadiene Styrene Terpolymer

苯乙烯,丁二烯,丙烯,参聚合体

PS = POLYSTRRENE 聚苯乙烯

HIPS = High Impact Polystyrene 高冲击聚苯乙烯

10.3.2 PVC胶粒应具下列性质

耐热性 ( Thermal Stability ) ﹔

硬度 ( Hardness )﹔

安全性 ( Safety )﹔

老化性 ( Aging Properties ) ﹔

机械性质 ( Mechanical Properties )﹔

耐燃性 ( non-flammability )﹔

电气特性 ( Electrical Properties )﹔

耐候性 ( Weather ability )﹔

光安定性 ( Light Stability )﹔

低温特性 ( Low Temperature Properties )。

11.0 塑料常用特性名词解释

11.1 抗张强度:(Tensile Strength)

将试样(如哑铃片……等)拉断时所需要之应力,用之单位为PSI或kg/mm2。

11.2 热变形(Heat Distortion)

将材料适当的取样后,将其加热至一定之温度后,试验该材料之外形改变情况。其计算公式如下:11.3 热冲击(Heat Shock)——试验材料稳定性方法之一,将材料在特定的时间内卷绕于规定之圆棒上

,暴露于高温中,不得有龟裂现象发生。

11.4 冷弯(Cold Bend)——将电缆之试样绕在规定之圆棒(Mandrel)上,而置于特定温度之冷室中,

通常为零下之温度。再将试样取出作弯曲试验,则可试验出材料之破坏程度或有无缺点。

11.5 延伸(Elongation)——试样拉断时的伸长情形

11.6 焊接性(日文:半田性)——PVC芯线等在焊接或热镀时其塑料部份后缩收,所以其材质要经X—RAY处

理成架桥,或改其塑料本身性质,如:SR—PVC。

11.7 老化(Aging)——仿真电缆经长时间的使用后,其物理性(抗张延伸)改变的情形。11.8 额定温度(Temperature Rating)——绝缘材料在连续使用之情况下,其基本特性不会发生变化或

损失时,所能容许之最高温度。如交连PE为90℃,PVC有60℃,75℃,90℃,105℃,PE为75℃等。

11.9 额定电压(Voltage Rating)——依照规定或标准可连续实施于各种电缆电缆之最高允许电压。

11.10 绝缘阻抗(Insulation Resistance)——加于绝缘体两极间之电压与电流之比,以公式表示为R=

E/I,其单位一般用MΩ(百万欧姆表示之)。

11.11 耐电压(介质强度)(DielectricStrength)——绝缘材质在破坏之前所能承受之电压,介质强度

在材料中是一个非常重要特性,在同一种耐电压情况下,介质强度好的材质,其绝缘厚度可以较薄。

12.0 塑料之耐燃测试

依UL规定 UL Standard 94 分为水平燃烧(94—HB)及垂直燃烧

94V-0,94V-1,94V-2。

13.0 发泡

目的:在改变或降低成品的电容(介电常数)并使成品轻量化,小型化,进而节省材料,达到提高品质与

降低成本的最终目的,一般常用方法

(a) 物理发泡

(b) 化学发泡,化学发泡在加热过程中,发泡剂分解出大量气体。

14.0 颜色比较说明

色差公式说明及应用情形

14.1 HunterLab,ANLab,ANLab(40)(又名AN40)

以上色差公式为早期色差公式,目前极少使用。

ANLab之系数40用于转换单位大小以接近NBS单位。

14.2 JPC 79色差公式

染色者及色彩师学会(Socity of Dyers and Colourists,简称SDC)在1980年,Mc Donald 发表一个

JPC99色差,主要修改CIEL*a*b*之缺陷。

14.3 CMC 色差公式

1984年,JPC97以Clark,McDonald及Ring三人修改其中错误部份经过(SDC)的测色委员会(Color

Measurement Committee,简称CMC)通过,推荐色彩工业使用,命名为CMC色差公式。目前已在欧洲普遍

化,为英国国家标准,人眼吻合性佳。

14.4 BFD 色差公式

1986年英国布津大学罗明博士与Rigg经由知觉色差实验修改CMC,提出BFD色差公式。目前为瑞典之国家标

准。

14.5 M&S 色差公式

英国著名百货公司(Marks and Spencer)与ICS合作所创,前后有MS80,MS82,MS83,MS83A 至MS89,此

公式主要用于该公司与其供货商允拒收颜色品管作业。目前较长用于纺织业。

14.6 CIEL*a*b*及CIEL*u*v*色差公式

1976年,国际照明协会(CIE)公布CIEL*a*b*及CIEL*u*v*两种色差公式供业者使用,其中CIEL*u*v*用于

色光之检验。CIEL*a*b*被广泛用于物体色(surface color)工业上,此色差公式为使用频率最高之公式

。但此色差公式经色彩物理学家研究与人眼观测之视觉色差不具吻合性。

15.0 常用之塑料简介(以目前我公司所用材料作介绍)

15.1 Polyvinyl Chloride 聚氯乙烯(PVC)

15.1.1 原料:氯乙烯单体。

15.1.2 制造方法:悬浊聚合,乳化聚合……等。

15.1.3 加工方法:射出,押出……等。

15.1.4 用途:可用于电线……等。

15.2 High Density Polyethylene 高密度聚乙烯(HD-PE)

15.2.1 原料:乙烯基,触媒。

15.2.2 加工方法:射出,押出,中空成型……等。

15.2.3 用途:可用于电线。

15.2.4 密度:0.941-0.958 g/cm3。

15.3 Low Density Polyethylene 低密度聚乙烯(LD-PE)

15.3.1 原料:乙烯基。

15.3.2 加工方法:射出,押出……等。

15.3.3 用途:可用于电线。

15.3.4 密度:0.910-0.925 g/cm3。

15.4 Linear Low-Density Polyethylene 直锁状低密度聚乙烯(LLDPE)

15.4.1 原料:乙烯基,α烯羟(olefines)。

15.4.2 加工方法:射出,押出……等。

15.4.3 用途:可用于电线。

15.5 Polypropylene 聚丙烯(PP)

15.5.1 原料:乙烯基,丙烯基。

15.5.2 加工方法:射出,押出……等。

15.5.3 用途:可用于电线。

15.6 Thrmo-Plastic-Polyurethane 聚胺基甲酸脂(PU)

15.6.1 原料:(a) Polyether 聚醚 (b) Polyester 聚脂类

15.6.2 加工方法:射出,押出……等。

15.6.3 用途:可用于电线。

15.7 Fluorocarbon 氟塑料俗称:铁氟龙(Teflon)

15.7.1 原料:萤石(Fluorite),氟气体。

15.7.2 加工方法:射出,挤压,押出。

15.7.3 用途:可用于电线。

15.7.5 分类

(a) PTFE:聚四氟乙烯树脂

(b) FEP :四氟乙烯与六氟丙烯共聚物

(c) PFA :四氟乙烯与全氟烷基乙烯基醚共聚物

(d) ETFE:四氟乙烯与乙烯的共聚物

(e) C TFE ( Chlorotrifluoroethylene):聚氟三氟乙烯树脂

(f) PVDF ( Poly Vinylidene Flouride):聚氟偏氯聚乙烯

(g) Fluorocarbon Polymers:铁氟龙(碳化氟物)

(h) Polytetrafluoroethylene (FTFE):聚氟四化乙烯

(i) Fluorinated Ethylene propylene (FEP) :六氟化丙烯

(j) Foam-FEP

(k) Foam-PTFE

15.8 Thrmo-Plastic-Elastomer 热可塑性弹性体 TPE

15.8.1 原料:大概分四系列

(a) Styrene系(苯乙烯)

(b) Olefines系(烯羟系)

(c) Polyestes系(聚脂系)

(d) Polyamide系(聚醯胺系)

15.8.2 加工成形:射出,押出……等。

16.0 绝缘体(Insulation)

16.1 目的:为导体绝缘。

16.2 常用材料一览表,如下:

种类主要用途代表性产品特性PVC 一般60℃PVC TF……等广泛用于绝缘体,耐臭氧、耐油、耐药性优良

,硬度、耐寒性可调整配合,介电常数,散逸因素……等(常数)大架桥(照射,化学架桥)增加耐热性

,改变机械强度,耐有机溶剂性,焊接性SR-PVC( 半硬质PVC)有比较良好焊接性架桥有照射、化学、温水

、空气架桥,以电子照射(X-ray)效果最好耐热PVC75℃,80℃,90℃,105℃ UL1007,1015,SVT……

等;

SR-PVC 80℃,90℃,105℃UL1061……等

架桥PVC 125℃ UL1429,1430……等

PE 75℃,80℃同轴线,PE分为中高低密度PE、架桥、发泡PE。一般电气特性良好(如介电常数……等)机械

性、耐药性、耐溶剂性良好,对直射日光、紫外线性不良,及有热变形缺点,广泛用于高压线(绝缘性良

好),通信用线,发泡目的在改变介质常数进而改善衰减等电气特性

架桥PE 90℃

发泡PE 80℃ UL1354同轴线等

氟塑料 PTFE 260℃耐温度性(-70~+260℃)有良好的电气特性(比PE好),电气特性、不燃性、耐药品性良

好,可用于薄皮膜押出,高价、高品位电线,价格高,专用押出机,比重高,硬、耐屈曲性不良PFA 250℃

EFP 200℃ UL1330,1332……等

ETFE 150℃ UL1829,1828……等

PVDF

PP(或发泡PP)80℃介电常数小,亦有发泡PP常用于传输信号线等;Elastomer弹性体 Polyester 系聚脂系

列耐屈曲疲劳性良好、弹性佳,用于曲线绝缘或机械人线缆外被,硬度等级低时(软)体积抵抗低绝缘性不

良,押出时必须先干燥;Polyolefines聚烯烃类,比重0.9以下,电气特性良好,有适度的弹性及耐燃性,

常用于橡胶绝缘类之机械人用线之绝缘材料;天然橡胶(NR)天然橡胶绝缘线60℃,电气、机械、低温柔软

性良好、耐热性、耐油性差,可燃的Silicone橡胶耐温度环境性,耐候性,电气特性良好,机械特性耐磨

性差.

备注绝缘材料使用按场合应选择,最低体积抵抗在1015Ω以上

18.0 塑料的基本性质

18.1 塑料的物理性质

18.1.1 比重(density)

比重是指物质密度与水密度的比值,所谓密度是指单位体积的重量。比重的测定可依ASTM D792水中置换

法得。

18.1.2 吸水率

吸水率是测定塑料吸水份的程度,测法是先将样品烘干后称重,浸入水中24或48小时后,取出再称重,计

算重量增加的百分比,即为吸水率,一般吸水性太大之塑料材料,易影响机械强度与尺寸稳定性,如

Nylon或PET即是典型之例子。

18.1.3 透气率(Permeability)

透气率是测定塑料膜或塑料板气体穿透难易的程度,可依ASTM D1434的方法测定得。此在包装用途上是一

项重要之物性指针。

18.2 塑料的机械性质

18.2.1 抗张强度及伸长率(Tensile strength; Elongation)

抗张强度(又称抗拉强度)是指将塑料材料拉伸到某一程度(如降伏或断裂点)所需力的大小,通常以每单位

面积多少力来表示,而其拉伸的长度百分比即为伸长率。此项测定可依 ASTM D638之方法测试之。

18.2.2 弯曲强度(Yield Strength)

弯曲强度又称折曲强度,主要为测试塑料抗弯曲的能力,可依ASTM D790的方法测得,而常以每单位面积

多少力来表示,如kg/cm2。其测法如下图所示,将一ASTM标准试片,两端支撑起来,中间逐渐增加外力,

可测得其最大承受之弯曲强度。

18.2.3 弯曲弹性率

将塑试片弯曲时(测法如弯曲强度),在其弹性范围内,单位变形量所产生之弯曲应力称为试片之弯曲弹性

率,一般弹性率越大,表示该塑料材料之刚性越好。

18.2.4 冲击强度(Impact Strength)冲击强度是指塑料受外力冲击时,所能承受的最大能量。ASTM D256

中是lzod及Charrpy冲击强度测试法为常见之测试方法,其中又以lzod最为普遍,其测试方法如下图所示

18.2.5 硬度(Hardness)

一般塑料的硬度最常用ROCKWELL(洛式硬度)及SHORE(萧式硬度)两种测试法来表示。其中SHORE D 则用来

测定较硬之塑料,如一般之泛用塑料及部份工程塑料,而多数之高性能工程塑料或较硬之工程塑料,则需

用 ROCKWELL来测定之。

18.3 塑料的热性质

18.3.1 热变形温度(HDT)

最常用的之热变形温度测定法为 ASTM D648 试验法,其测定方式是使试片在一定压力及一定温度下,弯

曲到一定程度时的温度。热变形温度显示塑料材料在高温且受压力下,能否保持不变的外形。若考虑安全

系数,短期使用之最高温度应保持低于热变形温度10℃温度左右,以确保不致因测试致使材料变形,热变

形温度之测试装置如下图所示:

18.3.2 长期耐热温度

长期耐热温度是指塑料材料在长时间使用之耐热性,依UL之规定,塑料材料长期使用温度是指塑料材料曝

露在高温下,须达数万小时,物性减半之温度。如UL746规定之长期耐热温度之曝晒时间为105小时,约相

当于11年之久。五大泛用工程塑料纯树脂与填加30%玻织之热变形温度及UL长期耐热温度比较种类 HDT with 30 wt % GF(@ 18.6kg.cm2) UL 长期耐热温度℃Pure resin UL 长期耐热温度℃with

30 wt % GF

PBT 210 120 140

Nylon 200 105 115

POM 163 80 100

PC 145 110 130

MPPO 140 100 110

18.3.3 耐焊锡性

由于许多电子、电气零件必需借由焊锡来固定在印刷电路板上,而焊锡之温度相当高,例如:蒸气相焊接

或红外线焊接时,流动焊锡温度均高达270~280 ℃,因此,应用于此方面之塑料材料,必需在

此温度下,

可持续耐45秒至75秒之耐热性,否则材料变形将致使零件松动,脱落之异常现象。

18.3.4 熔融指数(Melt Index , MI )

熔融指数简称MI,是一种表示塑料材料加工时流动性的数值。其测试方法是使塑料粒在一定时间(10分钟)

内,一定温度及压力(各种材料标准不同)下,被融化之塑料流体,通过一直径2.1mm圆管,所流出之克数

。其值越大,表示此塑料材料之加工流动性越佳,反之则越差,最常使用之测试标准为

ASTM D1283。

射出加工一般都倾向使用MI值较高(>7)的等级﹔而吹瓶、押出加工则会使用较低MI的等级(200 聚丙烯 136~185

低密度聚乙烯 135~160

尼龙-66 130~140

ABS 50~85

PVC 60~80

PC 10~120

环氧树脂 45~120

三聚氰胺树脂(+α纤维素) 45~120

18.6.4 电磁波干扰(Electro Magnetic Interference , EMI)遮蔽性

由于电子、计算机、电机及通讯业的蓬勃发展,在我们日常生活的环境中充满来自各类电子或电机产品所

产生之电磁波,对某些精密电子或通讯设备而言,相当容易受干扰。绝缘性良好之塑料材料可为电磁波所

穿透,并不具备电磁波遮蔽能力。因此,要求符合EMI遮蔽效果之电子、计算机、电机或通讯设备,其使

用之塑料材料就必需具有EMI遮蔽效果,也就是必需具备导电性。

使塑料材料具备导电性之方法有下列几种:

a.导电性表面处理:如涂装导电材料,电镀及真空蒸煮等方法

b.导电性材料掺合:如加入金属粉未、碳黑、金属纤维等导电

c.导电性高分子合成:如Polypyrole等

导电性塑料材料依其表面电阻系数高低可分为三种不同的应用:

d.EMI遮蔽应用:表面电阻系数小于102Ω/sq

f.静电消散应用:表面电阻系数在102~106Ω/sq

g.抗静电应用:表面电阻系数有109~1013Ω/sq

转帖电线电缆绝缘材料的选择PVC胶粒1基本配方PVC粉主体一般

转帖]电线电缆绝缘材料的选择 PVC胶粒 1 基本配方 PVC粉:主体一般常用 S60、S65、S70﹔ 可塑剂:主要目的在调整软硬度,提高耐寒绝缘等作用﹔ 填充剂:目的在增强加热,光之安全性,及绝缘性﹔ 改质剂:依特性要求添加﹔ 安定剂:抑制PVC内之少量游离Cl-分解﹔ 防火剂:增强耐烧性﹔ 染颜料:颜色调配。 2 硬度 国际上常以shore A表示之,而国内软硬度常以P%表示,例如:50kg之PVC料,可塑剂40kg时是以80P,50gPVC 料,可塑剂55kg时是以110P表示即可塑剂愈多P数愈大,PVC胶粒愈软而萧氏硬度(shore A)度数愈大,PVC胶粒愈硬。 3 移行说明 电气用品之外壳……等常用的塑料材质大部份为PS,ABS,HIPS,电线为PVC塑材料时,由于含有可塑剂(软化剂),而有此可塑剂会移行者,会将PS,ABS,HIPS塑料壳侵蚀,因此有非移行的要求,也就是PVC材料不能移。 3.1 移行的试验方法 将试片(ABS,或PS或HIPS)两片(长50x宽50x厚20mm),中间夹PVC电线,再上下两层用玻璃盖住并用500±5g砝码压住,施以不同时间(24,48,72小时)不同温度(50℃,60℃,70±2℃)之条件下,测试(条件由客户设定),测试后取出试片,用肉眼观察,试片上不能很轻易的看出痕迹,亦即需极费眼力才能看出来。 ABS = Acrylonitrile Butadiene Styrene Terpolymer 苯乙烯,丁二烯,丙烯,参聚合体 PS = POLYSTRRENE 聚苯乙烯 HIPS = High Impact Polystyrene 高冲击聚苯乙烯 3.2 PVC胶粒应具下列性质 耐热性 ( Thermal Stability ) ﹔ 硬度 ( Hardness )﹔ 安全性 ( Safety )﹔ 老化性 ( Aging Properties ) ﹔ 机械性质 ( Mechanical Properties )﹔ 耐燃性 ( non-flammability )﹔ 电气特性 ( Electrical Properties )﹔ 耐候性 ( Weather ability )﹔ 光安定性 ( Light Stability )﹔ 低温特性 ( Low Temperature Properties )。 二塑料常用特性名词解释 1 抗张强度:(Tensile Strength) 将试样(如哑铃片……等)拉断时所需要之应力,用之单位为PSI或kg/mm2。 2 热变形(Heat Distortion) 将材料适当的取样后,将其加热至一定之温度后,试验该材料之外形改变情况。其计算公式如下: 3 热冲击(Heat Shock)——试验材料稳定性方法之一,将材料在特定的时间内卷绕于规定之圆棒上,暴露于高温中,不得有龟裂现象发生。 4 冷弯(Cold Bend)——将电缆之试样绕在规定之圆棒(Mandrel)上,而置于特定温度之冷室中,通常为零下之温度。再将试样取出作弯曲试验,则可试验出材料之破坏程度或有无缺点。 5 延伸(Elongation)——试样拉断时的伸长情形 6 焊接性(日文:半田性)——PVC芯线等在焊接或热镀时其塑料部份后缩收,所以其材质要经X—RAY处理成架桥,或改其塑料本身性质,如:SR—PVC。 7 老化(Aging)——仿真电缆经长时间的使用后,其物理性(抗张延伸)改变的情形。 8 额定温度(Temperature Rating)——绝缘材料在连续使用之情况下,其基本特性不会发生变化或损失时,所能容许之最高温度。如交连PE为90℃,PVC有60℃,75℃,90℃,105℃,PE为75℃等。 9 额定电压(Voltage Rating)——依照规定或标准可连续实施于各种电缆电缆之最高允许电压。 10 绝缘阻抗(Insulation Resistance)——加于绝缘体两极间之电压与电流之比,以公式表示为R=E/I,其单位一般用M?(百万欧姆表示之)。 11 耐电压(介质强度)(DielectricStrength)——绝缘材质在破坏之前所能承受之电压,介质强度在材料中是一个非常重要特性,在同一种耐电压情况下,介质强度好的材质,其绝缘厚度可以较薄。 三塑料之耐燃测试 依UL规定 UL Standard 94 分为水平燃烧(94—HB)及垂直燃烧

电缆敷设标准规范要求

5 电缆敷设 5.1 一般规定 5.1.1电缆的路径选择,应符合下列规定: 1应避免电缆遭受机械性外力、过热、腐蚀等危害。 2 满足安全要求条件下,应保证电缆路径最短。 3 应便于敷设、维护。 4 宜避开将要挖掘施工的地方。 5 充油电缆线路通过起伏地形时,应保证供油装置合理配置。 5.1.2 电缆在任何敷设方式及其全部路径条件的上下左右改变部位,均应满足电缆允许弯曲半径要求。 电缆的允许弯曲半径,应符合电缆绝缘及其构造特性要求。对自容式铅包充油电缆,其允许弯曲半径可按电缆外径的20倍计算。 5.1.3同一通道内电缆数量较多时,若在同一侧的多层支架上敷设,应符合下列规定: 1 应按电压等级由高至低的电力电缆、强电至弱电的控制和信号电缆、通讯电缆“由上而下”的顺序排列。 当水平通道中含有35kV以上高压电缆,或为满足引入柜盘的电缆符合允许弯曲半径要求时,宜按“由下而上”的顺序排列。 在同一工程中或电缆通道延伸于不同工程的情况,均应

按相同的上下排列顺序配置。 2 支架层数受通道空间限制时,35kV及以下的相邻电压级电力电缆,可排列于同一层支架上,1kV及以下电力电缆也可与强电控制和信号电缆配置在同一层支架上。 3 同一重要回路的工作与备用电缆实行耐火分隔时,应配置在不同层的支架上。 5.1.4同一层支架上电缆排列的配置,宜符合下列规定: 1 控制和信号电缆可紧靠或多层叠置。 2 除交流系统用单芯电力电缆的同一回路可采取品字形(三叶形)配置外,对重要的同一回路多根电力电缆,不宜叠置。 3 除交流系统用单芯电缆情况外,电力电缆相互间宜有1倍电缆外径的空隙。 5.1.5交流系统用单芯电力电缆的相序配置及其相间距离,应同时满足电缆金属护层的正常感应电压不超过允许值,并宜保证按持续工作电流选择电缆截面小的原则确定。 未呈品字形配置的单芯电力电缆,有两回线及以上配置在同一通路时,应计入相互影响。 5.1.6交流系统用单芯电力电缆与公用通讯线路相距较近时,宜维持技术经济上有利的电缆路径,必要时可采取下列抑制感应电势的措施: 1 使电缆支架形成电气通路,且计入其他并行电缆抑制因素的影响。

常用的几种电线电缆绝缘材料

常用的几种电线电缆绝 缘材料 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

常用的几种电线电缆绝缘材料 绝缘层与保护层、屏蔽层、护套层、导体线芯一样,是构成电线电缆必须的基本构件。它确保导体线芯传输的电流或电磁波、光波只沿着导线行进而不流向外面,同时也确保外界物体和人身的安全。今天的电线电缆绝缘材料中,塑料和橡胶两大类有面高分子材料已占主导材料,衍生出类型繁多的适用于不同用途和环境要求的电线电缆产品。 下面介绍生产生活中最常用的几类电线电缆绝缘材料 第一类聚氯乙烯(PVC)料 聚氯乙烯塑料价格便宜,特理机械性能较好,挤出工艺简单,比重轻,耐油和耐腐蚀好。同时,氯乙烯(PVC)性能参数一般,多用来制造1KV及以下的低压电线电缆。采用添加了电压稳定剂的聚氯乙烯(PVC)绝缘料,允许生产6KV级电缆。 聚氯乙烯(PVC)有一定阻燃料,但燃烧时会释放一毒烟气,不宜用于着火燃烧时需要满足低烟、低毒要求的场合。同时聚氯乙烯(PVC)线缆也不适用在含有苯及苯胺类、酮类、吡啶、甲醇、乙醇、乙醛化学剂土质中,不宜用在含有三氯乙烯、三氯甲烷、四氯化碳、二硫化碳、冰醋酸环境中。 第二类:交联聚乙烯(XLPE) 交联聚乙烯(XLPE)电绝缘性能优越,经过高分子交联后成为热固性材料,机械性能和耐热性好。已成为中、高压电力电缆的主导品种。交联聚乙烯(XLPE)也具有结构简单,制造方便,比重轻,敷设方便、耐腐蚀、做终端和中间接头简单。 交联聚乙烯(XLPE)不含卤素,不阻燃,燃烧时不会产生大量毒气及烟雾,若添加阻燃剂,会使机械性能及电气性能下降。交联聚乙烯(XLPE)对紫外线照射敏感。 第三类氟塑料 氟塑料突出特点是电绝缘性能优异,适合高频信号传输,耐高温,可提高载流量,阻燃性好,氧指数高,燃烧时火焰扩散范围小,产生的烟雾量少,还具有优良的耐气候老化性能和机械强度,不受各种酸、碱和有机溶剂影响。但其比重大,价格昂贵,氟塑料主要用于耐高温场合。 第四类橡皮料

工程电线电缆种类及选型计算

工程电线电缆种类及选型计算 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线; 2.绕组线; 3.电力电缆; 4.通信电缆和通信光缆; 5.电气装备用电线电缆。 电线电缆的基本结构:

1.导体:传导电流的物体,电线电缆的规格都以导体的截面表示。 2.绝缘:外层绝缘材料按其耐受电压程度。 电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ) P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A)。 三相 I=P÷(U×1.732×cosΦ) P-功率(W);U-电压(380V);cosΦ-功率因素(0.8);I-相线电流(A)。 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。 在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电

路中,每1KW功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。 电缆允许的安全工作电流口诀: 十下五(十以下乘以五)。 百上二(百以上乘以二)。 二五三五四三界(二五乘以四,三五乘以三)。 七零九五两倍半(七零和九五线都乘以二点五)。 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九)。 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算)。 裸线加一半(在原已算好的安全电流数基础上再加一半)。 电线电缆规格型号说明:

电线电缆选用基本原则

电线电缆选用基本原则 一、电线电缆选用的一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性;例如, 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电压损失,经济电流密度,机械强度等选择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算

其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。一般电线电缆规格的选用参见下表: 电线电缆规格选用参考表

说明:1.同一规格铝芯导线载流量约为铜芯的0.7倍,选用铝芯导线可比铜芯导线大一个规格,交联聚乙烯绝缘可选用小一档规格,耐火电线电缆则应选较大规格。 2.本表计算容量是以三相380V、Cosφ=0.85为基准,若单相220V、Cosφ=0.85,容量则应×1/3。 3.当环境温度较高或采用明敷方式等,其安全载流量都会下降,此时应选用较大规格;当用于頻繁起动电机时,应选用大2~3个规格。 4.本表聚氯乙烯绝缘电线按单根架空敷设方式计算,若为穿管或多根敷设,则应选用大2~3个规格。

常用电缆种类及选型计算方法

电缆种类及选型计算 电缆种类及选型计算 一、电缆的定义及分类 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线 2.绕组线 3.电力电缆 4.通信电缆和通信光缆 5.电气装备用电线电缆 电线电缆的基本结构: 1.导体传导电流的物体,电线电缆的规格都以导体的截面表示 2.绝缘外层绝缘材料按其耐受电压程度 二、工作电流及计算 电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ)

P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A) 三相 I=P÷(U×1.732×cosΦ) P-功率(W);U-电压(380V);cosΦ-功率因素(0.8);I-相线电流(A) 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。 在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW 功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。 电缆允许的安全工作电流口诀: 十下五(十以下乘以五) 百上二(百以上乘以二) 二五三五四三界(二五乘以四,三五乘以三) 七零九五两倍半(七零和九五线都乘以二点五) 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九) 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,

电缆选用一般原则

电缆选用一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性; 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电 压损失,经济电流密度,机械强度等选择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件 选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压 水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件 和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算 其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。 电线电缆安装施工 电线电缆敷设安装的设计和施工应按GB502-94《电力工程电缆设

计规范》等有关规定进行,并采用必要的电缆附件(终端和接头)。 供电系统运行质量、安全性和可靠性不仅与电线电缆本身质量有关, 还与电缆附件和线路的施工质量有关。 通过对线路故障统计分析,由于施工、安装和接续等因素造成的 故障往往要比电线电缆本体缺陷造成的故障可能性大得多。因此要正 确地选用电线电缆及配套附件,除按规范要求进行设计和施工外,还 应注意如下几个方面的问题: ⒈电缆敷设安装应由有资格的专业单位或专业人员进行,不符合 有关规范规定要求的施工和安装,有可能导致电缆系统不能正常运行。 ⒉人力敷设电缆时,应统一指挥控制节奏,每隔1.5~3米有一人 肩扛电缆,边放边拉,慢慢施放。 ⒊机械施放电缆时,一般采用专用电缆敷设机并配备必要牵引工具,牵引力大小适当、控制均匀,以免损坏电缆。 ⒋施放电缆前,要检查电缆外观及封头是否完好无损,施放时注 意电缆盘的旋转方向,不要压扁或刮伤电缆外护套,在冬季低温时切 勿以摔打方式来校直电缆,以免绝缘、护套开裂。 ⒌敷设时电缆的弯曲半径要大于规定值。在电缆敷设安装前、后 用1000V兆欧表测量电缆各导体之间绝缘电阻是否正常,并根据电缆 型号规格、长度及环境温度的不同对测量结果作适当地修正,小规格(10mm2以下实芯导体)电缆还应测量导体是否通断。 ⒍电缆如直埋敷设,要注意土壤条件,一般建筑物下电缆的埋设 深度不小于0.3米,较松软的或周边环境较复杂的,如耕地、建筑施 工工地或道路等,要有一定的埋设深度(0.7~1米),以防直埋电缆 受到意外损害,必要时应竖立明显的标志。

各类绝缘电缆、电线的最高运行温度

各类绝缘电缆、电线的最高运行温度?? 各类绝缘电缆、电线的最高运行温度 绝?缘?类?型?温度限值(℃) 聚氯乙烯(PVC)?70(导体) 交联聚乙烯(XLPE)?90(导体) 乙丙橡胶(EPR)?90(导体) 矿物绝缘(PVC护套或可触及的裸护套)电缆?70(护套) 矿物绝缘(不允许触及和不与可燃物相接触的裸护套电缆)?105(护套) 表中列出的是额定电压不超过交流1KV或直流无铠装电缆和绝缘导线的最高运行温度。对电线的最高运行温度,是指导体的温度,不是绝缘材料表面的温度,绝缘材料表面的温度低于导体的温度,而且和通风条 件有关,通风越好,绝缘材料表面的温度越低。 电缆的最高运行温度与电线不同,是指护套的温度,护套主要是起保护绝缘作用,因此电缆绝缘护套材料 的最高运行温度比电线的绝缘材料高。 电线电缆的温升与施加在电线电缆上的电压无关,只与通过的电流有关。在相同的截面下,通过的电流越 大,电线电缆的温升越高。 电缆制造厂只提供电缆截面的数据,不提供电缆的额定电流数据,是正确的。因为电缆的额定电流与环境、负载的工作持续率、电缆绝缘材料的允许工作温度、电缆的允许压降等参数有关,所以应该由电气设计人 员做全面考虑后,选用合适的电缆截面。 电缆的温升和电流密度有关,电流密度越大,则温升越高。绝缘材料的寿命又与绝缘材料的工作温度有关。 绝缘材料的工作温度越高,则其寿命越短。 用多并方式增加电缆容量的方法不可取。 工程中经常发现,由于受到电缆截面的限制,为了增加容量。电缆采用双并、甚至三并的做法。这种方法不可取,因为多并电缆连接时,连接处存在接触电阻不同而此接触电阻又往往与电缆本身的电阻可比拟,其结果会造成多并电缆的电流分配不平衡。因此上海、北京等发达城市,对大容量的配电干线都采用母线槽。虽然母线槽的价格比电缆高,但从性价比出发比较,母线槽以越来越受到设计人员和业主的青睐。 铜排的最高允许温度 标准规定:

电线电缆种类及选型计算

电线电缆种类及选型计算! 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线; 2.绕组线; 3.电力电缆; 4.通信电缆和通信光缆; 5.电气装备用电线电缆。 电线电缆的基本结构: 1.导体:传导电流的物体,电线电缆的规格都以导体的截面表示。 2.绝缘:外层绝缘材料按其耐受电压程度。

电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ) P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A)。 三相 I=P÷(U×1.732×cosΦ) P-功率(W); U-电压(380V); cosΦ-功率因素(0.8); I-相线电流(A)。 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。

电缆允许的安全工作电流口诀: 十下五(十以下乘以五)。 百上二(百以上乘以二)。 二五三五四三界(二五乘以四,三五乘以三)。 七零九五两倍半(七零和九五线都乘以二点五)。 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九)。 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算)。 裸线加一半(在原已算好的安全电流数基础上再加一半)。

1电线电缆选择步骤

常用配电线缆的选择 电线电缆的选择不仅关系到电网的安全、可靠的运行,更关系到工程质量及造价。因此,在建筑电气设计中,线缆的选择很重要。其标注格式为:导线型号相线及中性线根数截面积接地保护线截面积-穿管管径-敷设方式 + -?? 常用配电线缆的选择步骤如下: 第一步:电线电缆型号的选择 根据工程特点选择线缆的类别、导体材料、绝缘材料、护套及铠装材料及方式,具体原则如下: 1、根据线缆用途,有裸导线、电力电缆、通信电缆、电气装备用电线 电缆,按照配电环境、负荷特点选择不同类别的线缆。YJV电力电缆 用于户外电路或大干线,BV一般用途单芯硬导体无护套电线,用于室内配线 及设备内部接线。 2、在考虑经济、适用、合理和安全的前提下,尽量选用铜芯导线。 3、需要确保长期运行中连接可靠的回路,如重要电源、重要的操作回 路及电机的励磁回路等、移动设备及振动场所的线路、对铝有腐蚀 的环境、高温、潮湿、爆炸及火灾危险环境、应急系统及消防设施 的线路、公共建筑与居住建筑等必须采用铜芯导线。 4、架空输电线路宜采用铝芯导线。 5、濒临海边以及有严重烟、雾地区的架空线,可采用防腐型的钢芯铝 制绞线。 6、室内架空一般用橡皮绝缘。 7、有耐火要求,适用于照明、电梯、消防、报警系统、应急供电回路 等地铁、电站等与防火安全及消防救火有关的场所用低烟低卤的耐 火阻燃聚乙烯绝缘线路(Y绝缘) 8、敷设在室内、隧道内及管道中,不承受机械外力作用,可用聚氯乙 烯护套;敷设在地下,承受机械外力,但不能承受大的机械压力, 用聚氯乙烯内钢带铠装;能承受机械外力、相当的机械压力(矿井), 用聚氯乙烯护套裸细钢丝铠装。 第二步:导体根数的选择:

浅谈电线电缆绝缘电阻的测试

浅谈电线电缆绝缘电阻的测试绝缘电阻是反映电线电缆产品绝缘特征的主要指标,它反映了线缆产品承受电击穿或热击穿能力的大小,与绝缘的介质损耗以及绝缘材料在工作状态下的逐步劣化等均存在着极为密切的关系。产品的绝缘电阻主要取决于所选用的绝缘材料,但工艺水平对绝缘电阻的影响很大,因此测定绝缘电阻是监督材料质量和工艺水平的一种方法。测定绝缘电阻可以发现工艺的缺陷,同时也是研究绝缘材料的品质和特性,研究绝缘结构以及产品在各种运行条件下的使用性能等各方面的重要手段,对于已投入运行的产品,绝缘电阻是判断产品品质变化的重要依据之一。绝缘电阻测量准确与否直接影响产品品质的判定,因此要注意绝缘电阻的测量问题。 一、试验现象 影响电线电缆绝缘电阻测量的因素有仪器准确度、环境条件和人员素质等几个方面,下面以GB5023.3-2008中一般用途单芯硬导体无护套电缆(型号227IEC01(BV))为例,谈谈绝缘电阻测量中应注意的几个问题。按GB5023.3之规定:试验应在5m长的绝缘线芯上进行,水温为(70±2)℃,仲裁试验时为(70±1)℃,侵水时间不小于2h,绝缘电阻应在施加电压1分钟后测量。如何理解标准中的这些要求,它们对测量结果有何影响下面举例说明。

本试验共进行了四次: 第1次:5m长、70℃绝缘电阻、1分钟读数测量值为:6.80×106Ω 第2次:5m长、70℃绝缘电阻、1.5分钟读数测量值为:7.01×106Ω 第3次:5m长、70℃绝缘电阻、1分钟读数测量值为:109.6×106Ω 第4次:5m长、70℃绝缘电阻、1分钟读数测量值为: 3.40×106Ω 二、原因分析 同样一组电线的绝缘电阻在不同温度、不同长度、不同读数时间为什么会有如此大的差别现分析如下: 绝缘电阻是指绝缘上所加的直流电压U与泄漏电流I是之间的比值 R=U/I 当绝缘层加上直流电压时,沿绝缘表面和绝缘内部均有微弱电流通过,对应于这两种电流的电阻分别称为表面绝缘电阻和体积绝缘电阻,一般不加特别说明的绝缘电阻均指体积绝缘电阻,只有极少数的产品有表面绝缘电阻的要求(如

电缆卷筒选型

电缆卷筒的选型 乔敏 电缆卷筒又称电缆卷盘或电缆卷线器,以其安装空间小、维护方便、使用可靠及成本低等特点取代滑触线而成为移动传输领域(动力、数据及流体介质)的主流解决方案。 一、卷筒的分类 电缆卷筒根据驱动形式分为非电动式和电动式两大类;按电缆排列方式分为轴向单排和轴向多排两种;按集电滑环位置分为滑环内装式和滑环外装式两种形式;按卷绕材料分为电缆卷筒和软管卷筒。其中非电动式包括:弹力(TA)式、重锤(ZC)式、磁耦合式(JQC);电动式包括:磁耦合式(JQD)、力矩电机式(KDO)、磁滞式(CZ)和变频控制式(BP)。 二、卷筒设计参数 电缆卷筒的技术难点是要保证卷绕速度与设备移动速度的同步,同时还要保证卷绕过程中电缆所受拉力适中。因此,电缆卷筒设计时应综合考虑以下因素: 1、电缆规格及种类: 电缆截面积从1.0~240mm2,电缆外径直接影响卷盘的轴向尺寸及动力需求。电缆截面超过35 mm2时不应选择非电动式卷筒(配重式可放宽至50 mm2),扁电缆只能选用轴向单排的卷盘。电缆应选择YCW型(动力电缆)和CEFR型(控制信号电缆)等,较柔软且有一定的抗拉强度。电缆的外径和单重力求准确。 2、卷绕长度: 影响卷盘的径向尺寸及动力需求,长度越长,对动力要求越高。非电动式电缆卷筒难以完成大行程的卷绕。地面电源锚位也直接影响电缆卷筒的选型,常见的电源锚位有端部供电和中点供电两种。中点供电不能选择非电动磁耦合式(JQC系列)。 3、设备移动速度 影响电动式电缆卷筒的电动机功率和传动比。当设备移动速度超过60米/分时,应选择变频控制式(BP系列)。 4、装机高度 影响电动式电缆卷筒的电动机功率,安装高度越高,对动力需求越大。安装时不能超过设计要求。 以上4个参数是电缆卷筒设计选型的依据,应综合考虑,还应电缆卷筒的结构与布置方式,以满足实际工况需求。 三、卷筒原理、性能及应用范围 1、弹力式(TA系列) a. 工作原理: 弹力式电缆卷筒的工作原理与钢卷尺相似,利用蜗卷弹簧为动力来收卷电缆。当电缆被拉出时,收紧蜗卷弹簧而储能,当外力撤消时,弹簧释能,卷筒将自动收卷电缆。 b. 性能及特点: 安装简单,同步性能好,电缆张力小,但弹簧易疲劳,使用寿命短。 c. 适用范围: 适用电缆:截面积35mm2以下的动力电缆和24芯以下的信号电缆; 卷绕长度:不超过30m; 适用设备:如电磁吸盘、抓斗、电动台车等。 2、重锤式(ZC系列) a. 工作原理: 重锤式电缆卷线筒是利用重锤被提升而储能的原理,自动卷取电缆的机械装置。当拉出电缆时,带动电缆卷盘旋转,从而带动与电缆卷筒同轴相联的钢丝绳卷筒转动,提升重锤而

电缆选型规范

电缆选型规范 一、基本要求 1、电缆的载流量 电缆的载流量跟很多因素有关,如:环境温度、通电持续率、绝缘的材质等。不同电缆厂家由于制作工艺等方面的不同,电缆的载流量也有一些差别。 2、通电持续率的选择 常规机型的动力电缆可按照40%的通电持续率选择;皮带等类似负载按连续工作制来选择动力电缆;照明回路可按连续工作制选择电缆。 3、特殊使用环境下电缆的选择 对于一些在特殊环境温度条件下使用的设备,其电缆的选择需要咨询相关电缆厂家,核实是否满足其使用条件及该条件下电缆的载流量。除了载流量,还要考虑其弯曲半径等因素。 4、电缆选择的基本原则 参照电缆载流量,结合通电持续率和环境温度等,所选线径电缆载流量不得小于电机额定电流,裕量大约在10%~20%之间。 总进线电缆的选择按照机型最多联动机构(最大工况)总电流核算,可不考虑裕量。 常用电机功率电缆线径参考如下(40%通电持续率,未注明均为三芯电缆): 5.5KW/7.5KW/11KW:4个平方; 15KW:6个平方;

18.5KW/22KW:10个平方; 30KW/37KW:16个平方; 45KW:25个平方; 55KW:35个平方; 75KW:50个平方或单芯35个平方; 90KW/110KW:70个平方或单芯50个平方; 132KW:95个平方或单芯70个平方; 160KW:120个平方或单芯95个平方; 185KW:150个平方或单芯95个平方; 200KW:单芯120个平方; 220KW:单芯120或者150个平方; 250KW:单芯150个平方; 大于250KW的电机可根据电流选择多根单芯电缆。 二、电缆设计及选型注意事项 1、一般采用船用软电缆CEFR系列,拖链上可采用专用的拖链电缆;挂缆上可采用专用的拖令电缆或者扁电缆,电缆卷筒上要选专用的卷筒电缆。 2、拖令和拖链电缆要考虑弯曲半径,一半不建议使用外径超过30mm的电缆,即三芯电缆不建议使用25个平方以上的,单芯电缆不建议使用超过150个平方以上的。 3、变频器到电动机的动力电缆如果有用户特殊要求可采用带屏蔽的变频专用电缆。 4、增量型编码器连接电缆要采用屏蔽电缆,对于距离较远的、

电线电缆选的一般原则

电线电缆选用的一般原则 作者:佚名 阅读:6062次 上传时间:2006-03-15 推荐人:lgzhi7 (已传论文1套) 简介:在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 关键字:电线电缆选型 一、电线电缆选用的一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性;例如, 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电压损失,经济电流密度,机械强度等选 择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面,然后验算其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。一般电线电缆规格 的选用参见下表: 电线电缆规格选用参考表

说明: 1.同一规格铝芯导线载流量约为铜芯的0.7倍,选用铝芯导线可比铜芯导线大一个规格,交联聚乙烯绝缘可选用小一档规格,耐火电线电缆则应选较大规格。 2.本表计算容量是以三相380V、Cosφ=0.85为基准,若单相220V、Cosφ=0.85,容量则应×1/3。 3.当环境温度较高或采用明敷方式等,其安全载流量都会下降,此时应选用较大规格;当用于頻繁起 动电机时,应选用大2~3个规格。 4.本表聚氯乙烯绝缘电线按单根架空敷设方式计算,若为穿管或多根敷设,则应选用大2~3个规格。 5 以上数据仅供参考,最终设计和确定电缆的型号和规格应参照有关专业资料或电工手册。 二、电线电缆的使用特性 产品使用特性详见具体产品目录。 三、电线电缆的运输和保管 ⒈运输中严禁从高处扔下电缆或装有电缆的电缆盘,特别是在较低温度时(一般为5℃左右及以下), 扔、摔电缆将有可能导致绝缘、护套开裂。 ⒉尽可能避免在露天以裸露方式存放电缆,电缆盘不允许平放。 ⒊吊装包装件时,严禁几盘同时吊装。在车辆、船舶等运输工具上,电缆盘要用合适方法加以固定, 防止互相碰撞或翻倒,以防止机械损伤电缆。

电缆的种类和选型

电缆种类及选型计算 一、电缆的定义及分类 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类:1.裸电线 2.绕组线 3.电力电缆 4.通信电缆和通信光缆 5.电气装备用电线电缆 电线电缆的基本结构: 1.导体传导电流的物体,电线电缆的规格都以导体的截面表示 2.绝缘外层绝缘材料按其耐受电压程度 二、工作电流及计算 电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ)

P-功率(W);U-电压(220V);cosΦ-功率因素 (0.8);I-相线电流(A) 三相 I=P÷(U×1.732×cosΦ) P-功率(W);U-电压(380V);cosΦ-功率因素 (0.8);I-相线电流(A) 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。 在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受 2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。 电缆允许的安全工作电流口诀: 十下五(十以下乘以五) 百上二(百以上乘以二)

二五三五四三界(二五乘以四,三五乘以三) 七零九五两倍半(七零和九五线都乘以二点五) 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九) 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算) 裸线加一半(在原已算好的安全电流数基础上再加一半) 三、常用电(线)缆类型 线缆规格型号含义: 电线型号中:字母B表示布电线,字母V表示塑料中的聚氯乙烯,字母R表示软线(导体为很多细丝绞在一起)。还有铜芯符号、硬线(常见的单芯导体)符号省略没有表示。 常用线缆类型: BV-表示单铜芯聚氯乙烯普通绝缘电线,无护套线。适用于交流电压450/750V及以下动力装置、日用电器、仪表及电信设备用的电线电缆。

民用建筑电气设计中电线电缆的选型及敷设要求86779

民用建筑电气设计中电线电缆的选型及敷设要求 发布日期:2015-04-29 来源:《电气&智能建筑》作者:张晓萍张渊张哲 核心提示:文章梳理了住宅建筑电气设计中电线电缆的选型,简述除住宅外其它民用建筑电气设计中电线电缆的选型;并探讨配电线路的敷设要求。 1 前言 电线电缆作为建筑电气不可或缺的组成部分,它的运用范围极其广泛。随着建筑物内电气负荷的日益增长,线缆燃烧造成的电气火灾也频繁发生。同时,一旦火灾发生,消防设备的安全可靠运行,也需要电线电缆的保障。因此,建筑电气中电线电缆的选用,不仅关系到用电设备的正常使用,关系到建筑电气的工程造价,更重要的是关系到电气使用的安全性,甚至建筑内人员的人身安全。本文更多的从消防的角度结合工程经验,根据《电力工程电缆设计规范》、《住宅建筑电气设计规范》、《民用建筑电气设计规范》、《建筑设计防火规范》等国家规范和上海市工程建设规范《民用建筑电线电缆防火设计规程》的规定,按普通、消防负荷两部分,从消防供电干线、应急照明和火灾自动报警等三方面,梳理了各级别民用建筑应选用的电线电缆型式及其敷设方式。 2 常用电力电缆类型 在目前的建筑电气设计中,常用的线缆可分为以下几类:普通线缆、阻燃线缆、耐火线缆、无卤低烟线缆和矿物绝缘电缆。对应上述的各类线缆,不同的厂家有不同的产品,但基本的要求和定义是一致的。本文仅列举笔者设计中常用的线缆类型。 (1)普通线缆 主要指聚氯乙烯绝缘电线BV线和交联聚乙烯绝缘聚氯乙烯护套绝缘电力电缆YJV. (2)阻燃线缆 难以着火并具有阻止或延缓火焰蔓延能力的电线电缆。该线缆通常指能通过GB/T183 80.3(等同IEC60332-3)试验合格的电线电缆。包括具有阻燃性的聚氯乙烯绝缘电线ZRB V线和具有阻燃性的交联聚乙烯绝缘聚氯乙烯护套绝缘电力电缆ZRYJV. (3)耐火线缆 在规定温度和时间的火焰燃烧下,仍能保持线路完整性的电线电缆。通常指通过GB/T12666.6(等效IEC60331)试验合格的电线电缆。包括具有耐火性的聚氯乙烯绝缘电线N HBV线和具有耐火性的交联聚乙烯绝缘聚氯乙烯护套绝缘电力电缆NHYJV. (4)无卤低烟线缆

第七章 电缆绝缘材料综述

第七章电缆绝缘材料 一、概述 高聚物是制造电线电缆极为重要的绝缘材料和护套材料。电线电缆的特性主要决定于电线电缆材料的性能。但应指出,电线电缆的使用要求、结构和特点与电线电缆所用材料的性能既有密切的相关性,又有一定的矛盾性。电缆技术的任务就在于解决这个问题。一方面要深入了解电线电缆的具体用途、使用要求、敷设环境条件,设计性能好,尺寸小、寿命长,价格低的最佳电线电缆结构。深入研究各种结构电线电缆在使用过程中各种性能的变化规律。一方面要从电线电缆材料的分子结构出发研究材料结构与性能的关系,探讨改进材料性能的方向,研究电线电缆用各种材料在各种客观因素作用下的变化规律,为正确设计电线电缆结构,正确选择材料、合理使用材料提供可靠的理论和实际根据。电线电缆因其用途不同、敷设条件不同,基本性能是不同的。因此对制造电线电缆用材料提出不同要求。概括起来作为电线电缆绝缘和护套材料用高聚物应具有下列基本性能: 1.电绝缘性能; 2.物理–机械性能; 3.化学性能; 4.工艺性能; 5.特殊性能。 前四种性能是具有普遍性的,必须符合共性要求,后一种特性是针对特殊环境使用条件下提出的特殊要求。 应当说明,对于某一种电线电缆可以而且必须具有几项主要性能,具有各种特性,用于各种条件下的通用的电线电缆是不存在的。一种电缆可能具有某一种特长,也会有某种特短。 对于电线电缆所用高聚物材料也要具体分析,高聚物的化学组成、物理结构不同,可能使其具有千差万别的性能,有时一种分子结构往往决定两种完全矛盾的使用性能,我们在选用材料时要充分把微观结构与宏观性能密切结合起来。利用其特长,改进其特短。

从电线电缆使用要求出发,我们将着重研究高聚物的电绝缘性能,力学性能、耐热性、耐燃性、耐油性、化学性能、耐湿性,耐光性,耐老化性和工艺性能。 电绝缘性能是电线电缆用高聚物的最重要的最基本的性能。所谓电绝缘性能就是在高电场作用下由高分子运动所表现出来的介电现象和电导现氛。可以把高聚物的介电性、导电性击穿作为高聚物在电压作用下的宏观特性。 一般说来,在绝缘体和半导体中的载沉子密度是极少的。对于大多数极纯的高聚物多属于绝缘体,他们的微弱导电性来自导电性杂质的存在。 图1 各种材料电导率的大致范围 二、电缆结构 电力电缆的品种很多,其具体结构会因运用场合不同而有所差异。现以超高220KV 超高压输电电缆结构为例,如图2所示。 图2 高压输电电缆护套结构示意图

电缆桥架类型分析 标准型号及设计选型

电缆桥架类型分析标准型号及设计选型 用途:电缆桥架适用于电压10千伏以下的电力电缆以及控制电缆、照明配线等室内、室外架空电缆沟、隧道的敷设。 优点:桥架具有品种全、应用广、强度大、结构轻、造价低、施工简单、配线灵活、安装标准、外形美观、维护检修方便等。 一、种类: 1.按材料分 1)钢质电缆桥架(不锈钢) 2)铝合金电缆桥架 3)玻璃钢电缆桥架(手糊和机压两种) 4)防火阻燃桥架(阻燃板(无机)、阻燃板加钢质外壳、钢质加防火涂料) 2.按形式分 1)槽式 2)托盘式 3)梯级式 4)组合式 3.按表面处理分 1)冷镀锌及锌镍合金 2)喷塑 3)喷漆 4)热镀锌 5)热喷锌 二、执行标准: 1.JB/T10216-2000《电控配电用电缆桥架》 2.企业标准:Q/321182AEG001-1997 3.QB/T1453-92电缆桥架 4.JB/T6743-93户内户外钢制电缆桥架防腐环境技术要求 5.DB32/144-1996电缆用防火槽合 标准适用范围:有于工业与民用建筑室内外、高低压输配电工程的电缆桥架。

三、技术条件: 1.正常使用条件 1)安装地点的海拔高度不超过2000米。 2)不同气候的环境选用不同气候环境等级的参数、按温度、湿度、防火等情况选定。2.特殊使用条件 1)敷设在不同化学腐蚀环境:盐雾、硫化氢、氯化氢等。 2)敷设在消防线路中。 3)敷设在海拔2000米以上。 3.电缆桥架的结构要求 1)防护等级:无孔托盘(槽式)户内不低于IP30 户外不低于IP33 2)防护等级:耐火桥架户内不低于IP40 户外不低于IP44 材料应符合自身的相关标准 钢制宜采用冷轧钢板GB/T700-1988 GB/T11253 铝制GB/T3880和GB/6892 玻璃钢GB/T15568 耐火桥架GB8624-1997中B级 3)常用规格 高40 50 60 80 100 150 200 宽60 80 100 150 200 250 300 400 500 600 800 1000 1200 4)板材厚度 钢制桥架允许最小板厚: 宽B 允许最小板厚& B1<00 1.0 100≤B<150 1.2 150≤B<400 1.5 400≤B≤800 2.0 800<B<1000 2.5 1000<B<1200 3.0 连接片的厚度至少按桥架同等板厚选用也可选厚一个等级 盖板的板厚可以按桥架的厚度选低一个等级

选用电线电缆的基本原则

选用电线电缆的基本原则 一、电线电缆选用的一般原则 在选用电线电缆时,一般要注意电线电缆型号、规格(导体截面)的选择。 ⒈电线电缆型号的选择 选用电线电缆时,要考虑用途,敷设条件及安全性;例如, 根据用途的不同,可选用电力电缆、架空绝缘电缆、控制电缆等; 根据敷设条件的不同,可选用一般塑料绝缘电缆、钢带铠装电缆、钢丝铠装电缆、防腐电缆等; 根据安全性要求,可选用不延燃电缆、阻燃电缆、无卤阻燃电缆、耐火电缆等。 ⒉电线电缆规格的选择 确定电线电缆的使用规格(导体截面)时,一般应考虑发热,电压损失,经济电流密度,机械强度等选择条件。 根据经验,低压动力线因其负荷电流较大,故一般先按发热条件选择截面,然后验算其电压损失和机械强度;低压照明线因其对电压水平要求较高,可先按允许电压损失条件选择截面,再验算发热条件和机械强度;对高压线路,则先按经济电流密度选择截面, 然后验算其发热条件和允许电压损失;而高压架空线路,还应验算其机械强度。若用户没有经验,则应征询有关专业单位或人士的意见。一般电线电缆规格的选用参见下表: 电线电缆规格选用参考表 铜芯聚氯乙烯绝缘电缆环境温度 25℃架空敷设227 IEC 01(BV)铜芯聚氯乙烯绝缘电力电缆 环境温度 25℃直埋敷设 VV22-0.6/1 (3+1) 钢芯铝绞线 环境温度 30℃架空敷设 LGJ 导体截面 mm 2 允许载流量 A容量 kW允许载流量 A容量 kW允许载流量 A容量 kW 1.01710 1.52112 2.52816 437213821 648274727 1065366536 16915984479754

25120671106112469 35147821307515084 5018710515589195109 70230129195109242135 95282158230125295165 120324181260143335187 150371208300161393220 185423237335187450252 240390220540302 300435243630352 说明: 1.同一规格铝芯导线载流量约为铜芯的0.7倍,选用铝芯导线可比铜芯导线大一个规格,交联聚乙烯绝缘可选用小一档规格,耐火电线电缆则应选较大规格。 2.本表计算容量是以三相380V、Cosφ=0.85为基准,若单相220V、Cosφ=0.85,容量则应×1/3。 3.当环境温度较高或采用明敷方式等,其安全载流量都会下降,此时应选用较大规格;当用于頻繁起动电机时,应选用大2~3个规格。 4.本表聚氯乙烯绝缘电线按单根架空敷设方式计算,若为穿管或多根敷设,则应选用大2~3个规格。 5 以上数据仅供参考,最终设计和确定电缆的型号和规格应参照有关专业资料或电工手册。 二、电线电缆的使用特性 产品使用特性详见具体产品目录。 三、电线电缆的运输和保管 ⒈运输中严禁从高处扔下电缆或装有电缆的电缆盘,特别是在较低温度时(一般为5℃左右及以下),扔、摔电缆将有可能导致绝缘、护套开裂。 ⒉尽可能避免在露天以裸露方式存放电缆,电缆盘不允许平放。 ⒊吊装包装件时,严禁几盘同时吊装。在车辆、船舶等运输工具上,电缆盘要用合适方法加以固定,防止互相碰撞或翻倒,以防止机械损伤电缆。 ⒋电缆严禁与酸、碱及矿物油类接触,要与这些有腐蚀性的物质隔离存放.贮存电缆的库房内不得有破坏绝缘及腐蚀金属的有害气体存在。 ⒌电缆在保管期间,应定期滚动(夏季3个月一次,其他季节可酌情延期)。滚动时,将向下存放盘边滚翻朝上,以免底面受潮腐烂。存放时要经常注意电缆封头是否完好无损。

相关主题
文本预览
相关文档 最新文档