当前位置:文档之家› 热交换法生长蓝宝石晶体的位错研究

热交换法生长蓝宝石晶体的位错研究

热交换法生长蓝宝石晶体的位错研究
热交换法生长蓝宝石晶体的位错研究

人工晶体学报第38卷

声.电子学器件及半导体器件热导等性能有着明显的影响哺3。目前国内关于蓝宝石单晶低位错方面的报道仍只见于提拉法、温梯法、泡生法等‘1’71。本文对热交换法生长蓝宝石晶体的位错缺陷进行了研究。

2晶体生长工艺与条件

2.1生长设备

实验生长设备为自行设计的BS004氧化物单晶炉,采用的加热器为的圆筒型石墨加热器,坩埚材料为钨钼合金,保温系统为碳碳复合结构保温层。晶体生长过程中加热功率和热交换器中的氦气流量分别由可编程自动控制系统独立控制。

2.2工艺条件

实验采用纯度≥99.999%的d—A1:O,块状原料,自行加工的a向籽晶,装料15kg,充人约一个大气压的氩气作为保护气。晶体生长过程具体分为以下几个阶段为:(1)熔料,保持初始氦气流量不变,增大加热器功率,使光电高温计温度达到2323K,完成化料;(2)引晶,下摇籽晶使其与熔体接触处获得良好的固液界面;(3)以一定速率持续增加氦气流量,促使晶体生长;(4)保持氦气流量,开始降温。,实验中加热器功率和氦气流量分别由高精度仪器执行程序完成,其控温曲线和氦气流量变化曲线分别如图1、图2所示。

TIme,Il

图1温度随时间变化示意图

Fig.1

schemficoftempemtu弛v8.time3位错腐蚀实验与观测

3.1样品的制备

Time,II

图2氦气流量随时间变化示意图

Fig.2schemBticof

heli岫n呱v8.time

图3热交换法生长的蓝宝石晶体幽4监主幽圳劫片Fig.3ThephotographyoftlIe蛆pPlIi托crystal乎ownbyFig.4hehionofB印plli聆crystalh眦-exch哪em削(咖150咖×160衄)

热交换法生长的蓝宝石晶体如图3所示。用劳埃法和x射线定向仪对该晶锭定向,加工获得<000l>晶向的圆柱形晶棒,从该晶棒中间部位和边沿部位分别切取3片、2片厚度均为O.5咖的(0001)晶片(如图4),进行机械抛光,然后化学机械抛光,获得一个光亮平整的表面。

628人工晶体学报第38卷度小;另一方面,由精密仪器独立控制熔体和晶体的温度梯度,可控性较高,温场的起伏小。

图6100倍显微镜F观察到样品1的位错腐蚀形貌

with100×microscope

Fig.6Distributingshapeofsample1

5结论

(1)蓝宝石晶体薄片用KOH进行化学腐蚀,腐蚀温度为300℃,时间为15vain,(0001)晶面的位错腐蚀坑呈三角形,分布较均匀和分散,图像清晰,说明腐蚀条件合理;

(2)采用热交换法生长的蓝宝石晶体中没有出现中心位错密度低、边沿位错密度高的“U”型径向分布或者中心和边沿密度都较高的“w”型径向分布,平均位错密度低,为2.1×103Pits/cm2;

(3)热交换法系统保温效果好,能独立控制熔体和晶体的温度梯度,可控性好;采用热交换法更容易生长出低位错大直径蓝宝石晶体。

参考文献

【1]周国清.白宝石(A1203)光学晶体和n—BaB204双折射光学晶体的缺陷和生长研究【M].上海:中国科学院上海光学精密机械研究所博士学位论文。2000.

压∞GQ.StudyonDislocationandGrowthofSapphire(A1203)OpticalCrystalandd-B88204Birefringence0pticalCrystal[M].sh咄i:DoctorbDegrttPaperofShanghaiInstituteofOpticsandFineMechanics-ChineseAcademyofSciences,2000.

[2]王崇鲁.白宝石单晶[M].天津:天津科学技术出版社,1982:22-46.

WangCL.SapphireCrystal[M].Tianjin:Ti蛐jinScience&TechonologyPress,1982:22-46.

[3]步云英,谢礼丽,张玲,等.CaN材料用蓝宝石单晶及衬底片的研究[A].第十二届全国半导体集成电路硅材料学术会议论文集[c].中国电子学会.2001.12,17-20.(下转第647页)

热交换法生长蓝宝石晶体的位错研究

作者:柯利峰, 黎建明, 苏小平, 那木吉拉图, 李楠, KE Li-feng, LI Jian-ming, SU Xiao-ping, NAMu-Jilatu, LI Nan

作者单位:北京有色金属研究总院,北京国晶辉红外光学科技有限公司,北京,100088

刊名:

人工晶体学报

英文刊名:JOURNAL OF SYNTHETIC CRYSTALS

年,卷(期):2009,38(3)

被引用次数:4次

参考文献(8条)

1.周国清白宝石(Al2O3)光学晶体和α-BaB2O4双折射光学晶体的缺陷和生长研究[学位论文] 2000

2.王崇鲁白宝石单晶 1982

3.步云英;谢礼丽;张玲GaN材料用蓝宝石单晶及衬底片的研究[会议论文] 2001

4.邓佩珍蓝宝石晶体及其应用 2002

5.Lu C W;Jyh C C Numerical Computation of Sapphire Crystal Growth Using Heat Exchanger Method[外文期刊] 2001(2/4)

6.闵乃本晶体生长的物理基础 1982

7.Chen W M;McNally PJ;Yu V Shvyd'ko查看详情 2001

8.于旭东;孙广年蓝宝石晶体的生长方向研究[期刊论文]-人工晶体学报 2006(02)

本文读者也读过(10条)

1.李金权.苏小平.那木吉拉图.黎建明.张峰翊.李楠.杨海.LI Jin-quan.SU Xiao-ping.NAMu-jilatu.LI Jian-min .ZHANG Feng-yi.LI Nan.YANG Hai气体湍流对泡生法生长蓝宝石单晶温场的影响[期刊论文]-人工晶体学报2008,37(1)

2.邹宇琦.梁宇.周海涛.黄万霞.叶宁.ZOU Yuqi.LIANG Yu.ZHOU Hai-tao.HUANG Wan-xia.YE NingΦ125 mm光学级蓝宝石晶体生长[期刊论文]-人工晶体学报2009,38(5)

3.许承海.孟松鹤.韩杰才.张明福.左洪波.XU Cheng-hai.MENG Song-he.HAN Jie-cai.ZHANG Ming-fu.ZUO Hong-bo SAPMAC法生长大尺寸蓝宝石晶体的碎裂分析[期刊论文]-硅酸盐通报2009,28(z1)

4.李跃龙.黎建明.苏小平.杨海.那木吉拉图.李楠.杨鹏.LI Yao-long.LI Jian-ming.SU Xiao-ping.YANG Hai.NA Mu-jilatu.LI Nan.YANG Peng热交换器中氦气流量对生长蓝宝石温场影响的研究[期刊论文]-人工晶体学报2008,37(2)

5.许承海.杜善义.孟松鹤.韩杰才.汪桂根.左洪波.张明福.XU Cheng-hai.DU Shan-yi.MENG Song-he.HAN Jie-cai .WANG Gui-gen.ZUO Hong-bo.ZHANG Ming-fu蓝宝石晶体热性能的各向异性对SAPMAC法晶体生长的影响[期刊论文]-人工晶体学报2007,36(6)

6.于旭东.孙广年.YU Xu-dong.SUN Guang-nian蓝宝石晶体的生长方向研究[期刊论文]-人工晶体学报2006,35(2)

7.姚泰.左洪波.孟松鹤.韩杰才.张明福.李常青.许承海.YAO Tai.ZUO Hong-bo.MENG Song-he.HAN Jie-cai. ZHANG Ming-fu.LI Chang-qing.XU Cheng-hai SAPMAC法生长大尺寸蓝宝石单晶工艺研究[期刊论文]-哈尔滨工业大学学报2007,39(5)

8.许承海.左洪波.孟松鹤.姚泰.汪桂根.李长青.张明福.XU Cheng-hai.ZUO Hong-bo.MENG Song-he.YAO Tai. WANG Gui-gen.LI Chang-qing.ZHANG Ming-fu冷心放肩微量提拉法大尺寸蓝宝石单晶生长过程的模拟分析[期刊论文]-人工晶体学报2006,35(5)

9.许承海.韩杰才.张明福.孟松鹤.左洪波.XU Cheng-Hai.HAN Jie-Cai.ZHANG Ming-Fu.MENG Song-He.ZUO Hong-Bo SAPMAC法生长蓝宝石晶体的温场设计、工艺分析与控制[期刊论文]-无机材料学报2007,22(2)

10.许承海.孟松鹤.韩杰才.左洪波.张明福.XU Cheng-hai.MENG Song-he.HAI Jie-cai.ZUO Hong-bo.ZHANG Ming-fu环境参数对GOI法蓝宝石晶体生长影响分析[期刊论文]-哈尔滨工业大学学报2006,38(7)

引证文献(4条)

1.纪秀峰蓝宝石晶体生长工艺及设备[期刊论文]-电子工业专用设备 2011(7)

2.邵慧慧.李树强.曲爽.李毓锋.王成新.徐现刚湿法腐蚀制备蓝宝石图形衬底的研究[期刊论文]-人工晶体学报2010(6)

3.刘杰蓝宝石晶体的制备方法及特点概述[期刊论文]-矿冶工程 2011(5)

4.范志刚.刘建军.肖昊苏.张旺.关春颖.苑立波蓝宝石单晶的生长技术及应用研究进展[期刊论文]-硅酸盐学报2011(5)

本文链接:https://www.doczj.com/doc/c24710683.html,/Periodical_rgjtxb98200903018.aspx

Bridgman的晶体生长技术

Bridgman的晶体生长技术

Bridgman的晶体生长技术 1.Bridgeman法晶体生长技术简介 Bridgman法是由Bridgman于1925年提出的。传统Bridgman法晶体生长的基本原理如图.1所示。将晶体生长的原料装入合适的容器中,在具有单向温度梯度的Bridgman长晶炉内进行生长。Bridgman长晶炉通常采用管式结构,并分为3个区域,即加热区、梯度区和冷却区。加热区的温度高于晶体的熔点,冷却区低于晶体熔点,梯度区的温度逐渐由加热区温度过渡到冷却区温度,形成一维的温度梯度。首先将坩埚置于加热区进行熔化,并在一定的过热度下恒温一段时间,获得均匀的过热熔体。然后通过炉体的运动或坩埚的移动使坩埚由加热区穿过梯度区向冷却区运动。坩埚进入梯度区后熔体发生定向冷却,首先达到低于熔点温度的部分发生结晶,并随着坩埚的连续运动而冷却,结晶界面沿着与其运动相反的方向定向生长,实现晶体生长过程的连续进行。 图1Bridgman法晶体生长的基本原理 (a)基本结构;(b)温度分布。 图1.所示坩埚轴线与重力场方向平行,高温区在上方,低温区在下方,坩埚从上向下移动,实现晶体生长。该方法是最常见的Bridgman法,称为垂直Bridgman法。除此之外,另一种应用较为普遍的是的水平Bridgman法其温度梯度(坩埚轴线)方向垂直于重力场。垂直

Bridgman法利于获得圆周方向对称的温度场和对流模式,从而使所生长的晶体具有轴对称的性质;而水平Bridgman法的控制系统相对简单,并能够在结晶界面前沿获得较强的对流,进行晶体生长行为控制。同时,水平Bridgman法还有利于控制炉膛与坩埚之间的对流换热,获得更高的温度梯度。此外,也有人采用坩埚轴线与重力场成一定角度的倾斜Bridgman法进行晶体生长。而垂直Bridgman法也可采用从上向下生长的方式。 2.Bridgman法的结构组成 典型垂直Bridgman法晶体生长设备包括执行单元和控制单元。其中执行单元的结构,由炉体、机械传动系统和支撑结构3个部分构成。炉体部分采用管式炉,通过多温区的结构设计实现一维的温度分布,获得晶体生长的温度场。生长晶体的坩埚通过一个支撑杆放置在炉膛内的一维温度场中,如图1所示。机械传动部分包括电机和减速机构。减速机构将电机的转动转换为平移运动,控制坩埚与温度场的相对运动。可以采取控制炉体的上升或坩埚的下降两种方式实现晶体生长速率的控制。通常Bridgman生长设备还包括坩埚旋转机构,通过另外一个电机驱动坩埚支撑杆转动,控制坩埚在炉膛内按照设定的方式和速率转动,进行温度场和对流控制。支撑结构提供一个稳定的平台,用于固定炉体和机械传动系统,实现其相对定位。在支撑结构中设计位置调节结构和减震结构,保证晶体生长速率的稳定性。控制单元包括温度控制和机械传动控制。温度控制主要进行不同加热段加热功率的调节,形成恒定的温度场。通常通过热电偶等测温元件提供温度信息,进行实时控制。机械传动控制部分进行电机转速控制,从而实现坩埚或炉体移动速度的控制,以及坩埚的旋转。 3.坩埚的选材与结构设计 坩埚是直接与所生长的晶体及其熔体接触的,并且对晶体生长过程的传热特性具有重要的影响。因此,坩埚材料的选择是晶体生长过程能否实现以及晶体结晶质量优劣的控制因素之一。坩埚材料的选择是由所生长的晶体及其在熔融状态下的性质决定的。对于给定的晶体材料,所选坩埚材料应该满足以下物理化学性质: (1)有较高的化学稳定性,不与晶体或熔体发生化学反应。 (2)具有足够高的纯度,不会在晶体生长过程中释放出对晶体有害的杂质、污染晶体材料,或与晶体发生粘连。 (3)具有较高的熔点和高温强度,在晶体生长温度下仍保持足够高的强度,并且在高温下不会发生分解、氧化等。 (4)具有一定的导热能力,便于在加热区对熔体加热或在冷却区进行晶体的冷却。

氯化锌钾单晶的直拉法生长

第31卷第6期 人 工 晶 体 学 报 V ol.31 N o.6 2002年12月 JOURNA L OF SY NTHETIC CRY ST A LS December,2002  氯化锌钾单晶的直拉法生长 邹玉林,臧竞存,石俊琦,马会龙 (北京工业大学材料学院,北京100022) 摘要:利用差热分析和X射线粉末衍射研究了K Cl2ZnCl2部分二元相图,采用丘克拉斯基技术生长出光学质量的氯化锌钾单晶,其结构为β2K2S O4型(Pna21)。晶胞参数为a=1.24051nm,b=2.67806nm,c=0.72554nm。 关键词:氯化锌钾;晶体生长;相图 中图分类号:O782.5 文献标识码:A 文章编号:10002985X(2002)062537205 G row th of K2Z nCl4Single Crystals by Czochralski Technique ZOU Yu2lin,ZANG Jing2cun,SHI Jun2qi,MA Hui2long (Institute of M aterials,Beijing P olytechnic University,Beijing100022,China) (Received8May2002) Abstract:The phase diagram of K Cl2ZnCl2binary com pound was studied by T DA and X2ray powder diffraction.Optical quality K2ZnCl4single crystal was grown by C zochralski technique.It hasβ2K2S O4structure (Pna21)with lattice parameters:a=1.24051nm,b=2.67806nm,c=0.72554nm. K ey w ords:K2ZnCl4;crystal growth;phase diagram 1 引 言 氯化锌钾是一种铁电晶体,在量子光学中有广泛的应用,室温下,具有β2K2S O4型晶体结构,其空间群为Pna21。随温度变化可经历正常相—无公度相—公度相转变[1],是理论研究的很好模型,引起各国学者的关注[2]。由于K2ZnCl4属低声子能量材料,稀土离子上转换发光强度要比氟化物和氧化物高得多[3],因而也成为研制上转换发光材料的基质材料。韩国H oy oung A等测定了K2ZnCl4由公度相到非公度相的热学性质[4]和比热[5]。以上所有这些研究都需要有高质量的K2ZnCl4单晶,因此单晶生长的研究自然成为上述研究的基础。K2ZnCl4主要有两种生长方法,一种是水溶液自然蒸发法[6],一种是丘克拉斯基法(直拉法)[7]。水溶液法虽然应用较多,但其生长的晶体吸湿性很严重;而直拉法生长的晶体吸湿性要轻得多,在空气中比较稳定,便于光谱测试和各种性能测试的研究。 2 实 验 2.1 差热分析与相图测定 能否采用直拉法生长K2ZnCl4单晶,与其相图形式有很大关系,因此相图测定成为首选工作。我们采用分析纯K Cl和ZnCl2料,按摩尔比配比,进行称量混匀,放入陶瓷坩埚,加热至700℃熔融1h,然后急冷,取出 收稿日期:2002205208 基金项目:北京市教委资助项目 作者简介:邹玉林(19552),男,北京市人,高级工程师。

蓝宝石生长方法

一、蓝宝石生长 1.1 蓝宝石生长方法 1.1.1 焰熔法Verneuil (flame fusion) 最早是1885年由弗雷米(E. Fremy)、弗尔(E. Feil) 和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末 与重铬酸钾而制成了当时轰动一时的“ 日内瓦红宝石”。后 来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil) 改进并发展这一技术使之能进行商业化生产。因此,这种方 法又被称为维尔纳叶法。 1)基本原理 焰熔法是从熔体中生长单晶体的方法。其原料的粉末在 通过高温的氢氧火焰后熔化,熔滴在下落过程中冷却并在种 晶上固结逐渐生长形成晶体。 2)合成装置与条件、过程 焰熔法的粗略的说是利用氢及氧气在燃烧过程中产生 高温,使一种疏松的原料粉末通过氢氧焰撒下焰融,并落在 一个冷却的结晶杆上结成单晶。下图是焰熔生长原料及设备 简图。这个方法可以简述如下。图中锤打机构的小锤7按一 定频率敲打料筒,产生振动,使料筒中疏松的粉料不断通过 筛网6,同时,由进气口送进的氧气,也帮助往下送粉料。 氢经入口流进,在喷口和氧气一起混合燃烧。粉料在经过高温火焰被熔融而落在一个温度较低的结晶杆2上结成晶体了。炉体4设有观察窗。可由望远镜8观看结晶状况。为保持晶体的结晶层在炉内先后维持同一水平,在生长较长晶体的结晶过程中,同时设置下降机构1,把结晶杆2缓缓下移。 焰熔法合成装置由供料系统、燃烧系统和生长系统组成,合成过程是在维尔纳叶炉中进行的。 A.供料系统 原料:成分因合成品的不同而变化。原料的粉末经过充分拌匀,放入料筒。如果合成红宝石,则需要Al2O 粉末和少量的 Cr2O3参杂,Cr2O3用作致色剂,添加量为 1-3%。三氧化 3 二铝可由铝铵矾加热获得。料筒:圆筒,用来装原料,底部有筛孔。料筒中部贯通有

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

【CN109972201A】用于直拉法硅单晶生长过程的晶体直径控制方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910274689.X (22)申请日 2019.04.07 (71)申请人 浙江晶盛机电股份有限公司 地址 312300 浙江省杭州市上虞区通江西 路218号 (72)发明人 高宇 胡建荣 傅林坚 曹建伟  夏泽杰 王小飞 倪军夫 叶钢飞  谭庆  (74)专利代理机构 杭州中成专利事务所有限公 司 33212 代理人 周世骏 (51)Int.Cl. C30B 15/22(2006.01) C30B 29/06(2006.01) (54)发明名称用于直拉法硅单晶生长过程的晶体直径控制方法(57)摘要本发明涉及半导体晶体制造技术,旨在提供一种用于直拉法硅单晶生长过程的晶体直径控制方法。该方法包括:在直拉法生产硅单晶时使晶体进入等径生长过程,达到稳定状态;将晶体实际提拉速度设定为当前平均提拉速度,按照预定的变化率使实际提拉速度向设定提拉速度靠拢,直至晶体提拉速度恒定不随晶体直径波动变化;在晶体等径生长过程通过调整加热器功率控制晶体直径,具体是在当前加热平均功率基础上附加可变周期脉冲式功率输出。本发明通过对晶体直径变化速度、加速度的计算和临界值控制,使功率输出时间的关键点判断更为合理和准确;可以缩短直径变化对功率调节的响应时间滞后;不会对晶体直径造成较大扰动,不易造成晶体直 径大幅度波动。权利要求书2页 说明书5页 附图1页CN 109972201 A 2019.07.05 C N 109972201 A

权 利 要 求 书1/2页CN 109972201 A 1.一种用于直拉法硅单晶生长过程的晶体直径控制方法,其特征在于,是在晶体等径生长过程中将晶体提拉速度设定为固定值,通过调整加热功率实现晶体直径控制;具体包括以下步骤: (1)在直拉法生产硅单晶时使晶体进入等径生长过程,达到稳定状态; (2)将晶体实际提拉速度设定为当前平均提拉速度,按照预定的变化率使实际提拉速度向设定提拉速度靠拢,直至晶体提拉速度恒定不随晶体直径波动变化; (3)在晶体等径生长过程通过调整加热器功率控制晶体直径,具体是在当前加热平均功率基础上附加可变周期脉冲式功率输出;附加功率输出幅度为0±15kw,输出时间小于120s;功率输出结束后回复到平均功率;功率调节周期,即两次附加功率输出起始点的时间间隔小于600s。 2.根据权利要求1所述的方法,其特征在于,步骤(1)中所述的达到稳定状态是指,晶体直径波动小于±1mm、晶体提拉速度波动范围±5mm/hr、平均提拉速度与设定提拉速度偏差范围±2mm/hr,以上状态维持时间大于15分钟,且距离最后一次热场温度调节的时间间隔大于20分钟。 3.根据权利要求1所述的方法,其特征在于,所述步骤(3)中,在晶体等径生长过程中实时跟踪测量晶体直径,附加功率输出幅度的数值是根据晶体直径偏差、晶体直径变化速度和晶体直径变化加速度影响下的单项功率输出值计算出来的加和值;最终的实际输出功率按下述方式计算: 当T c<T<T s 时, 当0≤T≤T c 时, 当T=T s时,开始下一个计算周期,并重新计时; 上述各式中:P为实际输出功率,为前一控制周期平均功率;T为单个控制周期内附加功率输出时间,T c为附加功率输出时间阈值,T s为设定控制周期;K p、K i、K d分别为晶体直径变化速度、晶体直径偏差、晶体直径变化加速度影响下的单项功率输出值; 其中: (1)对于晶体直径变化速度影响下的单项功率输出值K p: 当|vφ|≥v c时,K p=vφ×k p; 当|vφ|<v c时,K p=0; vφ为当前控制周期内直径变化速度,v c为直径变化速度设定阈值,k i为计算时K i使用到的经验参数; (2)对于晶体直径偏差影响下的单项功率输出值K i: 当|Δφ|≥φc时,K i=Δφ×k i; 当|Δφ|<φc时,K i=0; Δφ为晶体直径偏差,φc为设定直径变化阈值,k i为计算K i时使用到的经验参数; (3)对于晶体直径变化加速度影响下的单项功率输出值K d: 当|aφ|≥ac时,K d=aφ×k d; 当|aφ|<a c时,K d=0; aφ为当前控制周期内直径变化加速度,a c为直径变化加速度设定阈值,k d为计算K d时使 2

蓝宝石晶体生长技术回顾

蓝宝石晶体生长技术回顾 (2011-07-12 15:21:18) 转载 分类:蓝宝石晶体 标签: 蓝宝石 晶体生长 技术 历史 杂文 杂谈 引言 不少群众提出意见,博主说了这多不行的,能不能告诉广大投身蓝宝石长晶事业的什么设备行?说实话,这真的是为难我了!怎么讲?举个例子吧,Ky技术设备在Mono手里还真的是Ky,但到了你手里可能就是YY了。 可能你觉得受打击了,可是没有办法啊,事实如此啊,实话听 起来往往比较刺耳!本博主前面发表的《从缺陷的角度谈谈蓝宝石生长方向的选择》博文,迄今为止只有寥寥无几群众真正看出精髓所在..................................不服气群众可以留言谈谈自己了解了什么? 古人云“博古通今”、“温故知新”,我觉得很有道理,技术之道也是如此。如果没有对以往技术的熟练掌握、熟知精髓所在,没有

对以往技术的总结提炼,你就不可能对一个新技术真正的掌握。任何新技术新设备到你手里,充其量你只是一个熟练操作工而已。 还觉得不信的话,我就在这篇博文里用大家认为最古老的火焰法宝石生长的经验理论总结来给大家进行目前流行的衬底级蓝宝石晶体生长进行理论指导。 蓝宝石晶体生长技术简介

焰熔法(flame fusion technique)&维尔纳叶法(Verneuil technique) 1885年由弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)一起,利用氢氧火焰熔化天然的红宝石粉末与重铬酸钾而制成了当时轰动一时的“日内瓦红宝石”。后来于1902年弗雷米的助手法国的化学家维尔纳叶(Verneuil)改进并发展这一技术使之能进行商业化生产。因此,这种方法又被称为维尔纳叶法。 弗雷米(E. Fremy)、弗尔(E. Feil)和乌泽(Wyse)这几个哥们实际上就是做假珠宝的,一群有创新精神的专业人士。 博主对两类造假者比较佩服,一类是以人造珠宝以假乱真的,一类是造假文物的。首先、他们具有很高的专业素养;其次、他们也无关民生大计;还有利于社会财富的再分配。 至于火焰法简单的描述我就不啰嗦了,我讲讲一些你所不知道的火焰法长宝石的一些前人总结;这些总结和经验对今天的任何一种新方法长蓝宝石单晶都是有借鉴意义的。 100多年来火焰法工作者在气泡、微散射,晶体应力和晶体生长方向的关系,晶体生长方向与缺陷、成品率之间的关系做了大量的数据总结,可以讲在各个宝石生长方法中研究数据是最完备的。在这篇博文里我只讲讲个人认为对其他方法有借鉴意义的一些总结。

直拉硅单晶生长的现状与发展

直拉硅单晶生长的现状与发展 摘要:综述了制造集成电路(IC)用直拉硅单晶生长的现状与发展。对大直径生长用磁场拉晶技术,硅片中缺陷的控制与利用(缺陷工程),大直径硅中新型原生空位型缺陷,硅外延片与SOI片,太阳电池级硅单和大直径直拉硅生长的计算机模拟,硅熔体与物性研究等进行了论述。 关键词:直拉硅单晶;扩散控制;等效微重力;空洞型缺陷;光电子转换效率;硅熔体结构 前言 20世纪中叶晶体管、集成电路(IC)、半导体激光器的问世,导致了电子技术、光电子技术的革命,产生了半导体微电子学和半导体光电子学,使得计算机、通讯技术等发生了根本改变,有力地推动了当代信息(IT)产业的发展.应该强调的是这些重大变革都是以半导体硅材料的技术突破为基础的。2003年全世界多晶硅的消耗,达到了19 000 t,但作为一种功能材料,其性能应该是各向异性的.因此半导体硅大都应该制备成硅单晶,并加工成硅抛光片,方可制造I C 器件。 半导体硅片质量的提高,主要是瞄准集成电路制造的需要而进行的。1956年美国仙童公司的“CordonMoore”提出,IC芯片上晶体管的数目每隔18~24个月就要增加一倍,称作“摩尔”定律。30多年来事实证明,IC芯片特征尺寸(光刻线宽)不断缩小,微电子技术一直遵循“摩尔定律”发展。目前,0.25 μm、0.18μm线宽已进入产业化生产。这就意味着IC的集成度已达到108~109量级,可用于制造256MB的DRAM和速度达到1 000MHE的微处理芯片。目前正在研究开发0.12 μm到0.04μm的MOS器件,预计到2030年,将达到0.035μm 水平。微电子芯片技术将从目前器件级,发展到系统级,将一个系统功能集成在单个芯片上,实现片上系统(SOC)。 这样对半导体硅片的高纯度、高完整性、高均匀性以及硅片加工几何尺寸的精度、抛光片的颗粒数和金属杂质的沾污等,提出了愈来愈高的要求。 在IC芯片特征尺寸不断缩小的同时,芯片的几何尺寸却是增加的。为了减少周边损失以降低成本,硅片应向大直径发展。在人工晶体生长中,目前硅单晶尺寸最大。 当代直拉硅单晶正在向着高纯度、高完整性、高均匀性(三高)和大直径(一大)发展。 磁场直拉硅技术 硅单晶向大直径发展,投料量急剧增加。生长φ6″、φ8″、φ12″、φ16″硅单晶,相应的投料量应为60 kg、150 kg、300 kg、500 kg。大熔体严重的热对流,不但影响晶体质量,甚至会破坏单晶生长。热对流驱动力的大小,可用无量纲Raylieh数表征:

蓝宝石应力

蓝宝石应力 1. 概述 在晶体生长过程中晶体内存在的应力将引起应变,当应变超过了晶体材料本身塑性形变的屈服极限时,晶体将发生开裂。一般来说,根据晶体内应力的形成原因,可将其分为三类:热应力,化学应力和结构应力。 1.1热应力 蓝宝石晶体在从结晶温度冷却至室温过程中并不发生相结构的转变,因此,晶体内应力主要是由温度梯度引起的热应力。晶体热应力正比于晶体内的温度梯度、晶体热膨胀系数及晶体直径。最大热应力总是出现在籽晶与新生晶体的界面区域,较大热应力一般出现在结晶界面、放肩、收尾及直径发生突变的部位,在等径部位热应力相对较小。 1.2结构应力 由特定材料构建成的一个功能性物体叫做结构,在结构的材料内部纤维受到结构自身重力或者外界作用力下,纤维会产生变形,这种变形的能量来自于材料所受的应力,这种应力就叫结构应力。 2. 产生因素 晶体全开裂主要与晶体的生长速率和冷却速率有关,生长速率或冷却速率过快,必将使晶体整体的热应力过大。当热应力值超过屈服应力时,裂纹大量萌生,不断扩展,相互交织造成晶体整体碎裂,具有此种裂纹的晶体已失去使用价值,应当严格避免。通过相关理论分析和多次实验证明,采用匀速的降温程序,降温速率控制在1.5~3.0 K/h的范围

内,晶体生长速率为1.0~5.0 mm/h;依据蓝宝石晶体退火工艺,晶体强度与温度的变化关系,在10~30 K/h范围内设计晶体的冷却程序,完成晶体的退火和冷却。此晶体生长速率及冷却程序,可使晶体的整体碎裂得到有效控制。 在晶体生长中时常发现在晶体的引晶、放肩及晶体直径突变等部位发生裂纹萌生,并沿特定的晶面扩展。具有该种裂纹的晶体虽然仍可利用,但会使器件的尺寸受到一定的限制,降低晶体坯料的利用率,故应尽力避免。 此种裂纹的形成与泡生法晶体生长控制工艺密切相关。在晶体生长的引晶和放肩阶段主要是通过调节热交换器的散热能力来控制晶体生长,在籽晶和新生晶体的界面区域,受热交换器工作流体温度的影响较显著,温度梯度较大。同时,在此阶段需不断的调整晶体的生长 状态,造成此位置晶体外形不规则以及较高的缺陷浓度等都极易引起应力集中,裂纹萌生的机率也相对较大。在后续实验中,本实验室采用加长籽晶杆长度,增加温度梯度过渡区长度和恒定热交换器工作流体温度等措施来控制该区域的裂纹萌生,并取得了较好的效果。 3. 检测方法 检测工具为应力仪。 台式应力仪:S-18应力测试仪应用范围广泛。该仪器可以从水平或垂直角度,对玻璃和塑料配件进行检测,大多运用于品控。S-18有足够大的使用空间供各种产品进行测量。测量过程中,主要通过手持被测物体在偏光下进行观察测量。 标准配置的S-18包括一个光源,一个装有四分之一波盘的分析器和另一个装有四分之一波盘的偏光装置。S-18应力仪中已经置入了一块全波盘。 S-18应力测试仪使用时要垂直放置。机身上有2对橡胶脚垫减震器,便于从水平或垂直方向操作。 应力仪功能的优越点 应力仪是一种无损检测应力情况的机器,便于人们在生产国产中更直观的判别样品的应力情况。做好分析应力的情况,更好的改进生产工艺,做出更好的产品。 应力仪的操作简便易学,机器性能一般可以稳定维持3-5年。

蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究 【摘要】蓝宝石晶体具有硬度大、熔点高、物理化学性质稳定的特点,是优质光功能材料和氧化物衬底材料,广泛用于电子技术,军事、通信、医学等国防民用, 科学技术等领域。自19 世纪末, 法国化学家维尔纳叶采用焰熔法获得了蓝宝石晶体后,人工生长蓝宝石工艺不断发展, 除了焰熔法外还有冷坩埚法、泡生法、温度梯度法、提拉法、热交换法、水平结晶法、弧熔法、升华法、导模法、坩埚下降法等。本文主要对应用较为广泛的焰熔法、提拉法、泡生法、热交换法、导模法、下降法、等生长工艺进行论述。 【关键词】蓝宝石晶体晶体生长工艺研究蓝宝石晶体的化学成分是氧化铝(a -AI2O3 ),熔点高达2050C,沸点3500C,硬度仅次于金刚石为莫氏硬度9,是一种重要的技术晶体。蓝宝石晶体在光学性能、机械性能和物理化学性质方面表现出了优异性能,因此被各行业广泛应用,同时随着现代科学技术的发展,对蓝宝石晶体的质量要求也不断提升,这就对蓝宝石晶体生长工艺提出了新的挑战。 焰熔法。确切来讲焰熔法是由弗雷米、弗尔、乌泽在

1885 年发明的,后来法国化学家维尔纳叶改进、发 展并投入生产使用。焰熔法是以Al2O3 粉末为原 料,置于设备上部,原料在撒落过程中通过氢及氧气 在燃烧过程中产生的高温火焰,熔化,继续下落,落 在设备下方的籽晶顶端,逐渐生长成晶体。焰熔法生 产设备主要有料筒、锤打机构、筛网、混合室、氢气 管、氧气管、炉体、结晶杆、下降机构、旋转平台等 组成。锤打机构使料筒振动,与筛网合作使粉料少 量、等量或周期性的下落;氧气与粉末一同下降、氢气与氧气混合燃烧;在炉体设有观察窗口可通过望远镜查看结晶状况,下降机构控制结晶杆的移动,旋转平台为晶体生长平台,下方置以保温炉。焰熔法具有生长速度快、设备简单、产量大的优点,但是生产出的晶体缺陷较多,适用于对蓝宝石质量要求不高的晶体生产。 提拉法。提拉法能够顺利地生长某些易挥发的化合物,应用较为广泛。提拉法工艺:将原料装入坩埚中熔化为熔体,籽晶放入坩埚上方的提拉杆籽晶夹具中,降低提拉杆使籽晶插入熔体中,在合适的温度下籽晶不会熔掉也不会长大,然后转动和提升晶体,当加热功率降低时籽晶就会生长,通过对加热功率的调节和提升杠杆的转动即可使籽晶生长成所需的晶体。

SiC晶体生长工艺装备

SiC晶体生长工艺装备 一、SiC晶体生长工艺装备发展现状 由于SiC具有宽带隙、高临界击穿电场、高热导率、高载流子饱和浓度、化学性能稳定、高硬度、抗磨损等特点,使得它在军用和航天领域的高温、高频、大功率光电器件方面具有优越的应用价值。具体来看,其导热性能是Si材料的3倍以上;在相同反压下,SiC材料的击穿电场强度比Si高10倍,而内阻仅是Si片的百分之一。SiC器件的工作温度可以达到600℃,而一般的Si器件最多能坚持到150℃。因为这些特性,SiC可以用来制造各种耐高温的高频大功率器件,应用于Si器件难以胜任的场合。 目前SIC半导体材料发展十分迅速,总的发展趋势是晶体大直径、大尺寸化,向高纯无缺陷发展。6H和4H单晶片实现了商品化,3英寸(直径≥76.2mm)是主流产品,4英寸也有少量供应。4H-SiC 上的微管缺陷密度显著减小,n型4H-SiC的极低微管缺陷晶片上微管密度可接近0cm-2。 SiC材料的生长需要特殊的工艺装备。目前这些工艺装备的技术主要掌握在美日欧三方手中。这些发达国家和地区已对SiC 生长设备进行了持续的研究,积累了宝贵的经验。特别是美国,技术最成熟,凭借着先进的技术,不断研制基于SiC基的新军事电子产品,目前在航空、航天、军舰、卫星、深海等方面都得到了实际的应用,得以使其继续在全球军事电子领域保持领先地位。欧盟和日本也紧随其后,投入大量的人力和财力进行追赶。

美国Cree公司是世界上能够商业化提供SiC 产品最大的公司,占全球市场90%以上,其在工艺装备方面的技术先进、成熟稳定,领先世界水平,但受政策影响,技术处于绝对保密之中。 欧洲SiC晶体生长工艺装备的设备制造商集中在德国、瑞典和英国,目前主要生产以3“直径为主的工艺装备,但为了追赶世界先进水平,已开始进行4” SiC晶圆工艺装备的研发。 无论是美国、欧洲还是日本,其晶体生长工艺装备都是军方在三代半导体方面要重点发展的方向之一,长期得到国家的支持和投入,如美国海军、陆军、空军、美国国家航空航天局(NASA )、弹道导弹防卫局和国防预研局、几乎美国国防部所有部门都将SiC技术研究列入了各自军事系统发展规划。其中SiC晶体生长工艺装备是重要的组成部分,美军正是凭借其在碳化硅装备方面的强大实力,在军事电子方面继续拉大与其他国家的距离。 国内碳化硅研究始于2000年前后,基本都是在Si晶圆研究的基础上进行一些理论性的研究,工艺装备也是在原有的Si晶圆的工艺装备基础上进行了部分改造,研究进展缓慢,装备的缺乏已成为国内SiC项目研究的瓶径。近些年有些研究机构通过各种渠道引进了部分国外发达国家的工艺装备,但价格高昂,所引进设备的技术也不属于前沿技术,并且在引进过程中,对引进单位也有条款上的种种制约,限制了SiC项目在国内的研究。尽管起步早,但目前研究水平还处于初级阶段。 总之,国内SIC项目的研究以进口晶片为主,昂贵的晶片价格,

蓝宝石晶体热性能的各向异性对SAPMAC法晶体生长的影响

第36卷第6期 人 工 晶 体 学 报 V o.l 36 N o .6 2007年12月 J OURNAL O F S YNTHET I C CRY STA LS D ece m ber ,2007 蓝宝石晶体热性能的各向异性对S APMAC 法晶体生长的影响 许承海,杜善义,孟松鹤,韩杰才,汪桂根,左洪波,张明福 (哈尔滨工业大学复合材料与结构研究所,哈尔滨150001) 摘要:采用有限元法对冷心放肩微量提拉法蓝宝石晶体生长过程中晶体内的温度、应力分布进行了模拟计算,结合实验结果讨论了蓝宝石晶体热性能的各向异性对晶体生长的影响。研究结果表明,对于冷心放肩微量提拉蓝宝石晶体生长系统,较大的轴向热导率有利于提高晶体的生长速率和界面稳定性,而稍大的径向热导率则有利于保持微凸的生长界面。晶体内的热应力受径向热膨胀系数的影响显著,随着径向热膨胀系数的增大而增大,最大热应力总是出现在籽晶与新生晶体的界面区域。在实验中选a 轴为结晶取向,成功生长出了直径达230mm 、高质量蓝宝石晶体。 关键词:各向异性;热性能;蓝宝石;冷心放肩微量提拉法中图分类号:O 782 文献标识码:A 文章编号:1000 985X (2007)06 1261 05 E ffect of Sapphire Thermal Performance Anisotropy on Crystal Gro w th by S APMAC M ethod XU Cheng hai ,DU Shan y i ,ME NG Song he ,HAN J ie cai ,WANG G ui gen, ZUO H ong bo ,Z HANG M i n g fu (C enter for Co m positeM at eri a l s ,H arb i n Ins tit u te ofTechnol ogy ,H arb i n 150001,Ch i na) (R e ce i ved 17M arc h 2007) 收稿日期:2007 03 17 作者简介:许承海(1978 ),男,黑龙江省人,博士生。E m ai:l h i txu c h engha@i s i na .co m 通讯作者:张明福,副教授。E m ai:l m f zhang1@h it .edu .cn Abst ract :Finite ele m entm ethod w as adopted to si m ulate t h e te m perature and stress distri b ution i n si d e the sapph ire si n g le crysta l duri n g its gro w th w ith SAP MAC m et h od .The effect o f anisotropic ther m a l perfor m ance o f sapphire on crystal gro w th w as d iscussed w ith t h e exper i m enta l results .R esearching resu lts sho w ed that b i g ger ax ial ther m al conducti v ity w as prop itious to i m prove the crystal gro w th ve l o c ity and stab ilizati o n of t h e i n terface and larger radial ther m al conducti v ity w as prop iti o us to keep the sligh t convex ity gro w i n g i n terface for the sapph ire crystal g r ow th syste m w ith SAP MAC m et h od .Ther m a l stress i n si d e the crystalw as influenced notab l y by radia l t h er m a l expansion coe ffi c ient and increased along w ith i.t The largest t h er m a l stress al w ays occurred at the i n terface of the seed and the ne w born crysta.l I n the experi m en,t a sapph ire crystal w ith h i g h quality w hose dia m eter is up to 230mm w as pr oduced successfully by choosi n g a ax is as the crysta llization o ri e ntation .K ey w ords :anisotr opy ;ther m o physica l perfor m ance ;sapph ire ;SAP MAC m ethod

单晶生长原理

直拉法:直拉法即切克老斯基法(Czochralski: Cz), 直拉法是半导体单晶生长用的最多的一种晶体生长技术。 直拉法单晶硅工艺过程 -引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体; -缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中; -放肩:将晶体控制到所需直径;-等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;-收尾:直径逐渐缩小,离开熔体; -降温:降底温度,取出晶体,待后续加工 直拉法-几个基本问题 最大生长速度 晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。 熔体中的对流 相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。所生长的晶体的直径越大(坩锅越大),对流就越强烈,会造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂质分布不均匀等。实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相对运动,有利于在固液界面下方形成一个相对稳定的区域,有利于晶体稳定生长。 生长界面形状(固液界面) 固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。 生长过程中各阶段生长条件的差异 直拉法的引晶阶段的熔体高度最高,裸露坩埚壁的高度最小,在晶体生长过程直到收尾阶段,裸露坩埚壁的高度不断增大,这样造成生长条件不断变化(熔体的对流、热传输、固液界面形状等),即整个晶锭从头到尾经历不同的热历史:头部受热时间最长,尾部最短,这样会造成晶体轴向、径向杂质分布不均匀。 直拉法-技术改进: 一,磁控直拉技术 1,在直拉法中,氧含量及其分布是非常重要而又难于控制的参数,主要是熔体中的热对流加剧了熔融硅与石英坩锅的作用,即坩锅中的O2, 、B、Al等杂质易于进入熔体和晶体。热对流还会引起熔体中的温度波动,导致晶体中形成杂质条纹和旋涡缺陷。 2,半导体熔体都是良导体,对熔体施加磁场,熔体会受到与其运动方向相反的洛伦兹力作用,可以阻碍熔体中的对流,这相当于增大了熔体中的粘滞性。在生产中通常采用水平磁场、垂直磁场等技术。 3,磁控直拉技术与直拉法相比所具有的优点在于: 减少了熔体中的温度波度。一般直拉法中固液界面附近熔体中的温度波动达10 C以上,而施加0.2 T 的磁场,其温度波动小于 1 ℃。这样可明显提高晶体中杂质分布的均匀性,晶体的径向电阻分布均匀性也可以得到提高;降低了单晶中的缺陷密度;减少了杂质的进入,提高了晶体的纯度。这是由于在磁场作用下,熔融硅与坩锅的作用减弱,使坩锅中的杂质较少进入熔体和晶体。将磁场强度与晶体转动、坩锅转动等工艺参数结合起来,可有效控制晶体中氧浓度的变化;由于磁粘滞性,使扩散层厚度增大,可提高杂

冷心放肩微量提拉法生长蓝宝石位错分析

冷心放肩微量提拉法生长蓝宝石位错分析 1、简介 蓝宝石(Al2O3)是一种很重要的单晶,因其出众的物理和化学特性,有很广泛的应用。大尺寸、高质量蓝宝石在军事窗口材料领域占有优势。然而,众所周知,位错是蓝宝石中非常重要且很常见的一种缺陷,会对蓝宝石的生长,特性和塑性形变产生重要的影响。迄今为止,只有少数几种方法如热交换法(HEM),温度梯度法(TGT)等能够生产出大尺寸的蓝宝石。然而,这些方法都因其生长方式而具有固有的位错特性,在本文中,我们基于直拉法和泡生法,发明出一种新的长晶方法:冷心放肩微量提拉法(SAPMAC),并通过化学蚀刻,电子显微镜扫描和伯格- 巴雷特X射线形貌探测等方法来研究蓝宝石的位错。 2、实验 2.1 SAPMAC法生长蓝宝石单晶 SAPMAC法是基于直拉法和泡生法而发明的一种生长大尺寸蓝宝石单晶的方法,通过使用一种Ikal-200改进型单晶生长炉,其中包含钼制坩锅,钨发热体和钼制隔热屏等。钨发热体设计成鸟笼状,顶端焊接在具有水冷的铜电极上,通过调整发热体的电阻和水冷系统来建立合适的温度梯度。 在长晶开始前,需要先把钼坩埚空烧至1800°数个小时,用以排除坩埚表面杂质,从而减少污染。把准备好的氧化铝颗粒块(纯度至少99.995%)装入坩埚中,把具有一定晶相的籽晶通过籽晶夹安装在热交换器底部。把炉内抽真空至小于 1.0×10-4Pa。加热至熔化氧化铝原料并保持恒温数个小时。缓慢降低溶液温度,旋转并下降籽晶至其几何中心接触溶液的冷心位置,进行引晶。引晶结束后,通过微量提拉籽晶和降温来完成晶体生长过程中的扩肩、等径、退火等过程。一些技术参数参见Table1。 2.2 样品制备 蓝宝石单晶通过SAPMAC法生长,从晶锭不同的方位垂直的截取(0001)晶相的蓝宝石样品(10mm×10mm×2mm),所有的样品表面都经机械化学抛光(CMP)处理过。 2.3化学蚀刻和位错坑观察 在熔化的KOH(320°)中进行化学蚀刻,蚀刻坑的数量通过光学显微镜来计算,位错坑通过SEM(S-3400N, Hitachi)来计算。 2.4 X射线形貌拓扑结构 X射线形貌实验通过实验室高分辨率X射线衍射仪来完成,衍射形貌法用于具有对称反射结构的平面上(00012),样片至镜头的距离设为44mm,入射光的尺寸为14mm×2mm。大面积的布拉格形貌布局通过一个配有CCD镜头,帧捕捉器和相应的软件组成的设备来生成。 3、结果和讨论 3.1 SAPMAC法生长的大尺寸蓝宝石 通过SAPMAC法A相生长的大尺寸蓝宝石(?230×210 mm, 27.5 kg) 如下图:

国内大直径直拉单晶技术

随着国内大直径直拉单晶技术的发展,一些原先在小直径单晶中并未引起重视的问题,对大直径单晶生长的负面影响日渐显现。大直径单晶对其生长环境有很高的稳定性要求。本文就其中真空度的稳定和气流控制的优化两个方面,提出了改进方案,以提高大直径单晶生长的成晶率和内在品质。 关键字:直拉法;大直径单晶;真空稳定性;气流控制 1 引言 半导体技术的日新月异促使了硅单晶生长技术向大直径方向发展。目前,国内大直径直拉单晶制造的规模化生产刚刚起步,许多技术尚处在摸索阶段。生长无位错的大直径单晶,要求其生长环境有很高的稳定性。这使得一些破坏单晶生长稳定性的因素,在原先小直径单晶生长中影响不大,但是对大直径单晶生长的负面影响却日渐显现。 在直拉单晶生长过程中,炉体内的气体气流由上至下贯穿单晶生长的区域,及时地带走由于高温而产生出来的硅氧化物和杂质挥发物。因此,维持单晶炉体内真空值的稳定性,不受外界因素的影响,同时使保护气体有合理的气流走向,迅速带走杂质,已经成为目前半导体材料制造行业领域改进设备,提高成晶率的重要课题。 2 真空度的稳定性控制 高纯氩气从单晶炉顶部注入,底部由真空泵将气体抽出,炉内的真空值保持动态平衡(一般在20Torr左右)。但由于种种外界因素的影响,这个平衡往往会受到破坏,使真空值在较大幅度内变化,特别在大直径单晶生长中的影响尤为明显。 2.1 影响真空度不稳定的因素 其一,一般设备中,氩气的进气流量是由转子流量计控制的。转子流量计是通过改变通气孔径的大小来控制气体的流量。它的缺点就是气流量势必随着进气口压力的改变而改变。实际生产中,气源压力不可避免地会受到环境温度和贮罐内氩气存量的影响。 其二,真空泵是抽真空的动力设备。在拉晶过程中,由于炉内高温而挥发出来的杂质和硅氧化物会被吸收到真空泵油中,与泵油混合在一起。随着工作时间的增长,真空泵油的粘稠度会不断增大,导致抽真空的效率降低。到一定程度,真空泵必须定期更换泵油。另外,真空泵油的温度也是影响抽真空效率的因素。 2.2 改进方案 针对上面提出的两个问题,首先从氩气进气系统入手,为了保证进气速度恒定,我们用质量流量控制器(MFC)代替转子流量计。质量流量控制器能精确地测量和控制气体的流量,它的测量技术是基于美国一个专利(美国专利号NOS.4464932、4679585)。质量流量控制器检测的是气体的“质量流”,它只受气体自身三个特性的影响(热容量、密度、分子结构),对于某种确定的气体,上面三个参数都是确定的。因此,MFC的测量精度不受气体的温度、压力等外在因素的影响,能在20~200SLPM的范围内达到高于1.0%的控制精度,响应时间小于2s. 其次,考虑真空抽速的控制。我们在单晶炉与真空泵的管道上增加了步进蝶阀。采用步进蝶阀目的是通过改变抽气通道的孔径来调节真空抽速。这是一个闭环的控制系统,由数字真空表实时检出炉内的真空压力,把该真空值与设定真空值比较,当炉内真空值偏高,就逐渐开大步进蝶阀,提高抽气速度,降低真空值至设定点。反之,若炉内真空值偏低,则关小步进蝶阀,减小抽气速度。采用这样闭环系统,可以使单晶炉内真空值相当稳定,避免外界因素的干扰。 3 气流的优化控制 在单晶生长过程中,硅熔液和石英坩埚等炉内物件会由于高温产生大量硅氧化物(主要成分是SiO,也有少量SiO 2,呈黄色烟尘状)、杂质挥发物以及挥发性气体。这些气尘粒子飘浮在单晶生长界面周围。当减小氩气流量时,能明显看到硅熔液上方有烟尘翻腾,俗称“冒烟”。氩气由上至下穿过单晶生长区域,带走气尘杂质。有时,SiO粒子可能会被吸附到单晶生长界面上,造成正在生长的单晶的原子晶向发生位错,使单晶生长失败,俗称“断苞”,降低了成晶率。

相关主题
文本预览
相关文档 最新文档