当前位置:文档之家› 转载 图像处理中不适定问题

转载 图像处理中不适定问题

转载 图像处理中不适定问题
转载 图像处理中不适定问题

转载图像处理中不适定问题

原文地址:图像处理中不适定问题作者:天天向上图像处理中不适定问题(ill posed problem)或称为反问题(inverse Problem)的研究从20世纪末成为国际上的热点问题,成为现代数学家、计算机视觉和图像处理学者广为关注的

研究领域。数学和物理上的反问题的研究由来已久,法国数学家阿达马早在19

世纪就提出了不适定问题的概念:称一个数学物理定解问题的解存在、唯一并

且稳定的则称该问题是适定的(Well Posed).如果不满足适定性概念中的上述判据中的一条或几条,称该问题是不适定的。典型的图像处理不适定问题包括:

图像去噪(Image De-nosing),图像恢复(Image Restorsion),图像放大(Image Zooming),图像修补(Image Inpainting),图像去马赛克(image Demosaicing),图像超分辨(Image super-resolution)等。迄今为止,人们已经提出许多方法

来解决图像处理中的不适定性。但是如何进一步刻画图像的边缘、纹理和角形

等图像中重要视觉几何结构,提高该类方法在噪声抑制基础上有效保持结构和

纹理能力是有待深入研究的问题。1不适定图像处理问题的国内外研究现状评

述由于图像处理中的反问题往往是不适定的。解决不适定性的有效途径是在图

像处理中引入关于图像的先验信息。因此图像的先验模型对于图像反问题和其

它计算机视觉还是图像处理问题至关重要。对于图像的先验模型的研究,研究

者们从多个角度进行研究,其代表主要有"统计方法"和"正则化几何建模方法","稀疏表示方法"三种主流方法,而最近兴起的图像形态分量分析(MCA)方法吸引了大批国内外研究者的广泛关注。1.1正则化几何模型日新月异关于自然图像

建模的"正则化几何方法"是最近几年热点讨论的主题。其中一类方法是利用偏

微分方程理论建立图像处理模型,目前的发展趋势是从有选择性非线性扩散的

角度设计各类低阶、高阶或者低阶与高阶综合的偏微分方程,或者从实扩散向复扩散推广,从空域向空频域相结合以及不同奇异性结构的综合处理[1]。另一类

方法是基于能量泛函最优的变分方法。1992年,Rudin-Osher-Fatemi提出图像能被分解为一个属于有界变差空间的分量和一个属于的分量的全变差模型[2]。根据国际上及本人的研究表明:ROF模型模型较好地刻画了图像中视觉重要边

缘结构,但不能描述纹理信息。2001年Meyer提出了振荡模式分解理论[2]:

他认为振荡分量可以表示为某个向量函数的散度形式,而振荡分量可以属于3

个可能的函数空间。首先引入有界变差(bounded variational,BV)空间的一个

近似对偶空间来表征图像的振荡分量;Meyer进一步指出John-Nirenberg的有

界均值振荡空间和齐性Besov空间都是振荡分量比较合适的函数空间,由此导

出了将图像分解的(BV,G)模型,(BV,F)模型和(BV,E)模型。Meyer从理论上基本

解决了振荡分量的理论框架,成为纹理等振荡模式分解的奠基性工作,但是原

始模型比较难计算。后来的学者大都在Meyer工作的基础上展开工作。Vese-Osher提出将振荡分量建模为的向量场的散度来逼近(BV,G)模型[3],实质上是

将G空间近似为负Soblev空间[4]。L.Lieu和L.Vese进一步推广到分数阶负Soblev空间[5]。Aujol,Chamboll等人定义了G-空间中的一个子空间,并根据Chamboll早期提出的ROF模型的投影算法的基础上,提出图像的振荡分量是在

该子空间上的投影分量,由此提出了著名的BV空间半范+G空间范数+L2范数约束优化的A2BC模型及子空间投影算法[6-7]。J.B.Garnet,

T.M.Le,Y.Meyer,L.A.Vese提出更一般的齐性Besov空间来刻画振荡分量[8]。

最近,J.Aujol,A.Chamboll分别对TV范数、G范数、F范数、E范数,L 2范

数对图像的卡通图像、纹理分量、高斯噪声进行数理统计和相关性分析,提出

了分别运用TV范数、G范数和E范数分别来约束图像的卡通分量、纹理分量和

噪声分量的三分量图像分解模型[9]。2007年,G.Gilboa和S.Osher受提出了

非局部化G-空间的概念,并概括性的初步提出了非局部ROF模型、非局部

Meyer模型、非局部ROF+L1模型[10],从理论上提供了图像先验模型研究的新

思路。但综合目前研究来看,变分方法的主要不足是对于纹理和噪声的刻画还

不够精细。1.2稀疏表示方兴未艾图像的稀疏表示问题最早源于"有效编码假说"。Attneave最先提出:视觉感知的目标就是产生一个外部输入信号的有效表示。在神经生物学领域Barlow基于信息论提出了"有效编码假设",认为初级视皮层神经细胞的主要功能就是去除输入刺激的统计相关性[11]。"有效编码假设"被提出以后,很多研究人员根据它的思想提出了不同的理论。主要思路分为两大类。直接方法是机理测试方法,即从生物机理上,在自然图像刺激条件下检

测神经细胞的响应特性。著名的工作如:2001年在《Nature》上发表的研究结

果表明,在冗余性测度和自然刺激条件下一组视网膜神经节对外界刺激独立编

码[12];2000年在《Science》上发表了类似的成果[13]:通过记录短尾猿V1

区神经细胞在开放的自然场景和模拟自然场景条件下的神经细胞响应,验证了

视皮层(V1区)神经细胞用稀疏编码有效表示自然场景,稀疏编码用最小冗余度

传递信息。另外一个替代的方法是模型仿真方法,即利用自然图像的统计特性,建立模型模拟早期视觉处理系统的处理机制。例如Olshausen和Field[14]提

出了稀疏编码模型,稀疏编码理论表明,通过寻找自然图像的稀疏编码表示,

该神经网络可以学习得到类似于简单细胞感受野的结构。Bell提出了基于信息

最大化的无监督算法,通过度量"因子"的联合信息熵并且使之最大化,扩展了

独立成分分析(ICA)方法,成功地构建有效编码模型并得到了与上面类似的结果[15]。Hyvarinen更进一步,应用一个两层的稀疏编码模型构造出类似于复杂

细胞响应特性的基函数,而且基函数集合形成一个有规律的拓扑结构[16]。这

部分表明有效编码假设也可适用于视觉系统高级区域神经细胞的处理过程。目

前关于图像稀疏表示系统的研究大体上沿着两条主线展开。其中一条是沿着多

尺度几何分析理论。研究者认为图像的非平稳性和非高斯性,很难用线性算法

进行处理,而应该建立合适的能够处理边缘到纹理各层面几何结构的图像模型;二维图像中的性状奇异性边缘和3-D图像中丝状物(filaments)和管状物(tubes)几何特征不能被各向同性的"方块基"(如小波基)表示,而最优或者"最稀疏"的

函数表示方法应该由各向异性的"锲形基"表征。因此以Ridgelet、Curvelet、Bandlet,Contourlet变换为代表的多尺度几何分析[16-22]理论成为图像稀疏

表示的有效途径。图2.1.1(a)给出了二维可分离小波在不同分辨率下逼近曲线

的过程,随着分辨率升高,尺度变细,最终表现为使用众多的"点"来逼近曲线。与小波相比,contourlet不仅具有小波的多分辨率特性和时频局部化特性,还

具有很好的方向性和各向异性,即在尺度j时,小波基的支撑域边长近似为,

而Contourlet的在该尺度下的基函数支撑域的纵横比可以任意选择。图

2.1.1(b)为用Contourlet基函数的支撑域来逼近曲线的过程,由于它的基函数的支撑域表现为"长方形",因而是一种更为有效稀疏的表示法。与二维可分离

小波基函数的方向支撑域的各向同性不同,Contourlet基的"长方形"支撑域表

现出来的是各向异性(anisotropy)的特点。上述稀疏表示方法都是采用"单一基",另外一条图像稀疏表示的途径是:基函数被称之为原子库的过完备的冗余系统取代。Mallat和Zhang于1993年首先提出了信号在过完备库(over-

complete dictionary)上分解的思想[23].通过信号在过完备库上的分解,用来

表示信号的基可自适应地根据信号本身的特点灵活选取以得到信号非常稀疏的

表示.后来人们提出了诸如基追踪算法、匹配追踪算法(MP)、正交匹配追踪算法(OMP)、混合匹配追踪算法(HMP)及许多变种。涉及的原子包括多尺度Gabor函数,各向异性的精细原子,小波和正弦函数的级联[24-15]等,并通过训练方法获得结构和纹理分量稀疏表示字典[26-28]。目前图像稀疏表示的研究也引起国内众多研究者的关注。中科院杨谦、汪云九等人,中科院计算所史忠植研究员,

西安电子科技大学的焦李成教授、华南理工大学谢胜利教授,西南交通大学尹

忠科教授等,南京理工大学韦志辉教授,肖亮博士等纷纷展开了稀疏表示的相

关问题的研究。目前图像稀疏表示的研究成为近3年国内众多研究者关注的热

点问题,根据中国期刊全文数据库的检索来看,在2004年之前几乎没有相关报道,而从2004年1月至2008年2月,中国期刊发表的图像稀疏表示与多尺度

几和分析应用方面的论文达到187篇,其中关于Ridgelet 56篇,关于Contourlet 63篇,关于Curvelet 34篇,关于过完备稀疏表示34篇。西安电

子科技大学的焦李成教授、华南理工大学谢胜利教授,西安交通大学尹忠科教授、国防科技大学王正明、教授及课题组成员等纷纷展开了基于稀疏表示的相

关应用问题的研究[29-33]。本文作者在基于多尺度几何分析的图像增强、去噪、融合、边缘检测、感知压缩和数字水印等展开了相关应用研究,研究结果表明,基于稀疏表示的形态分量分解理论能够很好的捕获图像的几何特征,在图像建

模和处理方面具有先天优势。但是综观国内的这些研究还与国外原创性成果具

有很大差距。特别在稀疏表示字典的构造、高效稀疏分解算法、稀疏性重建等

层面均有大量工作可做。1.3形态分量分析暂露头角MCA方法是国际著名学者

J.-L.Starck,M.Elad,D.L.Donoho在2004年提出的一种将图像分解为"几何结构"、"纹理"、"噪声"的形态分量分解方法[34]。该方法与混叠信号盲分离在本质上近乎相同,和独立分量分析(ICA)具有紧密联系。在MCA提出之前,图像分解的研究如火如荼。主要包括"基于稀疏表示的图像分解"和"基于变分方法的图像分解"。MCA方法较好的结合了变分方法和稀疏表示方法两类图像分解的优点,为不适定图像处理问题提供了良好的处理机制。首先从关于图像形态分量分解

的变分方法来看,国际上研究的研究朝着对图像结构和纹理等形态成分刻画更

精细、计算更简单的方向发展。图像分解的(BV,G)模型,(BV,F)模型和(BV,E)模型在本质上就是一种形态分量分析方法。与基于变分方法的图像分解处理思路

不同,J.L.Stack,M.Elad和D.L.Donoho的MCA框架中,一个重要的假设是图

像的几何结构和纹理分量在某个特定的基库或过完备子字典下是类内稀疏的,

而各形态分量稀疏表示的基库或过完备子字典之间具有不相干性。通过关于结

构分量和纹理分量的分类稀疏表示稀疏的强稀疏性(l0范数或l1范数度量)达

到图像形态分量的有效分离。由于目前所涉及的稀疏表示系统有三类:正交系

统(如DCT,DWT);冗余系统(如Curvelet,Contoulet);过完备字典(如AR-

Gauss混合字典)。随着稀疏表示理论的发展,通过不同的分类稀疏表示字典、

稀疏性度量和正则化方法,可以导出不同的图像形态分量分析算法[35]。之后

学者们对MCA中形态成分稀疏性和多样性[36]、自适应投影阈值选取[37]等问题作了研究,并推广到多通道情形[38]。1.4统计模型经久不衰关于自然图像"统计建模方法"的研究由来已久。早期的研究工作,很大程度上受David Field 在20世纪80年代中期的一个重要发现所推动:自然图像的滤波器响应总是呈现出较大的峰度的统计性质[39]。经典小波分析之所以在信号和图像处理中取得重大成功,一个比较重要的因素是对小波变换域统计模型的研究取得重大进展,主要包括小波域的MRF模型,小波域隐马尔科夫模型和分层隐马尔科夫模型等。随着多尺度几何分析的兴起,人们对于Ridgelet、Curvelet、Bandlet,Contourlet变换域的统计模型相当关注。事实上,稀疏表示系数的直方图的峰度要远远大于3,呈现明显的非高斯性,这表明非高斯性蕴含图像的本质特性。例如,对Cameraman图像的Contourlet系数进行分析。观察上面的分布可以发现,Contourlet系数呈现明显的重尾分布。考察直方图的峰度(Kurtosis)经计算,峰度值远远大于典型的高斯分布Kurtosis值(大约为3)。许多单变量先验模型比如广义高斯模型、学生t-distribution模型已经被成功地用于自然图像的小波系数的这种非高斯统计特性。最近,学者们开始关注自然图像滤波器响应的联合统计行为。Zhu S.C较为全面的论述了自然图像视觉模式的四种主流的统计研究方法,并从信号的稀疏表示出发论述了包括多个Markov随机场模型及其变种[40]。焦李成等比较研究了多尺度变换域包括隐马尔科夫树(HMT)、背景隐马尔科夫模型(CHMM)等在内的10种统计模型[41]。[1]A.Buades,B.Coll,J.M.Morel,A review of image denoising algorithms,with anew one.Multiscale Modeling and

Simulation,2005,4(2)490-530.[2]L.Rudin,S.Osher,E.Fatemi,Nonlinear total variation based noise removal algorithms,Physica D,1992,60:259-268.[3]Y.Meyer,Oscillating Patterns in Image Processing and Nonlinear Evolution Equations,University.Lecture

Series,Vol.22,Amer.Math.Soc.,2001.[4]L.A.Vese,and S.J.Osher,Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions.Journal of Mathematical Imaging and

Vision,2004,20(1):7-18.[5]S.Osher,A.Sole,and L.Vese,Image Decomposition and Restoration Using Total Variation Minimization and the H1 Norm.Multiscale Modeling and Simulation,2003,1(3):349-

370.[6]L.Lieu and L.Vese,Image Restoration and Decomposition via

Bounded Variation and Negative Hilbert-Sobolev Spaces,UCLA CAM Report,05-33,May 2005.[7]J.F.Aujol,G.Aubert,L.Blanc-Feraud,and

A.Chambolle,Image decomposition into abounded variation component and an oscillating component,Journal of Mathematical Imaging and

Vision,2005,22(1):71-

88.[8]J.B.Garnett,M.L.Triet,Y.Meyer,L.Vese.Image Decomposition using bounded variation generalized Homogeneous Besov spaces.2005:UCLA CAM Report 05-57.[9]J.F Aujol and A.Chambolle.Dual norms and image decomposition models.International Journal

ofComputerVision,2005,63(1):85-104.[10]G.Giboa,S.Osher,Non-local linear image reconstruction and supervised segmentation.SIAM

Multiscale Modeling and simulation,2007,6(2):595-

630.[11]H.B.Barlow,Possible principles underlying the transformation

of sensory messages.Sensory Communication.Edited by WA

Rosenbluth(Cambridge,MA:MIT Press)1961,217-234.[12]S.Nirenberg,S.M Carcieri,A.L Jacobs,P.E Latham.Retinal ganglion cell sact largely as independent encoders.Nature,2001,411:698-701.[13]William

E.Vinje,Jack L.Gallant.Sparse Coding and Decorrelation in Primary Visual Cortex During Natural Vision.Science 18 February 2000:

col.287.no.5456,pp.1272-1276.[14]Olshausen B.A,Field D.J.Sparse

coding of sensory inputs.Current Opinion in Neurobiology.2004,14:

481-487.[15]Bell AJ and Sejnowski TJ.The'independent components'of natural scenes are edge filters.Vision Research.1997,37:3327-

3338.[16]Hyvarinen A,Hoyer P.O,A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images.Vision Research.2001,41(18):2413-2423.[17]Candes EJ.Ridgelet:theory and application.Ph.D dissertation,Stanford Univ.,1998.[18]J.-L.Starck,E.J.Candès,and D.L.Donoho,"The curvelet transform for image denoising,"IEEE Trans.Image Processing,vol.11,pp.670– 684,June

2002.[19]Erwan Le Pennec and Stéphane Mallat,Sparse Geometric Image Representations With Bandelets.IEEE Trans.Image Processing,2005,14(4):423-438.[20]Do.M.N,Vertterli.M.Framing pyramids.IEEE Transactions on

Signal Processing,2003,14(9):2329-2342.[21]Do.M.N,Vertterli.M.The contourlet transform:an efficient directional multiresilution image representation.IEEE Transactions on Image Processing,2005,14(12):

2091-2106.[22]焦李成,谭山.图像的多尺度几何分析:回顾和展望.电子学报,2003;31(12A):1975-1981.[23]S.Mallat and Zhang,Matching pursuit with time-frequency dictionaries.IEEE Transactions on Signal

Processing.1993,41(12):3397– 3415.[24]M.F.Rosa V.Pierre Low-rate

and flexible image coding with redundant representation.IEEE Transactions on Image Processing,2006,15(3):726-739.[25]Xu Peng,Yao Dezhong Two dictionaries matching pursuit for sparse decomposition of signals Signal Processing,2006,86(11):3472-

3480.[26]M.Elad,A.Michal.Image denoising via sparse and redundant representations over learned dictionaries.IEEE Transactions on Image Processing,2006,15(12):3736-3745[27]A.Michal,M.Elad,;B.Alfred.K-SVD:An algorithm for designing over-complete dictionaries for sparse representation.IEEE Transactions on Signal Processing,2006,(54)11:4311-4322[28]G.Monaci,P.Jost,P.Vandergheynst,etal.Learning Multimodal Dictionaries.IEEE Transactions on Image Processing,2007,16(9):2273-2283.[29]何昭水,谢胜利,傅予力.信号的稀疏性分析.自然科学进展,2006,16(9):1167-1173.[30]谢胜利,何昭水,傅予力.基于稀疏元分析的欠定混叠

自适应盲分离方法.中国科学E,2007,37(8):1086~1098.[31]尹忠科等.利用

FFT实现基于MP的信号稀疏分解,电子与信息学报.2006,28(4):614-618.[32]汪雄良,冉承其,王正明.基于紧致字典的基追踪方法在SAR图像超分辨中的应用,电子学报,2006,34(6):997-1000.[33]杜小勇,胡卫东,郁文贤.基于稀疏分量分析的逆合成孔径雷达成像技术.电子学报,2006,34(3):491-

495.[34]J.L.Starck,M.Elad,and D.L.Donoho.Redundant multiscale transforms and their application for morphological component

analysis.Advances in Imaging and Electron

Physics,2004,132[35]J.L.Starck,M.Elad,and D.L.Donoho.Image decomposition via the combination of sparse representation and avariational approach.IEEE Transaction on Image

Processing,2005,14(10):1570-1582.[36]J.Bobin1,Y.M oudden1,J.Fadili2

and J-L.Starck.Morphological diversity and sparsity in blind source separation.IEEE Transactions on Image Processing,2007,16(1):2662–2674.[37]J.Bobin,J.-L.Starck,J.Fadili,Y.Moudden,and

D.L.Donoho.Morphological component analysis:an adaptive thresholding strategy.IEEE Transactions on Image Processing,2007,16(1):2675-2681.[38]J.Mairal,M.Elad,G.Sapiro.Sparse representation for color image restoration.IEEE Transactions on Image Processing,2008,17(1):53-68.[39]B.A.Olshausen,D.J Field.Emergence of simple-cell receptive field properties by learning asparse code for natural

images.Nature,1996,381:607-609.[40]Zhu S.C.Statistical Modeling and Conceptualization of Visual Patterns[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(6):691-712.[41]焦李成,孙强.多尺度变换域图象的感知与识别:进展和展望.计算机学报.2006,29(2):177-193."七"乐无穷,尽在新浪新版博客,快来体验啊~请点击进入~

特别声明:

1:资料来源于互联网,版权归属原作者

2:资料内容属于网络意见,与本账号立场无关

3:如有侵权,请告知,立即删除。

数字图像处理试题及参考答案

一、填空题(每题1分,共15分) 1、列举数字图像处理的三个应用领域医学、天文学、军事 1024?,256个灰度级的图像,需要8M bit。 2、存储一幅大小为1024 3、亮度鉴别实验表明,韦伯比越大,则亮度鉴别能力越差。 4、直方图均衡化适用于增强直方图呈尖峰分布的图像。 5、依据图像的保真度,图像压缩可分为无损压缩和有损压缩 6、图像压缩是建立在图像存在编码冗余、像素间冗余、心理视觉冗余三种冗余基础上。 7、对于彩色图像,通常用以区别颜色的特性是色调、饱和度 亮度。 8、对于拉普拉斯算子运算过程中图像出现负值的情况,写出一种标定方法: 二、选择题(每题2分,共20分) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增强。(B ) A 图像整体偏暗 B 图像整体偏亮 C图像细节淹没在暗背景中D图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。(B ) A 平均灰度 B 图像对比度 C 图像整体亮度D图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A、RGB B、CMY或CMYK C、HSI D、HSV 4、采用模板[-1 1]T主要检测( A )方向的边缘。 A.水平 B.45? C.垂直 D.135? 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像 7、彩色图像增强时, C 处理可以采用RGB彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入 一些低频分量。这样的滤波器叫 B 。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __ A.一一对应 B.多对一 C.一对多 D.都不 三、判断题(每题1分,共10分) 1、马赫带效应是指图像不同灰度级条带之间在灰度交界处存在的毛边现象。(√)

图像的阈值分割及边缘检测技术

数字图像处理实验报告 题目:图像的阈值分割及边缘检测技术 班级: 姓名: 学号:

图像的阈值分割及边缘检测技术 一、实验目的 1、了解图像的分割技术,掌握图像的全局阈值分割技术并通过MATLAB实现; 2、了解图像的边缘检测,掌握梯度算子图像边缘检测方法。 二、实验内容 1、基于直方图的全局阈值图像分割方法; 2、Edge命令(roberts,perwitt,sobel,log,canny),实现边缘检测。 三、实验原理 1、全局阈值是最简单的图像分割方法。其中,直方图法的原理如下:想做出图 像的直方图,若其直方图呈双峰且有明显的谷底,则可以讲谷底点所对应的灰度值作为阈值T,然后根据该阈值进行分割,九可以讲目标从图像中分割出来。这种方法是用于目标和背景的灰度差较大且直方图有明显谷底的情况。 2、用于边缘检测的梯度算子主要有Roberts算子、Prewitt算子、Sobel算子。 这三种检测算子中,Roberts算子定位精度较高,但也易丢失部分边缘,抗噪声能力差,适用于低噪声、陡峭边缘的场合。Prewitt算子、Sobel算子首先对图像做平滑处理,因此具有一定的抑制噪声的能力,但不能排除检测结果中的虚假边缘,易出现多像素宽度。

四、实验步骤 1、全局阈值分割: ①读取一张图像; ②生成该图像的直方图; ③根据直方图双峰产生的低谷估计阈值T; ④依次读取图像各个点的像素,若大于阈值,则将像素改为255,若小于 阈值,则将该像素改为0; 实验代码如下: I=imread('cameraman.tif'); %读取一张图像 subplot(221);imshow(I); %显示该图像 subplot(222);imhist(I); %生成该图像的直方图 T=60; %根据直方图估计阈值T为60 [m,n]=size(I); %取图像的大小为【m,n】 for i=1:m %依次读取图像各个点的像素,若大于阈 值,则将像素改为255,若小于阈值, 则将该像素改为0 for j=1:n if I(i,j)>=T I(i,j)=255; else I(i,j)=0; end end

数学形态学的基本运算

第二章数学形态学的基本运算 2.1二值腐蚀和膨胀 二值图象是指那些灰度只取两个可能值的图象,这两个灰度值通常取为0和1。习惯上认为取值1的点对应于景物中的点,取值为0的点构成背景。这类图象的集合表示是直接的。考虑所有1值点的集合(即物体)X,则X与图象是一一对应的。我们感兴趣的也恰恰是X集合的性质。 如何对集合X进行分析呢?数学形态学认为,所谓分析,即是对集合进行变换以突出所需要的信息。其采用的是主观“探针”与客观物体相互作用的方法。“探针”也是一个集合,它由我们根据分析的目的来确定。术语上,这个“探针”称为结构元素。选取的结构元素大小及形状不同都会影响图象处理的结果。剩下的问题就是如何选取适当的结构元素以及如何利用结构元素对物体集合进行变换。为此,数学形态学定义了两个最基本的运算,称为腐蚀和膨胀即1。 2.1 .1二值腐蚀运算 腐蚀是表示用某种“探针”(即某种形状的基元或结构元素)对一个图象进行探测,以便找出图象内部可以放下该基元的区域。它是一种消除边界点,使边界向内部收缩的过程。可以用来消除小且无意义的物体。腐蚀的实现同样是基于填充结构元素的概念。利用结构元素填充的过程,取决于一个基本的欧氏空间概念—平移。我们用记号A二表示一个集合A沿矢量x平移了一段距离。即: 集合A被B腐蚀,表示为AΘB,其定义为: 其中A称为输入图象,B称为结构元素。AΘB由将B平移x仍包含在A内的所有点x组成。如果将B看作模板,那么,AΘB则由在将模板平移的过程中,所有可以填入A内部的模板的原点组成。根据原点与结构元素的位置关系,腐蚀后的图象大概可以分为两类: (1)如果原点在结构元素的内部,则腐蚀后的图象为输入图象的子集,如图2.1所示。 (2)如果原点在结构元素的外部,那么,腐蚀后的图象则可能不在输入图象的内部,如图2.2所示。 图2.1腐蚀类似于收缩

数字图像复原技术中运动模糊图像相关问题研究

数字图像复原技术中运动模糊图像相关问题研究【摘要】随数字图像复原处理技术是当前数字图像处理领域的重要研究课题之一,运动模糊图像的复原是数字图像复原处理技术中较常见也是较难解决的一类问题。本论文的研究工作正是围绕运动模糊图像复原技术展开。分析运动模糊图像的成因以及成像过程;建立运动模糊退化模型;用维纳滤波复原方法对模糊图像进行复原;根据维纳滤波运动模糊图像复原方法中的不足之处,引入介绍了一种新的方法,降低了原有算法的复杂度,改进了维纳滤波。本文主要研究了维纳滤波复原方法并对其进行了改进,其他复原方法有待我们进一步研究。 【关键词】数字图像复原处理技术;运动模糊图像复原;维纳滤波复原;改进维纳滤波复原 图像成像的过程中存在很多的退化源,数字图像在获取、传输和存储过程中受各种原因的影响,会造成图像质量的退化,典型的表现有图像模糊、失真、有噪声等。运动模糊图像是由于相机和被拍摄对象之间的相对运动而造成的模糊现象,这一现象在日常生活中经常遇到,因此运动模糊图像复原技术便成为目前图像复原技术的研究热点之一,运动模糊图像复原是数字图像处理中的一个重要课题。它研究的主要目的是改善给定的图像质量并尽可能复原图像。图像复原的目的就是尽可能恢复被退化图像的本来面目。 运动模糊图像的复原方法研究非常具有现实意义。无论在日常生

活还是在国防军工领域,运动造成图像模糊现象普遍存在,这给人们生活和航空侦察等造成很多不便,所以很有必要对运动模糊图像的恢复做深入研究。在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦查和日常生活中常常由于摄像设备的光学系统的失真、调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。通过对于运动模糊图像的复原,使图像变的清晰,便于更好地提取相应信息。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 一、图像复原的基本概念 图像复原技术,也称为图像去卷积技术,它是按着图像模糊的反过程进行,其目的是获取清晰的,未被污染的图像的近似值,从而我们可以使用相关信息来正确解读图像所包含的有效信息。要想复原图像,其中必须要知道的是模糊是空域不变的还是空域变化的:空域不变意味着模糊和位置无关。也就是说,一个模糊的物体无论从图像的那个位置看都是一样的。空域变化意味着模糊和位置有关。也就是说,模糊图像中的物体因位置变化而看起来有所不同。 二、维纳滤波图像复原 从噪声中提取信号波形的各种估计方法中,维纳滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号,而不只是它的几个参量。 设维纳滤波器的输入为含噪声的随机信号。期望输出与实际输出

数字图像处理和边缘检测

中文译文 数字图像处理和边缘检测 1.数字图像处理 数字图像处理方法的研究源于两个主要应用领域:为便于人们分析而对图像信息进行改进;为使机 器自动理解而对图像数据进行存储、传输及显示。 一幅图像可定义为一个二维函数(,)f x y ,这里x 和y 是空间坐标,而在任何一对空间坐标(,)x y 上 的幅值f 称为该点图像的强度或灰度。当,x y 和幅值f 为有限的、离散的数值时,则图像为数字图像。数字图像处理是指借用数字计算机处理数字图像,值得提及的是数字图像是由有限的元素组成的,每一个元素都有一个特定的位置和幅值,这些元素称为图像元素、画面元素或像素。像素是广泛用于表示数字图像元素的词汇。 视觉是人类最高级的感知器官,所以,毫无疑问图像在人类感知中扮演着最重要的角色。然而,人 类感知只限于电磁波谱的视觉波段,成像机器则可覆盖几乎全部电磁波谱,从伽马射线到无线电波。它们可以对非人类习惯的那些图像源进行加工,这些图像源包括超声波、电子显微镜及计算机产生的图像。因此,数字图像处理涉及各种各样的应用领域。 图像处理涉及的范畴或其他相关领域(例如,图像分析和计算机视觉)的界定在初创人之间并没有 一致的看法。有时用处理的输入和输出内容都是图像这一特点来界定图像处理的范围。我们认为这一定义仅是人为界定和限制。例如,在这个定义下,甚至最普通的计算一幅图像灰度平均值的工作都不能算做是图像处理。另一方面,有些领域(如计算机视觉)研究的最高目标是用计算机去模拟人类视觉,包括理解和推理并根据视觉输入采取行动等。这一领域本身是人工智能的分支,其目的是模仿人类智能。人工智能领域处在其发展过程中的初期阶段,它的发展比预期的要慢的多,图像分析(也称为图像理解)领域则处在图像处理和计算机视觉两个学科之间。 从图像处理到计算机视觉这个连续的统一体内并没有明确的界线。然而,在这个连续的统一体中可 以考虑三种典型的计算处理(即低级、中级和高级处理)来区分其中的各个学科。 低级处理涉及初级操作,如降低噪声的图像预处理,对比度增强和图像尖锐化。低级处理是以输入、输出都是图像为特点的处理。中级处理涉及分割(把图像分为不同区域或目标物)以及缩减对目标物的描述,以使其更适合计算机处理及对不同目标的分类(识别)。中级图像处理是以输入为图像,但输出是从这些图像中提取的特征(如边缘、轮廓及不同物体的标识等)为特点的。最后,高级处理涉及在图像分析中被识别物体的总体理解,以及执行与视觉相关的识别函数(处在连续统一体边缘)等。 根据上述讨论,我们看到,图像处理和图像分析两个领域合乎逻辑的重叠区域是图像中特定区域或 物体的识别这一领域。这样,在研究中,我们界定数字图像处理包括输入和输出均是图像的处理,同时也包括从图像中提取特征及识别特定物体的处理。举一个简单的文本自动分析方面的例子来具体说明这一概念。在自动分析文本时首先获取一幅包含文本的图像,对该图像进行预处理,提取(分割)字符,然后以适合计算机处理的形式描述这些字符,最后识别这些字符,而所有这些操作都在本文界定的数字图像处理的范围内。理解一页的内容可能要根据理解的复杂度从图像分析或计算机视觉领域考虑问题。

数字图像处理实验报告--边缘检测

数字图像处理实验报告 实验名称:边缘检测 姓名: 班级: 学号:09045433 专业:电子信息工程(2+2) 指导教师:陈华华 实验日期:2012年5月17日

边缘检测 一,原理 本实验主要是对图像的边缘进行提取,通过对边缘的分析来分析图像的特征。首先,了解一些术语的定义: 边缘点:图像中具有坐标[i,j]且处在强度显著变化的位置上的点。 边缘段:对应于边缘点坐标[i,j]及其方位 ,边缘的方位可能是梯度角。 边缘检测器:从图像中提取边缘(边缘点和边缘段)集合的算法。 轮廓:边缘列表,或者是一条表示边缘列表的拟合曲线。 边缘连接:从无序边缘表形成有序边缘表的过程,习惯上,边缘表的表示采用顺时针方向来排序。 边缘跟踪:一个用来确定轮廓的图像(指滤波后的图像)搜索过程。 边缘就是图像中包含的对象的边界所对应的位置。物体的边缘以图像局部特性的不连续性的形式出现的,例如,灰度值的突变,颜色的突变,纹理结构的突变等。从本质上说,边缘就意味着一个区域的终结和另外一个区域的开始。图像边缘信息在图像分析和人的视觉中十分重要,是图像识别中提取图像特征的一个重要属性。 边缘检测(edge detection)在图像处理和对象识别领域中都是一个重要的基本问题。由于边缘的灰度不连续性,可以使用求导数的方法检测到。最早的边缘检测方法都是基于像素的数值导数的运算。本实验主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace算子和Canny算子运算,比较处理结果。 边缘检测有三个共性准则, 1,好的检测结果,或者说对边缘的误测率尽可能低,就是在图像边缘出现的地方检测结果中不应该没有;另一方面不要出现虚假的边缘。 2,对边缘的定位要准确,也就是我们标记出的边缘位置要和图像上真正边缘的中心位置充分接近。 3,对同一边缘要有尽可能低的响应次数,也就是检测响应最好是单像素的。二,对图像进行各种算子运算 本实验中主要是对图像依次进行Sobel算子,Prewitt算子,Roberts算子,Laplace 算子和Canny算子运算。 Matlab代码: clear all; close all; warning off all; I=imread('cameraman.tif'); %%没有噪声时的检测结果 BW_sobel=edge(I,'sobel'); BW_prewitt=edge(I,'prewitt');

浅谈数字图像处理中的图像分割技术

电大理工 2011年12月Study of Science and Engineering at RTVU. 第4期总第249期 浅谈数字图像处理中的图像分割技术 郑洪涛 朝阳广播电视大学( 朝阳 122500 ) 摘 要 数字图像处理科学迅速发展并得到广泛应用。图像分割是其中重要的中间技术。它依托图像数字处理底层技术,为模式识别等高层应用服务。本文简要介绍了图像分割的概念范畴和常见的分割 技术的方法描述。掌握图像分割技术有助于系统理解数字图像处理技术的层次。 关键词 数字图像处理 图像分割 阈值 数字图像处理技术,简单地说就是借助计算机的帮助对数字图像进行特定算法运算处理来满足众多应用需要的技术。它涵盖了众多图像处理方式,图像分割是其中一项重要的技术环节。 1 图像分割的范畴 图像分割处理技术属于数字图像处理技术中的图像分析范畴,是图像分析的中间层处理技术。图像分割的目的是把经过底层处理的数字图像空间分成若干有意义的区域,后期的一些高层应用如模式识别等将在这些分割的区域基础上进行。分割的依据建立在这些由像素组成的区域满足相似性和非连续性的基本概念上。 2 图像分割的方法 图像分割一般没有唯一的、标准的分割方法,也没有规定分割成功的准则。一般从以下几方面分割、描述方法: 2.1 灰度阈值法实现图像分割 阈值法主要利用直方图,设定合适的阈值来分辨物体与背景。简单地说就是在图像的灰度值中选一合适的阈值,若小于阈值则判断为背景,若大于阈值则判断为物体。这种方法适合与物体和背景之间有明显区域分界且边界封闭的情况。亦即数字图像中物体与背景的灰度值有明显差异,可较好的分割物体与背景。 (1)整体阈值 就是对整幅图像选定一固定灰度值,以此去做图像分类找出图像的物体。在物体与背景单纯且亮暗分明下才会有较好效果。 (2)适应性阈值 在不同的区域有不同的阈值,即自适性阈值。 2.2 区域法实现图像分割 区域法实现分割是以某种规则为约束(如子区域全部像素灰度相同、子区域不重合且相连接等),直接找取区域的方式实现分割。 (1)像素类聚区域成长法 此方法从一种子(seed)像素开始,通过平均灰度、组织纹理及色彩等性质的检视,将具有类似性质的像素逐一纳入所考虑的区域中,使其逐渐成长,形成子区域的方法。这种方法实际应用中至少要考虑种子像素的选择和聚类的相似性选择等因素。 (2)区域分割与合并法 首先将图像分割成不重叠的区域或子图像,

基于数学形态学的图像噪声处理.

基于数学形态学的图像噪声处理 摘要 本文首先介绍了数学形态学的发展简史及其现状,紧接着详细的阐述了数学形态学在图像处理和分析中的理论基础。并从二值数学形态 学出发着重研究了数学形态学的膨胀、腐蚀、开运算、闭运算等各种 运算和性质,然后根据已有的运算,接着引入了形态滤波器设计、形态学图像处理的实用算法。由于在图像的获取中存在各种可能的噪声,比 如高斯噪声、瑞利噪声、伽马噪声、指数噪声、均匀噪声以及椒盐等 噪声,由于这些噪声的普遍存在,因此,利用数学形态学的腐蚀、膨胀、开启、闭合设计出了一种比较理想的(闭和开)形态学滤波器,并且用MATLAB语言编写程序,反复的使用这种开闭、闭开来处理图像中存在的噪声,其效果比较满意。 关键词:数学形态学图像处理腐蚀膨胀滤波Studies on Mathematical Morphology for Image Processing ABSTRACT In this paper ,we first introduced the brief history and development of mathematical morphology some general theory of mathematical morphology analysis and many experiment results are https://www.doczj.com/doc/c217568262.html,ter ,from the aspect of morphology of dual value, special emphasis on various operations and properties including dilation, erosion,open operation and close operation etc.In addition, morphology analysis method of the dual value image is also discussed and the practical and improved operations of the morphological image processing such as electric filter design, marginal pattern testing are introduced. As the image of the acquisition in the range of possible noise, such as Gaussian noise, Rayleigh noise, Gamma noise, Uniform noise Salt and Pepper noise and so on. As the prevalence of such noise, so using mathematical morphology of erosion,dilation, opening, closing designed a more ideal (open and closed morphological filter, And repeated to use opening and closing, closing and opening handle image processing in the noise. It is satisfied with its results.And the simulation results is more satisfactory after the use of MATLAB language programming. Keyword:mathematical morphology image processing erosion dilation

数字图像处理中的边缘检测技术

课程设计报告 设计题目:数字图像处理中的边缘检测技术学院: 专业: 班级:学号: 学生姓名: 电子邮件: 时间:年月 成绩: 指导教师:

数字图像处理中的边缘检测技术课程设计报告I 目录 1 前言:查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 (1) 1.1理论背景 (1) 1.2图像边缘检测技术研究的目的和意义 (1) 1.3国内外研究现状分析 (2) 1.4常用边缘检测方法的基本原理 (3) 2 小波变换和小波包的边缘检测、基于数学形态学的边缘检测法算法原理 (7) 2.1 小波边缘检测的原理 (7) 2.2 数学形态学的边缘检测方法的原理 (7) 3 算法实现部分:程序设计的流程图及其描述 (9) 3.1 小波变换的多尺度边缘检测程序设计算法流程图 (9) 3.2 数学形态学的边缘检测方法程序设计算法描述 (10) 4实验部分:对所给的原始图像进行对比实验,给出相应的实验数据和处理结果 (11) 5分析及结论:对实验结果进行分析比较,最后得出相应的结论 (15) 参考文献 (17) 附录:代码 (18)

1前言 查阅相关文献资料,了解和掌握基本原理、方法和研究现状,以及实际应用的背景意义 1.1 理论背景 图像处理就是对图像信息加工以满足人的视觉心理或应用需求的方法。图像处理方法有光学方法和电子学方法。从20世纪60年代起随着电子计算机和计算技术的不断提高和普及,数字图像处理进入了高速发展时期,而数字图像处理就是利用数字计算机或其它的硬件设备对图像信息转换而得到的电信号进行某些数学处理以提高图像的实用性。 图像处理在遥感技术,医学领域,安全领域,工业生产中有着广泛的应用,其中在医学应用中的超声、核磁共振和CT等技术,安全领域的模式识别技术,工业中的无损检测技术尤其引人注目。 计算机进行图像处理一般有两个目的:(1)产生更适合人观察和识别的图像。 (2)希望能由计算机自动识别和理解图像。数字图像的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2 图像边缘检测技术研究的目的和意义 数字图像处理是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像处理也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像处理和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像处理中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速

图像处理中的数学问题

图像处理中的数学问题 在图像处理的发展过程中,数学始终起着举足轻重的作用,并渗透在图像处理的所有分支之中。 到上世纪六七十年代为止,以Fourier分析为代表的线性处理方法占据了几乎整个数字图像处理领域。在此期间,借助于随机过程理论,人们建立了图像模型通过概率论以及在此基础上建立的信息论建立了图像编码的框架;线性滤波(维纳滤波、卡尔曼滤波)方法为低层图像处理提供了有力的理论支持;而FFT则被广泛使用在图像处理的几乎所有分支中。这些数学工具极大地促进了图像处理的发展和应用。 自上世纪八十年代开始,非线性科学开始逐渐渗透到图像处理方法之中,许多新颖的数学工具被引入到图像处理领域,使相关的理论变得多元化。尤其以小波和多尺度分析为代表的信息处理方法,继承和发展了Fourier分析,将函数论和逼近论的最新成果应用在工程应用中,建立起了完整的系统框架,在图像编码、图像分割、纹理识别、图像滤波、边缘检测、特征提取和分析等方面的应用中,已经取得了非凡的成果。目前,小波分析方法业已成为信号处理的基础理论之一 同时,其他非线性的数学工具的应用也取得丰硕的成果:如分形在图像编码和纹理识别中的应用,李群在动态图像弹性形变识别中的应用,多尺度分析在图像检索和识别中的应用,非线性规划在矢量量化和图像编码中的应用等等。另外,图像确定性模型(BV 模型)的建立、模糊数学对图像质量的评价体系、Meaningful 理论对图像距离的研究是对图像本质的进一步刻划,使计算机可以更贴切地描述人类的视觉系统。 同时,其他非线性的数学工具的应用也取得丰硕的成果:如分形在图像编码和纹理识别中的应用,李群在动态图像弹性形变识别中的应用,多尺度分析在图像检索和识别中的应用,非线性规划在矢量量化和图像编码中的应用等等。另外,图像确定性模型(BV 模型)的建立、模糊数学对图像质量的评价体系、Meaningful 理论对图像距离的研究是对图像本质的进一步刻划,使计算机可以更贴切地描述人类的视觉系统。 特别的,基于非线性发展(偏微分)方程的图像处理方法成为近年来图像研究的一个热点。它从分析图像去噪的机理入手,结合数学形态学微分几何、射影几何等数学工具,建立了滤波和偏微分方程相关的公理体系。另外,它在图像重构、图像分割、图像识别、遥感图像处理、图像分析、边缘检测、图像插值、医学图像处理、动态图像修补、立体视觉深度检测、运动分析等方面得到了一定的应用。在研究过程中,人

模糊图像处理解决方案。。。

造成图像模糊的原因有很多,且不同原因导致的模糊图像需要不同的方法来进行处理。从技术方面来讲,模糊图像处理方法主要分为三大类,分别是图像增强、图像复原和超分辨率重构。本文将从这三方面切入剖析。 智能化设备管理技术是利用系统管理平台软件的设备管理服务,对所有的监控设备包括摄像机、云台、编码器和系统服务器进行不间断的实时监测,当发现故障时能及时通过各种方式告警,提示维护人员及时处置。一个系统可以按照网络拓扑结构部署多台设备管理服务器,分区域对设备进行实时的巡检,这样可以大大提高系统的维护效率,尽可能做到在设备 发生故障时,在不超过10分钟的时间内被监测到并告警。 建设目标 本方案拟应用先进的机器学习和计算机视觉技术,仿真人类的视觉系统,针对某市公共安全图像资源前端摄像头出现的雪花、滚屏、模糊、偏色、画面冻结、增益失衡和云台失控等常见摄像头故障以及恶意遮挡和破坏监控设备的不法行为做出准确判断,并自动记录所有的检测结果,生成报表。以便用户轻松维护市公共安全图像资源系统。 技术路线 将视频故障分成视频信号缺失、视频清晰度异常、视频亮度异常、视频噪声、视频雪花、视频偏色、画面冻结、PTZ运动失控八种类型。其中视频信号缺失、随着“平安城市”的 广泛建设,各大城市已经建有大量的视频监控系统,虽然监控系统己经广泛地存在于银行、商场、车站和交通路口等公共场所,但是在公安工作中,由于设备或者其他条件的限制,案情发生后的图像回放都存在图像不清晰,数据不完整的问题,无法为案件的及时侦破提供有效线索。经常出现嫌疑人面部特征不清晰、难以辨认、嫌疑车辆车牌模糊无法辨认等问题,这给公安部门破案、法院的取证都带来了极大的麻烦。随着平安城市的推广、各地各类监控系统建设的进一步推进,此类问题将会越来越凸显。 模糊图像产生的原因 造成图像模糊的原因很多,聚焦不准、光学系统的像差、成像过程中的相对运动、大气湍流效应、低光照、环境随机噪声等都会导致图像模糊。另外图像的编解码、传输过程都可能导致图像的进一步模糊。总体来说,造成图像模糊的主要原因如下: ·镜头聚焦不当、摄像机故障等; ·传输太远、视频线老化、环境电磁干扰等; ·摄像机护罩视窗或镜头受脏污、受遮挡等;

Matlab做图像边缘检测的多种方法

Matlab做图像边缘检测的多种方法 1、用Prewitt算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'prewitt',0.04); % 0.04为梯度阈值 figure(1); imshow(I); figure(2); imshow(BW1); 2、用不同σ值的LoG算子检测图像的边缘 I = imread('bacteria.BMP'); BW1 = edge(I,'log',0.003); % σ=2 imshow(BW1);title('σ=2') BW1 = edge(I,'log',0.003,3); % σ=3 figure, imshow(BW1);title('σ=3') 3、用Canny算子检测图像的边缘 I = imread('bacteria.BMP'); imshow(I); BW1 = edge(I,'canny',0.2); figure,imshow(BW1); 4、图像的阈值分割 I=imread('blood1.tif'); imhist(I); % 观察灰度直方图,灰度140处有谷,确定阈值T=140 I1=im2bw(I,140/255); % im2bw函数需要将灰度值转换到[0,1]范围内 figure,imshow(I1); 5、用水线阈值法分割图像 afm = imread('afmsurf.tif');figure, imshow(afm); se = strel('disk', 15); Itop = imtophat(afm, se); % 高帽变换 Ibot = imbothat(afm, se); % 低帽变换 figure, imshow(Itop, []); % 高帽变换,体现原始图像的灰度峰值 figure, imshow(Ibot, []); % 低帽变换,体现原始图像的灰度谷值 Ienhance = imsubtract(imadd(Itop, afm), Ibot);% 高帽图像与低帽图像相减,增强图像figure, imshow(Ienhance); Iec = imcomplement(Ienhance); % 进一步增强图像

浅谈学习数字图像处理技术地认识

数字图像处理结课论文 :X.X.X 学号:0.0.0.0.0.0.0.0专业:通信工程

浅谈学习数字图像处理技术的认识 摘要 数字图像处理技术是一门将图像信号转换成数字信号并利用计算机对其进行 处理的技术。图像信息是人类获得外界信息的主要来源,因为大约有70%的信息是通过人眼获得的,而人眼获得的都是图像信息。i通过数字图像处理技术对获得的图像信息进行处理来满足或者实现人们的各种需要。从某些方面来说,对图像信息的处理甚至比图像信息本身更重要,尤其是在这个科技迅猛发展的21世纪。 Abstract Digital image processing technology is a keeper image signals into digital signals and processed by computer technology. Images are a major source of human access to outside information, because some 70% of information was obtained through human eyes, are the image information obtained by the human eye. By means of digital image processing technology to obtain image information processing to meet or achieve people's various needs.In some ways, image information processing even more important than the image itself, especially in the rapid development of science and technology of the 21st century. 关键词 数字图像、处理、应用 引言 经过一个学期的学习,我对数字图像处理技术有了一个更加深刻的了解,做了几次MATLAB数字信号处理实验,知道了如何利用MATLAB编程来实现数字图像处理技术的一些基本方法,以及如何使用PHOTOSHOP软件来做一些简单的图像处理。 本文主要研究数字图像处理的特点,数字图像处理的分类, 数字图像处理的容,数字图像处理的实例,数字图像处理的具体实验举例,以及数字图像处理技术在日常生活中的一点应用 一、数字图像处理的特点 1.0处理精度高 按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16 位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。对计算机而言,不论数组大小,也不论每个像素的位数多少,其处理程序几乎是一样的。换言之,从原理上讲不论图像的精度有多高,处理总是能实现的,只要在处理时改变程序中的数组参数就可以了。试想一下图像的模拟处理,为了要把处理精度提高一个数量级,就要大幅度地改进处理装置,这在经济上是极不合算的。

基于MATLAB的运动模糊图像处理

基于 MATLAB 的运动模糊图像处理 提醒: 我参考了文献里的书目和网上的一些代码而完成的,所以误差会比较大,目前对于从网上下载的模糊图片的处理效果很不好,这是我第一次上传自己完成的实验的文档,希望能帮到一些人吧。 研究目的 在交通系统、刑事取证中图像的关键信息至关重要,但是在交通、公安、银行、医学、工业监视、军事侦察和日常生活中常常由于摄像设备的光学系统的失真、 调焦不准或相对运动等造成图像的模糊,使得信息的提取变得困难。但是相对于散焦模糊,运动模糊图像的复原在日常生活中更为普遍,比如高速运动的违规车辆的车牌辨识,快速运动的人群中识别出嫌疑人、公安刑事影像资料中提 取证明或进行技术鉴定等等,这些日常生活中的重要应用都需要通过运动模糊 图像复原技术来尽可能地去除失真,恢复图像的原来面目。因此对于运动模糊图像的复原技术研究更具有重要的现实意义。 图像复原原理 本文探讨了在无噪声的情况下任意方向的匀速直线运动模糊图像的复原问题, 并在此基础上讨论了复原过程中对点扩散函数 (PSF)的参数估计从而依据自动鉴别 出的模糊方向和长度构造出最为近似的点扩散函数,构造相应的复原模 型,实现运动模糊图像的复原;在模糊图像自动复原的基础上,根据恢复效果图的纹理特征和自动鉴别出的模糊长度和角度,人工调整模糊方向和长度参 数,使得复原效果达到最佳。 实验过程 模糊方向的估计: 对图 1(a)所示的原始图像‘车牌’图像做方向= 30,长度 L=20像素的匀速直线运动模糊,得到退化图像如图1(b)

1(a)1(b) j=imread('车牌 1.jpg');len=20; theta=30; figure(1),imshow(j);psf=fspecial('motion',len,theta); title(' 原图像');j1=imfilter(j,psf,'circular','conv'); figure,imshow(j1); title('PSF模糊图像'); 图 1(c)和 1(d)分别为原图像和模糊图像的二次傅里叶变化

关于数字图像处理问题的理解

关于离散傅里叶变换频谱如何反应原图像的特点的理解与疑惑?答:(1)我的理解:最初不知道傅里叶变换F(u,v)中u、v的具体含义,最后在【数字图像处理】Matlab版78页得到求证“u和v用作频率变量”,同时在此页可以找到这样一句话“直观的分析一个变换的主要方法是计算它的频谱(即F(u,v)的幅度),并将其显示为一幅图像”我的理解是在傅里叶频谱图中(u,v)表示频率,而频率反映了原图像灰度级的变化快慢,频谱中心点为F(0,0),频率最低,距离中心点越远频率越高。频谱图中的亮暗程度是傅里叶变换后相应点的幅值(模值|F(u,v)|),为方便观察我取了一个简单数组,并在草稿纸上按傅里叶变换公式计算了相应的值,和Matlab的运行结果相一致,所做验证如下: 这就是频谱图中亮暗的含义。我们经常看到频谱图中中心较亮,只说

明低频部分相应点的值幅值较大。 (2)我们的疑惑:虽然知道u、v是频率变量,也和空域中的x、y做过比较,但原来接触的都是一维信号,频率也是一个具体值,现在如何用频率解释灰度变化呢?分方向? 频谱中的频率成分和空域中的图像在物理位置上(方向上)有没有对应关系?我们知道点和点之间没有对应关系,但【数字图像处理】124页例4.3的解释让我们的疑惑。 原图像(上)、傅里叶频谱图(下)

书中的解释:“第一个图为一幅集成电路的扫描电子显微镜图像,放大了接近 2500倍。从图中可以看到两个主要特征:大约成正负45度的强边缘和两个因热感应不足而产生的白色氧化突起。傅里叶频谱显示了沿着正负45度方向对应于刚刚提及的边缘突起的部分。沿着垂直轴仔细观察,可以看到在轴偏左的部分有垂直成分。这是由氧化突起的边缘形成的。注意在偏离轴的角度,频率成分如何对应于长的白色元素的水平位移,并且注意在垂直频率成分中的零点如何对应氧化突起的狭窄垂直区域。” (3)今天姬婷婷师姐给我们讲述了她在图像处理中常用的方法,往往不是单纯的去分析一幅图像的频谱,因为提取图像的有效信息确实存在一定困难,而是分析频谱图像灰度级剖面图,这对我来说是一个研究方法上的改变,在今后的学习中我会特别注意。

浅谈数字图像处理技术的基本原理[1]

ISSN1009-3044 ComputerKnowledgeandTechnology电脑知识。i技术 V01.6,No.6,February2010,PP.1452—1453,1460 浅谈数字图像处理技术的基本原理 潘振赣u。龚声蓉1 (1.苏州大学计算机科学与技术学院,汀苏苏州215006;2.苏州科技学院网络中心,江苏苏州215009) E—mail:eduf@cccc.net.cn http://www.diizs.net.crlTel:+86—55l一56909635690964 摘要:原始资料因为时间原因变得模糊不清.人眼无法识别相关内容.把这些原始资料变为数字图象输入计算机,运用数字图象处理技术对这些数字图像进行去除噪声、增强、复原、分割等处理,将其还原达到人眼可以看清的效果,可以保存资料和进行历史研究。 关键词:识别;图象处理;去噪;增强:复原;分割 中图分类号:TP391文献标识码:A文章编号:1009-3044(2010)06一1452—02 ASurveyoftheBasicPrinciplesinDigitalImageProcessingTechnology PANZhen—gan”.GONGSheng—ron91 (1.SchoolofComputerScinence&Technology,SoochowUMversiW,Suzhou215006,China;2.CerterofNetwork,SuzhouUmvemityofScinence&Technology,Suzhou215009,China) Abstract:Ifthecorrespondingcontentsofblua-y,KOUTCCmaterialsaredifficultfornaked eye toidentify.itisfeasibletOpreservethemateri—alsandcarryOUthistoryresearchbyinputtingthedigitalimagesofsourcematerialsintoacomputer,disposingtheimageswiththetechnot—ogyofnoiseremoval,enhancement,restoration,segmentationandrevertingthemtOtheeffectofvisibility. Keywords:identiff;imageprocessing;noiseremoval;enhancement;restoration;segmentation 一些历史档案和资料具有很高的研究价值,对于研究该地区当时的经济和文化背景有很大的作用,但是因为年代久远.其纸质或布质的材质冈为时间原因,使得写在上面的图案和义字资料都模糊不清,有砦肉眼已经很难分辨出具体内容,对于历史和研究都是很大的损失,用数码相机将这些纸质或布质材质的资料拍摄下来输入计算机,将原始的资料变为数字图象,再用数字图象处理的方法将其处理还原,以达到人眼可以看清内容,进行研究的效果。 用计算机进行图像处理的前提是图像必须以数字格式存储到计算机中,以数字格式存放的图像称为数字图像(digitalimage)。数字图像处理(digitalimageprocessing),就足利用计算机对数字图像进行去除噪声、增强、复原、分割、特征提取等理论、方法和技术,将原始资料清晰化,改善图象的质量,使人的肉眼可以看清这些图象,从而得以保存和研究的目的。由于图像处理是利用计算机硬件和软件实现的.因此也被称为计算机罔像处理(computerimageprocessing)。 数字图象处理一般有两种基本的方法:一种方法是在图象的空间域中处理.即红罔象空间中对图象本身直接进行各种处理优化,达到改善图象质量的目的;另一种疗法是把空间网象进行某些转化,从空间域转到频率域巾。再在频率域中进行各种处理,然后再变叫到图象的空间域,形成处理后的图象,从而达到改善图象质量的目的。 1去除噪声 原始实体资料变为数字图象在计算机中进行处理的时候,可能会产生各种各样的噪声,这些噪声可能是在进行数字转换过程中,因为输入设备的原因产生,也可能在对数字图象的处理中产生,噪声不一定是真实的声音,可以理解为影响人的视觉器官或系统传感器对所接收图象源信息进行理解或分析的各种因素。不同原因产生的噪声,其分布特性也不完全相同,根据噪声和信号的关系可将其分为两种形式:1)加性噪声,此类噪声与输入图象信号无关,含噪图象表示为qx,y)=g(x,y)+n(x,y);2)乘性噪声,此类噪声与图象信号有关,含噪图象表示为f(x,y)=g(x,y)+n(x,y)g(x,y)。噪声对罔象处理卜分重要,如果图象伴有较大噪声,它会直接影响到图象处理的输入、采集、处理的各个环节以及输出的全过程甚至输出结果,因此。在进行数字图象处理的时候,首先需要对目标图象进行去除噪声的工作。 1.1均值滤波器 采用邻域平均法的均值滤波器适用于去除通过扫描得到的图象中的颗粒噪声。邻域平均法是空间域平滑技术。对于给定的图象f(x,y)中的每个像点(x,y),取其邻域Sxy,设Sxy含有M个像素,取其平均值作为处理后所得图像像点(x,y)处的灰度。 1-2自适应维纳滤波器 它能根据图象的局部方差来调整滤波器的输出,局部方差越大,滤波器的平滑作用越强。它的最终目标是使恢复图像f^(x,y)与原始图像f(x,y)的均方误差e2=E[(ffx,y)一f^(x,y))21最小。 1.3中值滤波器 基本原理是把数字图像或数字序列中一点的值用该点的一个领域中各点值的rIi值代换。其主要功能是让周嗣象索灰度值的差 收稿日期:2009—12—27 作者简介:潘振赣f1976一),男,江苏兴化人,苏州科技学院工程师,苏州大学在职研究生,研究方向为模式识别,数字图象处理,龚声蓉(1966一)苏州大学计算机科学与技术学院教授,研究生导师。 1452--人工■■夏识勇怕E术本栏目责任编辑:唐一东

相关主题
文本预览
相关文档 最新文档