当前位置:文档之家› 函数的奇偶性与周期性知识点与题型归纳.docx

函数的奇偶性与周期性知识点与题型归纳.docx

函数的奇偶性与周期性知识点与题型归纳.docx
函数的奇偶性与周期性知识点与题型归纳.docx

●高考明方向

1.结合具体函数,了解函数奇偶性的含义.

2.会运用函数的图象理解和研究函数的奇偶性.

3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性 .

★备考知考情

1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等.

2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题.

3.多以选择题、填空题的形式出现 .

一、知识梳理《名师一号》 P18

注意:

研究函数奇偶性必须先求函数的定义域

知识点一函数的奇偶性的概念与图象特征

1.一般地,如果对于函数f(x)的定义域内任意一个x,

都有 f(-x)=f(x),那么函数 f(x)就叫做偶函数.2.一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(-x)=-

f(x),那么函数 f(x)就叫做奇函数.

1

3.奇函数的图象关于原点对称;

偶函数的图象关于y 轴对称 .

知识点二奇函数、偶函数的性质

1.奇函数在关于原点对称的区间上的单调性相同,偶

函数在关于原点对称的区间上的单调性相反.

2.若 f(x)是奇函数,且在 x=0处有定义,则 f (0) 0.

3.若 f(x)为偶函数,则f ( x) f ( x) f (| x |) .

《名师一号》 P19 问题探究问题1

奇函数与偶函数的定义域有什么特点?

(1)判断函数的奇偶性,易忽视判断函数定义域是否关于

原点对称.定义域关于原点对称是函数具有奇偶性的一个

必要条件.

(2)判断函数 f(x)的奇偶性时,必须对定义域内的每

一个 x,均有 f(-x)=- f(x)、f(- x)=f(x),

而不能说存在x0使 f(- x0)=- f(x0)、 f(-x0)= f(x0).

(补充 )

1、若奇函数f ( x)的定义域包含0,则f (0)0 .

f (0) 0 是 f (x) 为奇函数的

既不充分也不必要条件

2.判断函数的奇偶性的方法

(1)定义法:

1)首先要研究函数的定义域,

2

2) 其次要考虑f x与 f x的关系,

也可以用定义的等价形式:

f ( x ) f (x )0 (对数型函数用),

f (x )

1(指数型函数用).

f ( x)

3)分段函数应分段讨论

(2)图象法:利用奇偶函数图象的对称性来判断.

(3)复合函数奇偶性的判断

若复合函数由若干个函数复合而成,则复合函数可依

若干个函数的奇偶性而定,概括为“同奇为奇,一偶

则偶”.

注意:证明函数的奇偶性的方法只有定义法

知识点三函数的周期性

1.周期函数:

对于函数y=f(x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有 f(x+ T)= f(x),那么就称函数 y= f(x)为周期函数,称非零常数 T 为这个函数的周期.2.最小正周期:

如果在周期函数 f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最小正周期.

并不是任何周期函数都有最小正周期,

如常量函数 f ( x) a( x R) ;

3

3. 几个重要的推论

( 1)《名师一号》 P19 问题探究

问题 3

若函数 f ( x) 恒满足 f ( x

a)

f (x) (a 0) ,

则 f (x) 是周期函数, 2a 是它的一个周期;

若函数 f ( x) 恒满足 f (x

a)

1 (a 0) ,

f (x)

则 f (x) 是周期函数, 2a 是它的一个周期;

若函数 f ( x) 恒满足 f (x

a)

1 (a 0) ,

f (x)

则 f (x) 是周期函数,

2a 是它的一个周期;

( 补充 ) 若函数 f ( x) 恒满足 f ( x a) f ( x b) ,

则 f (x) 是周期函数, a b 是它的一个周期;

( 2) ( 补充 ) 注意区分:

若 f (a

x) f (a

x) (或 f ( x) f (2a

x) )

则函数 f ( x) 关于 x a 对称。 若 f ( x)

f (2 a x)

则函数 f (x) 关于点

a,0

对称。

推广:若函数 f (x) 恒满足 f (a

x) f (b x)

则 f ( x) 图象的对称轴为 a b

x

2 。

4

(3) ( 补充 )

已知奇函数 f x 的图象关于直线 x a 对称,

则f x 是周期函数,且 4a 为其中的一个周期若偶函数 f x 的图象关于直线 x a 对称,

则f x 是周期函数,且 2a 为其中的一个周期

二、例题分析:

(一)证明(判断)函数的奇偶性

例1. ( 补充 )

判断下列函数的奇偶性.

2+x

(1)f(x)=(2-x)2-x.

x+2x<-1

(2)f(x)=0|x| ≤1.

-x+2x>1

11

(3)f(x)=a x-1+2

(a>0 且 a≠1)

解析:

2+x

(1)由2-x≥0得定义域为 [ -2,2),关于原点不对称,

故 f(x)为非奇非偶函数.

5

(2)x<- 1 时,- x>1,∴ f(-x)=- (-x)+ 2=x + 2=f(x).

x>1 时,- x<- 1, f(-x)=- x + 2= f(x).

-1≤x ≤1时, f(x)= 0,- 1≤- x ≤1,f(-x)= 0= f(x).

∴对定义域内的每个 x 都有 f(-x)= f(x).

因此 f(x)是偶函数.

(3)∵f(x)的定义域为 {x|x ∈ R ,且 x ≠ 0},

其定义域关于原点对称,并且有

f(-x)= 1 1 1 1 a x 1

x - 1+ 2= 1 +2= - x +2 a a x -1

1 a - x - 1

1 a

1=- 1+ 1 x +1

=-

x

1-a

2 1-a 2

1

1

=- a x - 1+

2 =- f(x).

即 f(-x)=- f(x),∴ f(x)为奇函数.

9 x 2

(4)(补充 ) 函数 y

的图象关于

| x 4 | | x 3 |

A . x

轴对称

B . y

轴对称

C .原点对称

D .直线 x y 0 对称

答案: B

6

注意: ( 补充 )

1.如何判断函数奇偶性:

第一,求函数定义域,看函数的定义域是否关于原

点对称,若不对称,则该函数为非奇非偶函数.

第二,若定义域关于原点对称,函数表达式能化简的,则对函数进行适当的化简,以便于判断,化简时要保持定义域不改变;

第三,利用定义进行等价变形判断.

第四,分段函数应分段讨论,要注意据 x 的范围取相

应的函数表达式或利用图象判断.

2.分段函数 (2)判断奇偶性画图判断更方便直观.

(3)验证 f(-x)+ f(x)=0 更方便些.

温故知新 P13 知识辨析 2(1)(2)

(1) f ( x)log 2x x21

既不是奇函数也不是偶函数()

(2) f ( x)x 11x是偶函数()

1x

答案:( 1)奇函数( 2)非奇非偶

注意:

1、关注定义域

2、利用函数奇偶性定义的等价形式:

7

f ( x ) f ( x )0 (对数型函数用),

f ( x )

1(指数型函数用)

f ( x)

练习: ( 补充 ) 判断下列函数的奇偶性.

lg 1x2

(1) f ( x)

x22

(2) f ( x)x2x x0 x2x x0

(3) f ( x)3x2x23

(4) f ( x)x2x a2

(5) f ( x)2x1 2x1

答案:( 1)奇(2)偶( 3)既奇又偶

(4)a 0偶; a0 非奇非偶 f (a) f a

f (a)f a0

注意:否定函数奇偶性:

只须说明在定义域 D 中,

x0 D ,使f (x0 )f x0

(5)证明:函数 f x的定义域为 R,

8

且 f ( x)2x12

,所以2x

1

2x1

1

f ( x) f ( x) (1

2

) (1

222

) x x) 2 (2x12x 21211

2 (222x2(2x1)

x

12

x) 2

2

x 2 2 0

.

211

即 f ( x)f ( x) ,所以 f ( x) 是奇函数.

(二)函数奇偶性的应用

1、已知函数奇偶性,求值

例 1. ( 1)《名师一号》 P19 对点自测 4 (2)

1已知函数 f(x)为奇函数,且当 x>0 时, f(x)= x2+x,则 f(-1)=- 2.()

例 1.( 2) ( 补充 ) 已知函数f ( x )lg 1

x ,1x

若 f (a)1

,则 f (a) 等于()

.1

1

2

A B. C. 2 D.2

22

9

答案: B

注意: ( 补充 )

( 1) 一般关于 f (a) 与 f (

a) 的值或关系的问题

首先考虑奇偶性。

( 2) 已知函数的奇偶性注意利用

f x 与 f

x 的关系

温故知新 P23 第 3 题

( 2013 辽宁)已知函数 f ( x) log 2 1 9x 2

3x 1,

则 f (lg 2)

f (l

g 1

)

2

《名师一号》 P19 变式思考 1( 2)

f ( x) x

2

x 1

,若 f a

2

, 则 f

a

x 2 1

3

练习 : ( 补充 )

已知 f ( x) ax 7 bx 5 cx 3 dx 5 ,其中 a,b,c, d 为常数,

若 f ( 7) 7 ,则 f ( 7) _______

答案: 17

10

2、已知函数奇偶性,求参数的值或取值范围

例 1. 《名师一号》 P19对点自测 3

已知 f(x)= ax2+ bx 是定义在 [a-1,2a]上的偶函数,那么 a+b 的值是 ()

1111

A .-3 B.3 C.2D.-2

解析依题意 b=0,且 2a=- (a-1),

∴b= 0 且

1

a=3,则

1

a+ b=3.

例 2.《名师一号》 P20特色专题典例( 1)

k-2x

若函数 f(x)=1+k·2x在定义域上为奇函数,则实数 k= ___.

【规范解答】∵ f(- x)=

k- 2-x k·2x- 1

-x=x

+k

,1+k·22

∴f(- x)+ f(x)

k- 2x2x+ k +k·2x-1· 1+ k·2x

1+ k·2x2x+k

11

k2-122x+ 1

1+ k·2x2x+ k.

由f(-x)+f(x)= 0 可得 k2=1,∴ k=±1.

注意:本例易忽视函数f(x)的定义域,

直接通过计算 f(0)= 0 得 k= 1.

注意:

1、利用函数奇偶性的定义: f x与 f x 的关系,

也可以用定义的等价形式:

f ( x ) f ( x ) 0 (对数型函数用),

f ( x ) f (1(指数型函数用)

x)

2、利用特殊值 f (a) 与 f ( a) 的关系

得到关于待求参数的方程(组)求得参数

再利用奇偶性的定义证明

切记 : 若奇函数f ( x)的定义域包含0,则f (0)0 .

f (0)0 是 f ( x) 为奇函数的既不充分也不必要条件

练习 : ( 补充 )

1、已知 f (x) ax2bx 3a b 是偶函数,定义域为

12

[ a 1,2a] .则a,b

解:函数是偶函数,所以定义域关于原点对称.

∴ a 12a a 1

, b 0 3

、设函数x+1x+a

为奇函数,则 a=__

2f(x)=x

分析:∵ f(x)为奇函数,定义域为 {x|x∈R 且 x≠ 0},故对 ? x∈ R 且 x≠0 有 f(- x)=- f(x),从而

可取某个特殊值 (例如 x= 1)求解

解析:∵f(x)为奇函数,∴ f(-1)=- f(1),

∴a=- 1.

须检验 !

法二 :由定义求解

对? x∈ R 且 x≠0有 f(- x)=- f(x)恒成立

答案:- 1

3.定义在( 1,1)上的奇函数f (x)

x m

2,

x nx 1

则常数 m ____, n _____。

13

答案: m0 ; n 0 .

3、已知函数奇偶性,求解析式

例 1. 《名师一号》 P20 变式思考 2(2)

已知函数 y f (x) 在R是奇函数,且当x0 时,

f (x) x2x,则 f ( x) 的解析式为________

x 2x, x0

答案: f (x )0, x0

x 2x , x0

例2. ( 补充 )

设f(x)为奇函数, g(x)为偶函数,若 f(x)-g(x)=1

2x,

比较 f(1)、 g(0)、 g(- 2)的大小 ________.

分析:奇偶性讨论的就是f(-x)与 f(x)的关系,如果题目中涉及 x 与- x 的函数值之间的关系,一般考虑用奇

14

偶性解决.如果告诉了函数的奇偶性,应从 f(- x)=±f(x)入手.

解析: ∵f(x)为奇函数, g(x)为偶函数,

∴f(-x)=- f(x),g(-x)=g(x).

∴f(-x)-g(-x)=

1

-x

,即- f(x)-g(x)=2x .

2

2

x

-2x

f x -

g x =2

-x

f x =

,∴

2

-f x -g x = 2x

2

x

+ 2-x

g x =-

2

3

17

∴f(1)=- 4, g(0) =- 1,g(- 2)=- 8 , ∴g(-2)

注意:

已知函数的奇偶性注意利用 f x 与 f x 的关系

计时双基练 P220 培优 3 (三)抽象函数奇偶性

例 1. (补充 )若函数 f ( x) 是定义在 R 上的奇函数,

则函数 F ( x) f ( x) f ( x ) 的图象关于(

A. x 轴对称

B. y 轴对称

C.原点对称

D.以上均不对

15

答案: B

注意:

抽象函数奇偶性应立足定义,

即从考虑 f x 与 f x 的关系入手

例 2. (补充 ) 定义在 R 上的函数 y= f(x),

对任意实数 x1、 x2都有 f(x1+x2)=f(x1)+f(x2),

判断函数 y=f(x)的奇偶性,并证明.

解析:令 x1=x2=0 得, f(0)=f(0)+ f(0),

∴f(0)= 0.

令x1=x,x2=- x 得, f(0)= f(x)+f(-x)

∴f(- x)+ f(x)= 0,∴ f(x)是奇函数.

注意: ( 补充 )

抽象函数奇偶性、单调性判断(证明)均立足定义

1、抽象函数奇偶性判断(证明)

赋值法,从考虑 f x 与 f x 的关系入手

2、抽象函数的单调性判断(证明)

赋值法,在指定区间内任取x1x2,

从考虑 f ( x1 )、 f ( x2 ) 的大小关系入手

16

3、解决抽象函数时常可参照具体的模型函数来发现其性质或寻找思路,但绝对不能以具体的特殊函数来代替抽象的一般函数进行推理

抽象函数关系式相应的模型函数

f ( x y) f ( x) f ( y) f ( x y) f ( x) f ( y) f ( xy) f ( x) f ( y)f (x)kx

f (x) a x ( a0, a1)

f (x)lo

g a x(a0, a 1)

x

f (x) f ( y)

f ( )

y

f (x y) f ( x y) 2 f (x) f ( y) f ( xy) f ( x) f ( y)

f ( x

f (x) f ( y)

y)

f ( x) f ( y)

1

f (x)lo

g a x(a 0, a 1)

f (x)cos x

f (x)x n

f (x)tan x

练习: (补充 )

1、已知函数 f(x),当 x、y∈R 时,恒有 f(x+ y)=f(x)+f(y).(1)求证: f(x)是奇函数;

1

(2)如果 x>0 时, f(x)<0,并且 f(1)=- 2,

试求 f(x)在区间 [-2,6]上的最值.

17

解析: (1)证明:∵函数定义域为 R,∴在

f(x+y)= f(x)+f(y)中令 y=- x 得,

∴f(0)=f(x)+ f(- x).令 x= 0,

∴f(0)=f(0)+ f(0),∴ f(0)=0.

∴f(-x)=- f(x),

∴f(x)为奇函数.

(2)解:设 x1

则f(x2- x1)=f[x2+ (-x1)]= f(x2)+f(- x1)

=f(x2)- f(x1).

∵x2-x1>0,∴ f(x2-x1)<0.∴f(x2)- f(x1)<0.

即 f(x)在 R 上单调递减.

从而 f(x)在[- 2,6]上为减函数.∴f(-

2)为最大值, f(6)为最小值.

1

∵f(1)=- 2,∴ f(2)=f(1)+f(1)=- 1,

∴f(-2)=- f(2)= 1,

f(6)=2f(3)=2[f(1)+f(2)] =- 3.

∴所求 f(x)在区间 [-2,6]上的最大值为1,最小值为- 3.

2、已知函数 y=f(x)对任意 x、y∈R,均有

2

f(x)+ f(y)=f(x+ y),且当 x>0 时, f(x)<0, f(1)=-.

3

(1)判断并证明 f(x)在 R 上的单调性;

(2)求 f(x)在 [-3,3]上的最值.

18

解析: (1)f(x)在 R 上是单调递减函数

证明如下:

令 x =y =0,∴ f(0)= 0,令 y =- x 可得:

f(-x)=- f(x),

在 R 上任取 x 1、x 2 且 x 10,∴f(x 2)- f(x 1)=f(x 2)+f(-x 1)=f(x 2- x 1 ).

又∵ x>0 时, f(x)<0,

∴ f (x 2-x 1)<0,即 f(x 2)

由定义可知 f(x)在 R 上为单调递减函数.

(2)∵f(x)在 R 上是减函数,

∴ f(x)在[- 3,3]上也是减函数.∴ f(- 3)最大, f(3)最

小.f(3)=f(2)+f(1)=f(1)+ f(1)+f(1)

=3×2

=- 2.

3

∴ f (-3)=- f(3)=2.

即 f(x)在 [- 3,3]上最大值为 2,最小值为- 2.

(四)函数的周期性

例 1. 《名师一号》 P19

对点自测

5

已知定义在

R 上的函数

f(x)满足 3

f(x)=- f x +2 ,且

f(1)= 2,则 f(2 014)=________.

19

3

解析 ∵f(x)=- f x +2 ,

∴f(x +3)= f x +

3

+3

=- f x + 3 = f(x). ∴f(x)是以 3 2 2 2

为周期的周期函数. 则 f(2 014)=f(671 ×3+1)=f(1)= 2.

(五)函数奇偶性、单调性、周期性的综合应用

例 1. (补充 )

定义在 R 上的偶函数 f(x)满足:对任意的 x ,x

∈ (-∞,

1 2 0](x 1≠x 2),有 f x 2 -f x 1

>0.则 f(- 2),f(1),f(3)从小到大

x 2-x 1

的顺序是 ________.

f x 2 - f x 1

解析:由 >0 知 f(x)在 (-∞ ,0]上单调递增,

x 2- x 1

又 f(x)是偶函数,

故 f(x)在(0,+ ∞ ]上单调递减,

∵3>2>1>0,∴f(3)

又 f(x)为偶函数,∴ f(3)

20

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

基本初等函数专项训练经典题

一、简答题 1、设. (1)判断函数的奇偶性; (2)求函数的定义域和值域. 2、设函数 (Ⅰ)讨论的单调性; (Ⅱ)求在区间的最大值和最小值. 3、已知函数f(x)=x2+2ax+1(a∈R),f′(x)是f(x)的导函数. (1)若x∈[-2,-1],不等式f(x)≤f′(x)恒成立,求a的取值范围; (2)解关于x的方程f(x)=|f′(x)|; (3)设函数g(x)=,求g(x)在x∈[2,4]时的最小值. 4、经市场调查,某旅游城市在过去的一个月内(以30天计),旅游人数f(t)(万人)与时间t(天)的函数关系近似满足f(t)=4+,人均消费g(t)(元)与时间t(天)的函数关系近似满足g(t)=115-|t-15|. (1)求该城市的旅游日收益w(t)(万元)与时间t(1≤t≤30,t∈N*)的函数关系式; (2)求该城市旅游日收益的最小值(万元). 5、某商场对A品牌的商品进行了市场调查,预计2012年从1月起前x个月顾客对A品牌的商品的需求总量P(x)件与月份x的近似关系是: P(x)=x(x+1)(41-2x)(x≤12且x∈N*)

(1)写出第x月的需求量f(x)的表达式; (2)若第x月的销售量g(x)= (单位:件),每件利润q(x)元与月份x的近似关系为:q(x)=,问:该商场销售A品牌商品,预计第几月的月利润达到最大值?月利润最大值是多少?(e6≈403) 6、已知函数f(x)=x2-(1+2a)x+a ln x(a为常数). (1)当a=-1时,求曲线y=f(x)在x=1处切线的方程; (2)当a>0时,讨论函数y=f(x)在区间(0,1)上的单调性,并写出相应的单调区间. 7、某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:资金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%. (1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y=+2是否符合公司要求的奖励函数模型,并说明原因; (2)若该公司采用模型函数y=作为奖励函数模型,试确定最小的正整数a的值. 8、已知函数图象上一点P(2,f(2))处的切线方程为. (Ⅰ)求的值; (Ⅱ)若方程在内有两个不等实根,求的取值范围(其中为自然对数的底,); (Ⅲ)令,如果图象与轴交于,AB中点为,求 证:. 9、已知命题p:函数y=log a(1-2x)在定义域上单调递增;命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x 恒成立.若p∨q是真命题,求实数a的取值范围.

《函数的奇偶性与周期性》教案

教学过程 一、课堂导入 我们生活在美的世界中,有过许多对美的感受,请想一下有哪些美? 对于对称美,请想一下哪些事物给过你对称美的感觉呢? 生活中的美引入我们的数学领域中,它又是怎样的情况呢?若给它适当地建立直角坐标系,那么会发现什么特点? 数学中对称的形式也很多,这节课我们就来复习在坐标系中对称的函数

二、复习预习 1、复习单调性的概念 2、复习初中的轴对称和中心对称 3、预习奇偶性的概念 4、预习奇偶性的应用

三、知识讲解 考点1 函数的奇偶性 [探究] 1. 提示:定义域关于原点对称,必要不充分条件. 2.若f(x)是奇函数且在x=0处有定义,是否有f(0)=0?如果是偶函数呢? 提示:如果f(x)是奇函数时,f(0)=-f(0),则f(0)=0;如果f(x)是偶函数时,f(0)不一定为0,如f(x)=x2+1. 3.是否存在既是奇函数又是偶函数的函数?若有,有多少个? 提示:存在,如f(x)=0,定义域是关于原点对称的任意一个数集,这样的函数有无穷多个.

考点2 周期性 (1)周期函数: 对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y =f(x)为周期函数,称T为这个函数的周期. (2)最小正周期: 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.

四、例题精析 【例题1】 【题干】判断下列函数的奇偶性 (1)f(x)=lg 1-x 1+x ;(2)f(x)= ? ? ?x2+x(x>0), x2-x(x<0); (3)f(x)= lg(1-x2) |x2-2|-2 .

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

第招 如何判断函数的奇偶性

第11招 如何判断函数的奇偶性? 判断函数的奇偶性(有的还牵涉三角函数)是高考中常考的知识点,一般以选择题形式出现. 解法指导与经典范例 (一) 判断函数奇偶性的方法 1. 定义法 这是最常用的方法.其解法步骤如下:(1)确定函数的定义域是否是关于原点的对称区间.若不是,可判断该函数是非奇非偶函数.若是,再按下列步骤继续进行.(2)在定义域内任取x ,以-x 代换f(x)中的x 得f(-x).(3)依据定义得出结论. 注意:(1)既是奇函数又是偶函数的函数只能是f(x)=0. (2)若奇函数f(x)在x=0处有定义,则f(0)=0.(如例6证一) 【例1】函数 ()()是x x x x f +-? +=11( ). A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D0非奇非偶函数 解 (]()() 的奇偶性】判断函数【例原点对称的区间由于这定义域不是关于想)的定义域为函数得?????>+-<+=-≤<-≥+-00)(2. .1,19,1101122x x x x x x x f f x x x 解 当x<0时,-x>0,()()() ().)(22x f x x x x x f -=+-=-+--=-∴ 而当x>0时,-x<0,()()()()x f x x x x x f -=-=-+-=-∴22 ()()()()().,,00,为奇函数故都有对任意x f x f x f x =-+∞∞-∈∴ 【例3】2002.北京文三(22)已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b R ∈都满足:()()().a bf b af b a f +=? (1) 求f(0)、f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论. 解(1)()()()()()()=?==?+?=?=111.00000000f f f f f f ()()1111f f ?+? ()f f ∴=,12(1)=0. (2)f(x)是奇函数.证明如下: ()()()[]()()()()().01.01,1211111=-∴=--=----=-?-=f f f f f f f 而 又 ()()()()()().,11是奇函数x f x f xf x f x f x f ∴-=-+-=?-=- 2. 利用定义的等价命题来判断 ()()()()()().00是偶函数是奇函数;x f x f x f x f x f x f ?=--?=-+ 或:当()()()()()() ().110是偶函数是奇函数;时, x f x f x f x f x f x f x f ?=-?-=-≠

(完整版)函数奇偶性知识点和经典题型归纳

函数奇偶性 知识梳理 1. 奇函数、偶函数的定义 (1)奇函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=-, 则这个函数叫奇函数. (2)偶函数:设函数()y f x =的定义域为D ,如果对D 内的任意一个x ,都有()()f x f x -=, 则这个函数叫做偶函数. (3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性. (4)非奇非偶函数:无奇偶性的函数是非奇非偶函数. 注意:(1)奇函数若在0x =时有定义,则(0)0f =. (2)若()0f x =且()f x 的定义域关于原点对称,则()f x 既是奇函数又是偶函数. 2.奇(偶)函数的基本性质 (1)对称性:奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)单调性:奇函数在其对称区间上的单调性相同,偶函数在其对称区间上的单调性相反. 3. 判断函数奇偶性的方法 (1)图像法 (2)定义法 ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f(-x)与f(x)的关系; ○ 3 作出相应结论: 若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数; 若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 例题精讲 【例1】若函数2()f x ax bx =+是偶函数,求b 的值. 解:∵函数 f (x )=ax 2+bx 是偶函数, ∴f (-x )=f (x ).∴ax 2+bx= ax 2-bx. ∴2bx=0. ∴b =0. 【例3】已知函数21()f x x =在y 轴左边的图象如下图所示,画出它右边的图象. 题型一 判断函数的奇偶性 【例4】判断下列函数的奇偶性. (1)2()||(1)f x x x =+; (2)1()f x x x =;

函数的奇偶性-知识点及习题

函数的奇偶性 一、关于函数的奇偶性的定义 一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就称偶函数; 一般地,如果对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就称奇函数; 二、函数的奇偶性的几个性质 1、对称性:奇(偶)函数的定义域关于原点对称; 2、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; 3、可逆性:)()(x f x f =-?)(x f 是偶函数;)()(x f x f -=-?)(x f 奇函数; 4、等价性: )()(x f x f =-?0)()(=--x f x f (||)()f x f x ?=()() 1=-? x f x f ;)()(x f x f -=-?0)()(=+-x f x f ()()1-=-?x f x f ; 5、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; 6、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。 7、设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇±奇=奇(函数) 偶±偶=偶(函数) 奇×奇=偶(函数) 偶×偶=偶(函数)奇×偶=奇(函数) 8、多项式函数110()n n n n P x a x a x a --=+++的奇偶性 多项式函数()P x 是奇函数?()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数?()P x 的奇次项(即偶数项)的系数全为零. 9、复合函数[])(x g f y =的奇偶性 若函数[])(),(),(x g f x g x f 的定义域都是关于原点对称的,那么由 )(),(u f y x g u ==的奇偶性得到)(x g f y =的奇偶性的规律是: )(x g u =)(u f y =. 三、函数的奇偶性的判断

高中数学知识点:函数的奇偶性概念及判断步骤

高中数学知识点:函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:()()()0,1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:()()()01(()0)()f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数.

3.用定义判断函数奇偶性的步骤 (1)求函数() f x的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数() f x的解析式; f x的定义域,化简函数() (3)求() f x f x的 -与() f x之间的关系,判断函数() -,可根据() f x 奇偶性. 若() f x,则() f x是奇函数; f x -=-() 若() f x是偶函数; f x,则() -=() f x 若() f x f x既不是奇函数,也不是偶函数; ≠±,则() -() f x 若() -=-() f x既是奇函数,又 f x f x,则() f x f x -() =且() 是偶函数

《函数的单调性和奇偶性》经典例题

经典例题透析 类型一、函数的单调性的证明 1.证明函数上的单调性. 证明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x1>0 则 ∵x1>0,x2>0,∴∴上式<0,∴△y=f(x2)-f(x1)<0 ∴上递减. 总结升华: [1]证明函数单调性要求使用定义; [2]如何比较两个量的大小?(作差) [3]如何判断一个式子的符号?(对差适当变形) 举一反三: 【变式1】用定义证明函数上是减函数. 思路点拨:本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x1,x2是区间上的任意实数,且x10 ∴x1f(x2) 上是减函数. 总结升华:可以用同样的方法证明此函数在上是增函数;在今后的学习中经常会碰到这个函数,在此可以尝试利用函数的单调性大致给出函数的图象.

类型二、求函数的单调区间 2. 判断下列函数的单调区间; (1)y=x2-3|x|+2;(2) 解:(1)由图象对称性,画出草图 ∴f(x)在上递减,在上递减,在上递增. (2) ∴图象为 ∴f(x)在上递增. 举一反三: 【变式1】求下列函数的单调区间: (1)y=|x+1|;(2)(3). 解:(1)画出函数图象, ∴函数的减区间为,函数的增区间为(-1,+∞); (2)定义域为,其中u=2x-1为增函数,

在(-∞,0)与(0,+∞)为减函数,则上为减函数; (3)定义域为(-∞,0)∪(0,+∞),单调增区间为:(-∞,0),单调减区间为(0,+∞). 总结升华: [1]数形结合利用图象判断函数单调区间; [2]关于二次函数单调区间问题,单调性变化的点与对称轴相关. [3]复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化→复合函数为增函数;内外层函数反向变化→复合函数为减函数. 类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值) 3. 已知函数f(x)在(0,+∞)上是减函数,比较f(a2-a+1)与的大小. 解:又f(x)在(0,+∞)上是减函数,则. 4. 求下列函数值域: (1);1)x∈[5,10];2)x∈(-3,-2)∪(-2,1); (2)y=x2-2x+3;1)x∈[-1,1];2)x∈[-2,2]. 思路点拨:(1)可应用函数的单调性;(2)数形结合. 解:(1)2个单位,再上移2个单位得到,如图 1)f(x)在[5,10]上单增,;

函数的奇偶性与周期性练习题

函数的奇偶性与周期性 1.奇函数f (x )的定义域为R ,若f (x +2)为偶函数,则f (1)=1,则f (8)+f (9)= ( ) A. -2 B.-1 C. 0 D. 1 2.在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π +=x y ,④)42tan(π -=x y 中,最小正周期为π的所有函数为 A.①②③ B. ①③④ C. ②④ D. ①③ 3.设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是 A. )()(x g x f 是偶函数 B. )(|)(|x g x f 是奇函数 C. |)(|)(x g x f 是奇函数 D. |)()(|x g x f 是奇函数 4.已知()f x 是定义在R 上的奇函数,且是以2为周期的周期函数,若当(]0,1x ∈时 2()1f x x =-,则7()2 f 的值为 A 34- B 34 C 12- D 12 5.下列函数为偶函数的是 A. sin y x = B. 3y x = C. x y e = D. y = 6.设()f x 是周期为2的奇函数,当0≤x ≤1时,()f x =2(1)x x -,则5 ()2f -= (A) -12 (B)1 4- (C)14 (D)12 7.下列函数中,既是偶函数又在()0,+∞单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 8.下列函数为偶函数的是() A.()1f x x =- B.()2f x x x =+ C.()22x x f x -=- D.()22x x f x -=+ 9.偶函数y=f(x)的图像关于直线x=2对称,f(3)=3,则f(-1)=_______. 10.函数)4)(()(-+=x a x x f 为偶函数,则实数a = . 11.已知()f x 为奇函数,()()9,(2)3,(2)g x f x g f =+-==则 .

函数的奇偶性与周期性 知识点与题型归纳

1.结合具体函数,了解函数奇偶性的含义. 2.会运用函数的图象理解和研究函数的奇偶性. 3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性. ★备考知考情 1.对函数奇偶性的考查,主要涉及函数奇偶性的判断,利用奇偶函数图象的特点解决相关问题,利用函数奇偶性求函数值,根据函数奇偶性求参数值等. 2.常与函数的求值及其图象、单调性、对称性、零点等知识交汇命题. 3.多以选择题、填空题的形式出现. 一、知识梳理《名师一号》P18 注意: 研究函数奇偶性必须先求函数的定义域 知识点一函数的奇偶性的概念与图象特征 1.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=f(x),那么函数f(x)就叫做偶函数. 2.一般地,如果对于函数f(x)的定义域内任意一个x, 都有f(-x)=-f(x),那么函数f(x)就叫做奇函数. 1

2 3.奇函数的图象关于原点对称; 偶函数的图象关于y 轴对称. 知识点二 奇函数、偶函数的性质 1.奇函数在关于原点对称的区间上的单调性相同, 偶函数在关于原点对称的区间上的单调性相反. 2. 若f (x )是奇函数,且在x =0处有定义,则(0)0=f . 3. 若f (x )为偶函数,则()()(||)f x f x f x =-=. 《名师一号》P19 问题探究 问题1 奇函数与偶函数的定义域有什么特点? (1)判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. (2)判断函数f (x )的奇偶性时,必须对定义域内的 每一个x , 均有f (-x )=-f (x )、f (-x )=f (x ), 而不能说存在x 0使f (-x 0)=-f (x 0)、f (-x 0)=f (x 0). (补充) 1、若奇函数()f x 的定义域包含0,则(0)0=f . (0)0=f 是()f x 为奇函数的 既不充分也不必要条件 2.判断函数的奇偶性的方法 (1)定义法: 1)首先要研究函数的定义域,

最新函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2)(,(2) x x x f -=3)( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。

奇偶性的典型例题

函数的奇偶性 一、关于函数的奇偶性的定义 定义说明:对于函数)(x f 的定义域内任意一个x : ⑴)()(x f x f =- ?)(x f 是偶函数; ⑵)()(x f x f -=-?)(x f 奇函数; 函数的定义域关于原点对称是函数为奇(偶)函数的必要不充分条件。 二、函数的奇偶性的几个性质 ①、对称性:奇(偶)函数的定义域关于原点对称; ②、整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③、可逆性: )()(x f x f =- ?)(x f 是偶函数; )()(x f x f -=-?)(x f 奇函数; ④、等价性:)()(x f x f =-?0)()(=--x f x f )()(x f x f -=-?0)()(=+-x f x f ⑤、奇函数的图像关于原点对称,偶函数的图像关于y 轴对称; ⑥、可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、 非奇非偶函数。 三、函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x

⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分 条件。 此命题正确。如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。 命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。 此命题错误。一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。 命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。 此命题错误。一方面,对于函数|f(x)|=? ??<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。 命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶 函数。

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0-x f x f x f x f 或; ⑸根据定义下结论。 例2、判断函数1 2)(-+= x x x f 在)0,(-∞上的单调性并加以证明.

5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表: 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。 例3:函数322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞ 6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数1 2-= x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1) ()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤 ⑴先求定义域,看是否关于原点对称; ⑵再判断)()(x f x f -=-或)()(x f x f =- 是否恒成立。

函数的奇偶性知识点

函数的奇偶性 1.偶函数: 如果对于f(x)定义域内的任意一个x,都有f(-x)=f(x), 那么函数f(x)就叫偶函数. 奇函数: 如果对于f(x)定义域内的任意一个x,都有f(-x)=-f(x) ,那么函数f(x)就叫奇函数. 奇函数的图象关于原点对称;偶函数的图象关于y轴对称 判断函数的奇偶性,包括两个必备条件:一是定义域关于原点对称,先考虑定义域是解决问题的前提,如果一个函数的定义域关于坐标原点不对称,那么这个函数就失去了是奇函数或是偶函数的条件;二是判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立. 利用定义判断函数奇偶性的格式步骤:(1)首先确定函数的定义域,并判断其定义域是否关于原点对称;(2)确定f(-x)与f(x)的关系;(3)作出相应结论. 说明:根据奇偶性,函数可划分为四类:①偶函数②奇函数③既奇又偶函数④非奇非偶函数 2.奇函数的性质:○1定义域关于原点对称;○2f(-x)=-f(x)或f(-x)+f(x)=0;○3图象关于原点对称;○4在关于原点对称的区间上具有相同的单调性;○5如果0在f(x)的定义域内,则一定有f(0)=0 偶函数的性质:○1定义域关于原点对称;○2f(-x)=f(x)或f(-x)-f(x)=0;○3图象关于y轴对称;○4在关于原点对称的区间上具有相反的单调性;○5如果一个函数既是奇函数有是偶函数,那么有f(x)=0 3.判断函数的奇偶性为什么要判断定义域在x轴上所示的区间是否关于原点对称呢?答:由定义知,若x是定义域内的一个元素,-x也一定是定义域内的一个元素,所以函数y=f(x)具有奇偶性的一个必不可少的条件是:定义域在x轴上所示的区间关于原点对称.即:如果所给函数的定义域在x轴上所示的区间不是关于原点对称,这个函数一定不具有奇偶性.例如:函数f(x)=x3在R上是奇函数,但在[-2,1]上既不是奇函数也不是偶函数. 4.函数奇偶性的判断:定义域关于原点对称是函数具有奇偶性的前提条件。判断函数的奇偶性,首先要检验其定义域是否关于原点对称,若关于原点对称,再严格按照奇偶性的定义或其等价形式进行推理判断.函数定义域影响奇偶性,若首先求得定义域不关于原点对称,则该函数为非奇非偶函数; 判断函数的奇偶性,一般都按照定义严格进行,一般步骤是: (1)考查定义域是否关于原点对称; (2)考查表达式f(-x)是否等于f(x)或-f(x): 若f(-x)= - f(x),则f(x)为奇函数; 若f(-x)= f(x),则f(x)为偶函数; 若f(-x)= f(x),且f(-x)=- f(x),则f(x)既是奇函数又是偶函数; 若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既不是奇函数又不是偶函数,即非奇非偶函数. 5.函数奇偶性定义的理解:(1)函数的奇偶性与单调性的差异.奇偶性是函数在定义域上的对称性,单调性是反映函数在某一区间上函数值的变化趋势.奇偶性是相对于函数的整个定义域来说的,这一点与函数的单调性不同,从这个意义上来讲,函数的单调性是函数的“局部”性质,而奇偶性是函数的“整体”性质,只有对定义域中的每一个x,都有f(-x)=-f(x)[或f(-x)=f(x)],才能说f(x)是奇(偶)函数.(2)定义域关于原点对称是函数具有奇偶性的前提条件.由函数奇偶性的定义知,若x是定义域中的一个数值,则-x必然在定义域中,因此,函数y=f(x)是奇函数或偶函数的一个必不可少的条件是定义域在数轴上所示的区间关于原点对称.换言之,若所给函数的定义域不关于原点对称,则函数一定不具有奇偶性.如函数y=2x在(-∞,+∞)上是奇函数,但在[-2,3] 上则无奇偶性可言.(3)既奇又偶函数的表达式是f(x)=0,x∈A,定义域A是关于原点对称的非空数集.(4)若奇函数在原点处有定义,则有f(0)=0. 6.奇、偶函数的图象特征:(1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形.反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数.(2)如果一个函数是偶函数,则这个函数的图象关于y轴成轴对称图形.反之,如果一个函数的图象关于y轴成轴对称图形,

相关主题
文本预览
相关文档 最新文档