当前位置:文档之家› 基于塑性铰模型的三塔斜拉桥抗震能力时程分析

基于塑性铰模型的三塔斜拉桥抗震能力时程分析

基于塑性铰模型的三塔斜拉桥抗震能力时程分析
基于塑性铰模型的三塔斜拉桥抗震能力时程分析

斜拉桥

斜拉桥是由斜拉索、塔柱和主梁组成,用若干高强的拉索将主梁斜拉在塔柱上,斜拉索使主梁受到一个压力和一个向上的弹性支承的反力,这就使得桥梁的跨越能力大大增强。 斜拉桥示意图 斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。它由梁、斜拉索和塔柱三部分组成。斜拉桥是—种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。 斜拉桥由斜索、塔柱和主梁所组成。用高强钢材制成的斜索将主粱多点吊起,并将主梁的恒载和车辆荷载传至塔柱,再通过塔柱基础传至地基。这样,跨度软人的主梁就象一根多点弹性支承(吊起)的连续梁一样工作,从而可使主梁尺寸大大减小,结构自重显著减轻,既节省了结构材料,又大幅度地增大桥梁的跨越能力。此外,与悬索桥相比,斜拉桥的结构刚度大,即在荷载作用下的结构变形小得多,且其抵抗风振的能力也比悬索桥好,这也是在斜拉桥可能达到大跨度情况下使悬索桥逊色的重要因素。 斜索在立面上也可布置成不同型式。各种索形在构造上和力学上各有特点,在外形美观上也各具特色。常用的索形布置为竖琴形(图一)和扇形(图二)两种。另一种是辐射形布置(图三) 因其塔顶锚固结构复杂而较少采用 图一竖琴形斜拉桥 图二扇形斜拉桥 图三放射形斜拉桥 斜拉桥由索塔、主梁、斜拉索组成。桥的主要承重并非它上面的汽车或者火车,而是它

本身,也即我们看的的路面。现在我们就分析这个:我们以一个索塔来分析。索塔两侧是对称的斜拉索,通过斜拉索将索塔主梁连接在一起。现在假设索塔两侧只有两根斜拉索,左右对称各一条,这两根斜拉索受到主梁的重力作用,对索塔产生两个对称的沿着斜拉索方向的拉力,根据受力分析,左边的力可以分解为水平向向左的一个力和竖直向下的一个力;同样的右边的力可以分解为水平向右的一个力和竖直向下的一个力;由于这两个力是对称的,所以水平向左和水平向右的两个力互相抵消了,最终主梁的重力成为对索塔的竖直向下的两个力,这样,力又传给索塔下面的桥墩了。斜拉索数量再多,道理也是一样的。之所以要很多条,那是为了分散主梁给斜拉索的力而已.。斜拉桥的原理,就是利用平衡力的原理,斜拉桥两端的重量通过两端超强的钢绞索拉住压在主桥柱(就是斜拉桥最高的那柱子)上,从而达到两端平衡、跨度更大的目的,简单来说,斜拉桥就是一个大天平,两端的重量相当并通过钢索压载在主桥柱上,这就是为什么斜拉桥总是两端都需要钢索来保持平衡的原因斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。斜拉桥特点是组合体系桥,结构轻巧,适用性强,可以将梁、索、塔组合变化做成不同体系,适用于不同地质和地形情况。主梁增加了中间的斜拉索支撑,弯矩显著减小,与其他体系的大跨径桥梁相比较,其钢材和混凝土的用量均比较节省。借斜拉桥的预拉力可以调整主梁的内力,使之分布均匀合理,获得较好的经济效果,并能将主梁做成等截面梁,便于制造和安装。斜索的水平分力相当于对主梁施加的预压力提高了梁的抗裂性能(特别是混凝土梁),并充分发挥了高强材料的性能。斜拉桥的优点突出。桥的建筑高度小,受桥下净空和桥面高程的限制少,并能降低引道填土高度。与悬索桥相比较,斜拉桥竖向刚度及抗扭刚度均较强,抗风稳定性好得多,用钢量较少,钢索的锚固装置也较简单。由于是自锚体系,不需要昂贵的锚碇构造。不过斜拉桥由于是多次超静定结构,所以施工控制和设计计算复杂。斜拉桥的优点是:梁体尺寸较小,桥梁的跨越能力较大;受桥下净空和桥面标高的限制少;抗风稳定性比悬索桥好;不需悬索桥那样的集中锚碇构造;便于悬臂施工等。不足之处是,它是多次超静定结构,设计计算复杂;索与梁或塔的连接构造比较复杂;施工中高空作业较多,且施工控制等技术要求严格。斜拉桥的优点相对于其它桥梁结构悬索桥可以使用比较少的物质来跨越比较长的距离。悬索桥可以造得比较高,容许船在下面通过,在造桥时没有必要在桥中心建立暂时的桥墩,因此悬索桥可以在比较深的或比较急的水流上建造。缺点是刚度小,在荷载作用下容易产生较大的挠度和振动,需注意采取相应的措施。坚固性不强,在大风情况下交通必须暂时被中断。悬索桥不宜作为重型铁路桥梁。悬索桥的塔架对地面施加非常大的力,因此假如地面本身比较软的话,塔架的地基必须非常大和相当昂贵。在我的家乡建立了马岭河峡谷大桥。马岭河特大桥是汕昆高速公贵州境板坝至江底段的控制性工程,位于黔西南州府所在地兴义市与顶效开发区交界处。全桥长1386m,主桥为155+360+155m三跨预应力混凝土双塔双索面斜拉桥,引桥采用预应力混凝土预制T梁先简支后刚构体系,主塔墩采用宝石形桥塔,主体宽度为24.5+2×1.3(布索区)m,是目前贵州省已建成通车的第一座双塔斜拉桥。大桥桥面高出马岭河水面300余米,是典型的高原峡谷特大桥。 斜拉桥的孔径布置主要可以分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。在特殊情况下,斜拉桥也可以布置成独塔单跨式或者混合式。下面就这几种形式的特点进行简要的分析。

现代斜拉桥浅析

现代斜拉桥浅析 摘要 现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6米。历经半个世纪,斜拉桥技术得到空前发展,世界上已建成的主跨在200米以上的斜拉桥有200余座,其中跨径大于400米的有40余座。尤其20世纪90年代后,世界上建成的著名斜拉桥有:法国诺曼底斜拉桥(主跨856米),南京长江二桥南汊桥钢箱梁斜拉桥(主跨628米),以及1999年日本建成的当时世界最大跨度的多多罗大桥(主跨890米)。 中国至今已建成各种类型的斜拉桥100多座,其中有52座跨径大于200米。20世纪80年代末,我国在总结加拿大安那西斯桥的经验基础上,1991年建成了上海南浦大桥(主跨为423米的结合梁斜拉桥),开创了中国修建400米以上大跨度斜拉桥的先河。我国已成为拥有斜拉桥最多的国家。 关键字斜拉桥;建造历史;发展趋势;代表;浅析 1 基本信息 斜拉桥,又称斜张桥,是指一种由一条或多主塔与钢缆组成来支撑桥面的桥梁。是由承压的塔,受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其

可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。主要可分为两大类:平行连接型、放射性连接型。如武汉长江二桥、白沙洲长江大桥均为钢筋混凝土双塔双索面斜拉桥。 2 建造历史 斜拉桥作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥是1955年德国DEMAG公司在瑞典修建的主跨为182。6米的斯特伦松德桥。目前世界上建成的最大跨径的斜拉桥为中华人民共和国的苏通大桥,主跨径为1088米,于2008年4 月2日试通车。 斜拉桥是将梁用若干根斜拉索拉在塔柱上的桥。它由梁、斜拉索和塔柱三部分组成。斜拉桥是一种自锚式体系,斜拉索的水平力由梁承受、梁除支承在墩台上外,还支承在由塔柱引出的斜拉索上。按梁所用的材料不同可分为钢斜拉桥、结合梁斜拉桥和混凝土梁斜拉桥。 斜拉桥是我国大跨径桥梁最流行的桥型之一。目前为止建成或正在施工的斜拉桥共有30余座,仅次于德国、日本,而居世界第三位。而大跨径混凝土斜拉桥的数量已居世界第一。 50年代中期,瑞典建成第一座现代斜拉桥,40多年来,斜拉桥

几种常见形式斜拉桥的特点浅析及设计计算

几种常见形式斜拉桥的特点浅析及设计计算 姓名:XX 学号:X0X0X0XX 摘要:斜拉桥的主要形式有以下几种: 1)双塔三跨式;2)独塔双跨式;3)斜塔但跨式;4)三塔四跨式;5)多塔多跨式等。这些斜拉桥形式有各自的适用范围,应按工程具体情况选用适当的形式运用。 关键词:斜拉桥;跨径;适用条件;跨径设计;分孔尺寸 1 引言 斜拉桥是一种用斜拉索悬吊桥面的桥梁。最早的这种桥梁,其承重索是用藤罗或竹材编制而成。它们可以说是现代斜拉桥的雏形。斜拉桥的发展,有着一段十分曲折而漫长的历程。18世纪下半叶,在西方的法国、德国、英国等国家都曾修建过一些用铁链或钢拉杆建成的斜拉桥。可是由于当时对桥梁结构的力学理论缺乏认识,拉索材料的强度不足,致使塌桥事故时有发生。如德国萨尔河桥(1824)在建成第二年,就在一次有246人举行的火炬游行人群聚集桥上时,桥突然坍塌而酿成50 人丧生的严重惨剧。因此在相当长的一段时间内,斜拉桥这一桥型就销声匿迹了。 直至第二次世界大战后,在重建欧洲的年月中,为了寻求既经济又建造便捷的桥型,使几乎被遗忘的斜拉桥重新被重视起来。世界上第一座现代公路斜拉桥是1955年在瑞典建成的,主跨为182.6m的斯特罗姆海峡钢斜拉桥。近年来斜拉桥在国内外得到了迅速发展,目前已建成跨度最大的是中国苏通长江公路大桥(1088m)。[1] 2 各形式斜拉桥的特点分析 斜拉桥的孔径布臵主要可以分为双塔三跨式、独塔双跨式和多塔多跨式等三种形式。在特殊情况下,斜拉桥也可以布臵成独塔单跨式或者混合式。下面就这几种形式的特点进行简要的分析。 双塔三跨式(图一)是一种最常见的斜拉桥孔径布臵形式。双塔三跨式斜拉桥通常布臵

桥梁抗震计算书

工程编号:SZ2012-38 海口市海口湾灯塔酒店景观桥工程 桥梁抗震计算书 设计人: 校核人: 审核人: 海口市市政工程设计研究院 HAIKOU MUNICIPAL ENGINEERING DESIGN & RESEARCH INSTITUTE 2012年09月

目录 1工程概况 ........................................................................................................... - 1 -2地质状况 ........................................................................................................... - 1 -3技术标准 ........................................................................................................... - 2 -4计算资料 ........................................................................................................... - 2 -5作用效应组合 ................................................................................................... - 3 -6设防水准及性能目标 ....................................................................................... - 3 -7地震输入 ........................................................................................................... - 4 -8动力特性分析 ................................................................................................... - 5 - 8.1 动力分析模型 (5) 8.2 动力特性 (6) 9地震反应分析及结果 ....................................................................................... - 6 - 9.1 反应谱分析 (6) 9.1.1E1水准结构地震反应 ........................................................................................ - 6 - 9.1.2E2水准结构地震反应 ........................................................................................ - 7 -10地震响应验算................................................................................................ - 8 - 10.1 墩身延性验算 (10) 10.2 桩基延性验算 (10) 10.3 支座位移验算 (11) 11结论.............................................................................................................. - 11 - 12抗震构造措施.............................................................................................. - 11 - 12.1 墩柱构造措施 (12) 12.2 结点构造措施 (12)

楼板计算的塑性铰线理论原理与运用

楼板计算的塑性铰线理论原理与运用

摘要 现浇钢筋混凝土楼板的内力计算有弹性理论与塑性理论两种方法,已制成现成的图表、手册可供查用。鉴于目前在现浇板的内力计算中,大部分人都采用弹性理论,塑性方法几乎弃置不用,而实际上大量的工程实践证明塑性理论的计算结果既是安全可靠的,又可以比弹性理论节约钢材25%左右。本文通过对弹、塑性计算理论的分析、比较,以及其实用范围的选择,来说明大量的、一般性的结构构件,均可以按塑性理论计算。这样的设计指导思想,更符合当前我国基本建设项目多、任务重而建设资金并不充足的国情。由于经典弹塑性理论中不包含任何材料内尺度参数,无法解释材料在毫米(多孔固体)、微米和亚微米(金属材料)量级时表现出来的尺度相关现象以及在薄膜塑性中出现的包辛格效应。本文基于连续介质力学框架下的微态弹塑性理论,研究了在毫米量级出现的弹性尺寸效应及在微米、亚微米量级出现的尺寸效应和包辛格效应。基于微态弹性理论及二阶梯度弹性理论,得到了含约束薄层简单剪切和单轴拉伸以及双材料剪切的解析解,并研究了两种理论之间的内在联系。微态理论中的耦合因子能扮演罚参数的角色,当其趋近于无穷大时,微态弹性理论退化至二阶梯度理论,但对于单轴拉伸问题,前者并不能在全域内完全退化至后者。数值计算结果表明基于微态弹性理论开发的有限元格式,可通过选取特定材料参数作为罚因子,用于近似求解二阶梯度理论的复杂边值问题。边界上施加的高阶边界条件及材料本身的不均匀性都能引起弹性尺寸效应。基于小应变各向同性硬化的微态弹塑性模型,数值研究了平压头和楔形压头的微压痕问题。推导了该模型的有限元计算格式,开发了二维平面应变单元,并嵌入有限元程序。直接将经典塑性流动模型的径向返回算法加以推广,得到适用于该模型本构的应力更新算法。 关键词:现浇钢筋混凝土楼板计算;弹性理论塑性理论;经济比较

长江大桥三塔斜拉桥上部结构设计

长江大桥三塔斜拉桥 上部结构设计 邓青儿孔德军 (铁道部大桥工程局勘测设计院) 【摘要】本文概要介绍了夷陵长江大桥三塔斜拉桥上部结构设计技术特点.并对设计中的一些特殊技术问题及所采取相应技术措施进行了介绍。 【关键词】夷陵长江大桥三塔斜拉桥结构设计 一、工程概况 夷陵长江大桥位于湖北省宜昌市,跨越长江,是联系宜昌市南、北两岸的城市桥梁。桥位距葛洲坝水利枢纽大坝下游7.6km,桥址区江面宽约800m,最大水深约23m。 夷陵长江大桥经初步设计确定采用单索面三塔混凝土加劲梁斜拉桥方案,跨径布置为(38.0+38.5+43.5)+348+348+(43.5+38.5+38.0)=936(m),其主跨达348m,是目前国内最大跨度的三塔斜拉桥,也是目前世界上最大跨度的三混凝土加劲梁斜拉桥。 该桥斜拉桥目前已完成基础施工。三个主塔正在施工中。主梁顶制和现浇工作也全面展开,预计200l年7月1日建通车。 二、主要技本标准 1.荷载:汽——超20设计,挂——120检算,人群荷载3.5kN/平方米; 2.设计车速:60km/h; 3.桥面宽度:公路四车道,两侧各2.0m宽人行道; 4.坡度:全桥位于竖曲线上,桥面处半径R=1872 5.9m,桥面设1.5%双面横坡; 5.通航标准:净高18m,净宽≥125m; 6.地震基本烈度:6度; 7.风速:V10=23.53m/s。 三、结构设计

l.结构布置 斜拉桥纵向布置为:120+348+348+120=936m,其中120m边跨又分为三个小跨,即 38+38.5+43.5=120(m)。 桥梁全宽23.0m,中央索区宽3.0m,两侧人行道宽各2.0m,边栏杆宽0.25m,即0.25(边栏杆)+2.0(人行道净宽+7.75(车行道)+3.0(中央索区)+7.75(车行道)+2.0(人行道净宽)+0.25(边栏杆)=23.0m。全桥主梁等高架高3.0m。宽跨比为1:15,高跨比为1:116。 全桥3个主塔塔高不等,两边塔结构相同,中塔高于边塔。主塔采用钻石型钢筋混凝土结构,边、中塔自承台顶以上度分别为106.5m,126.0m。塔身均为单箱单室或单箱双室截面。 本桥为单索面斜拉桥,斜拉索置于桥面中央,断面上每个编号的斜拉索均由两根组成,间距1.2m。梁上索距主跨8m 边跨5.5m,塔上索距约为1.6m。每个边塔上布置了18对斜拉索,中塔上布置了23对斜拉索,全桥共236根斜拉索斜拉桥立面布置见图1。 2.支承体系 全桥除三个桥塔及两个边墩之外,还没有四个辅助墩,四个辅助墩均为独柱墩,设于桥中线处,每墩设一个纵向活动座。每个边墩处均设两个纵向活动支座,其横桥向间距12m。每个边塔处各设两个纵向活动支座,其横桥向间距10.4中塔处为塔梁固结。两个边墩、两个边塔和中塔处的竖向支承共同组成全桥的抗扭支承体系。 在各边墩、边塔处设有横向支座,起抗风、防震、限位作用。 3.主塔 主塔采用钻石型钢筋混凝土结构,中、边塔纵向尺寸分别为7.0m,5.5m。主塔分上塔往、中塔柱、下塔往三部分。上中塔柱为单箱单室截面;下塔柱采用单箱双室截面,见图2。

STEAM 科学实验 斜拉桥

斜拉桥 一、教学目标 1.认识桥梁的拉力、压力及相互作用,了解桥的一些历史知识 2.锻炼学生的动手能力和知识总结能力 3.培养学生的观察、分析、总结的思维能力 二、教学重难点 教学重点:理解压力和拉力的知识 教学难点:理解斜拉桥的实验原理 三、教学准备 教师用学生用/每组备注 器材斜拉桥套件、弹簧、剪刀斜拉桥套件、弹簧、剪刀 试剂无无 注:试剂和器材多备2组 四、教学过程 (一)回顾 回顾上次课所学知识,(1-2个学生回答),教师总结 (二)情境引入 桥,大家应该都不陌生,那你见过有哪些种类的桥呢?桥一般在哪些地方会用到呢?学生思考回答。桥主要是为了联通公路连通不了的地方,比如海、河、山或者现在交通中的高架桥、立交桥等。桥的承受力和稳定性是最重要的,那大家知道建造师一般通过哪些方法来增加桥等稳定性吗?学生思考回答。(增加桥墩、拱形桥)

去年我们国家刚刚建造完成了一座超大规模的举世闻名的大桥,大家知道是什么桥吗?(港珠澳大桥)有没有哪位同学了解港珠澳大桥的?跟大家分享分享。学生分享。展示高珠澳大桥的图片,大家仔细观察,有没有发现这座伟大的桥跟之前我们看到的桥有哪些相同的地方和那些不同的地方?想一想这座跨度这么长建在海上的桥是利用什么来增加其稳定性的?学生观察回答。(有桥墩、有绳索) 这种用绳索来增加桥身的稳定性的桥就叫做斜拉桥,今天我们就要一起来探究斜拉桥的结构和特性。

(三)实验过程 1.斜拉桥结构分解 斜拉桥又称斜张桥,是将主梁用许多拉索直接拉在桥塔上的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。斜拉桥比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。 2.拉力和压力验证 在我们生活中存在很多的力,大家知道的有哪些力呢?学生思考回答,最常见的重力、摩擦力,当然也有拉力和压力等,桥在运营过程中想要保持足够的稳定,就要确保其受到的各方的力要达到平衡。今天我们先来感受下拉力和压力大概念。 学生通过拉伸和压缩弹簧来感受拉力和压力大概念。 我们把弹簧伸长的力称为拉力。弹簧变长就是因为我在拉弹簧,对弹簧施加了拉力。弹簧变短是因为老师用手压紧弹簧,给弹簧施加了一个压力。我们把使弹簧 缩短的力称为压力。 所有的桥梁都会受到压力和拉力的作用。当压力超过桥面的承受能力时桥面就 会发生弯曲,当拉力超过承受能力时就会造成桥面被拉断。 3.斜拉桥原理探究 学生探究斜拉桥大稳定性与有无绳索之间的关系

斜拉桥方案图纸汇总

斜拉桥方案图纸汇总 的一种桥梁,是由承压的塔、受拉的索和承弯的梁体组合起来的一种结构体系。其可看作是拉索代替支墩的多跨弹性支承连续梁。其可使梁体内弯矩减小,降低建筑高度,减轻了结构重量,节省了材料。斜拉桥由索塔、主梁、斜拉索组成。 斜拉桥施工图纸 斜拉桥施工图纸 大桥主通航孔420斜拉桥施工图纸 大桥斜拉桥上部结构图纸 斜拉桥实例 斜拉桥的计算 斜拉桥施工组织设计 桥南汊斜拉桥施工控制设计图纸 大桥主桥斜拉桥主梁牵索挂篮施工工艺 斜拉桥主塔施工技术方案 斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。如武汉长江二桥、白沙洲长江大桥均为钢筋混凝土双塔双索面斜拉桥。现代斜拉桥可以追溯到1956年瑞典建成的斯特伦松德桥,主跨182.6米。 斜拉桥(92第1版)大桥局

斜拉桥设计--刘士林,王似舜主编 斜拉桥施工组织设计 斜拉桥建造技术 斜拉桥125m部分斜拉桥方案设计图纸 某斜拉桥工程毕业设计 预应力混凝土斜拉桥工程毕业设计 双塔双索面斜拉桥施工图集 MIDAS-斜拉桥成桥阶段和正装分析 独塔斜拉桥设计 铁路斜拉桥施工挂篮设计计算书 斜拉桥(cable stayed bridge)作为一种拉索体系,比梁式桥的跨越能力更大,是大跨度桥梁的最主要桥型。斜拉桥是由许多直接连接到塔上的钢缆吊起桥面,斜拉桥由索塔、主梁、斜拉索组成。索塔型式有A型、倒Y型、H型、独柱,材料有钢和混凝土的。斜拉索布置有单索面、平行双索面、斜索面等。第一座现代斜拉桥始建于1955年的瑞典,跨径为182米。目前世界上建成的最大跨径的斜拉桥为中华人民共和国的苏通大桥,主跨径为1088米,于2008年4月2日试通车。 小跨斜拉桥图纸 南京钢箱梁斜拉桥全套图纸

桥梁抗震体系

桥梁抗震体系 内容摘要:在桥梁设计中,现行的通常做法是仅对桥粱进行简单抗震设防,桥粱结构设计工程师应努力掌握更多的结构抗震知识,提高抗震设防意识。本文分析了桥梁的震害特征和原因,阐述了桥梁抗震设计的具体原则和方法。 关键词:抗震设计;桥梁;地基与基础 一.概述 我国是世界上地震活动最为强烈的国家之一,今年5月份的四川汶川大地震造成了令人触目惊心的损失,作为结构设计工程师,必须充分认识到自己的职责所在,尽可能得利用自己掌握的专业知识,合理提高结构物的抗震能力。尽量减少地震带来的灾害。 二.桥梁的震害及特征 对国内外震害的调查表明,在过去的地震中,有许多桥梁遭受了不同程度的破坏,其主要震害有以下几点。 1.桥台震害 桥台的震害主要表现为桥台与路基一起向河心滑移,导致桩柱式桥台的桩柱倾斜、折断和开裂:霞力式桥台胸墙开裂,台体移动、下沉和转动;桥头引道沉降,翼墙损坏、开裂,施工缝错工、开裂以及因与主梁相撞而损坏。桥台的滑移与倾斜会进一步使主梁受压破坏,甚至使主梁坍毁。 2.桥墩震害 桥墩震害主要表现为桥墩沉降、倾斜、移位,墩身开裂、剪断,受压缘混凝土崩溃。钢筋裸露屈曲,桥墩与基础连接处开裂、折断等。 3.支座震害 在地震力的作用下,由于支座设计没有充分考虑抗震的要求,构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等.并由此导致结构力f专递形式的变化,进而对结构的其他部位产生不利的影响。 4.梁的震害

桥梁最严重的震害现象是主梁坠落。落梁主要是由于桥台、桥墩倾斜、倒塌,支座破坏.梁体碰撞,相邻墩间发生过大相对位移等引起的。 5.地基与基础震害 地基与基础的严重破坏是导致桥梁倒塌。并在震后难以修复使用的蕈要原因。地基破坏主要是指因砂土液化、不均匀沉降及稳定性不够等因数导致的地层水平滑移、下沉、断裂。基础的破坏与地基的破坏紧密相关,地基破坏一般都会导致基础的破坏,主要表现为移位、倾斜、下沉、折断和屈曲失稳。 6.另外桥梁结构的震害还表现在:结构构。造及连接不当所造成的破坏、桥台台后填土位移过大造成的桥台沉降或斜度过大而造成墩台承受过大的扭矩引起的破坏。 三.桥梁的震害原因 国内外学者对桥梁震害的调查研究结果表明,现在桥梁的破坏大多沿顺桥向和横桥向发生,而顺桥向震害尤其严重,分析其破坏原因主要表现在以下几个方面: 1.地震位移造成的粱式桥梁上部活动节点处因盖梁宽度设置不足导致落梁或粱体相互碰撞引起的破坏。而对拱式结构则主要表现在拱上建筑和腹拱的破坏,拱圈在拱顶、拱脚产生的破损裂缝,甚至整个隆起变形。 2.地震位移的影响,进而放大了结构的振动反应,使落梁的可能性增大。当采用排架桩基础时,则使桩基的承载力降低,从而造成与地震反应无关的过大的竖向和横向位移,而简支粱桥对此尤为明显。另外,由于地基软弱,地震时当部分地基液化失效后引起了结构物的整体倾斜.下沉等严重变形,进而导致结构物的破坏,震害较重。 3.支座破坏,在地震力的作用下,由于支座设计没有克分考虑抗震要求。构造上连接与支挡等构造措施不足,或由于某些支座型式和材料上的缺陷等因素,导致了支座发生过大的位移和变形,从而造成如支座锚同螺栓拔出、剪断、活动支座脱落及支座本身构造上的破坏等,并由此导致结构力的传递形式的变化,进而对结构的其他部位产生不利的影响。 4.软弱的下部结构破坏。即由于桥梁下部结构不足以抵抗其自身的惯性力和支座传递的主梁的地震力,导致结构下部的开裂、变形和失效,甚至倾覆,并

塑性铰知识讲解

塑性铰

钢结构中的塑性铰及其应用综述 姓名:严小伟 学号:15121116 北京交通大学 2020年7月

钢结构中的塑性铰及其应用综述摘要:结构构件在地震作用下产生塑性变形,在塑性铰形成的过程中能吸取大量的能量。在设计中恰到好处地设计塑性铰形成的位里并加以应用,可有效降低震害,不至于出现迅速倒塌的后果。 关键字:塑性铰理论;塑性变形;破坏机制 1.引言地震是一种具有突发性和毁灭性的自然灾害,它对当今人类社会的危害主要体现在两个方面:一是地震引起建筑物的破坏或倒塌将会导致严重的人身伤亡和财产损失,二是地震及其地震引起的水灾、火灾等次生灾害将破坏人类社会赖以生存的自然环境,造成严重的经济损失,产生巨大的社会影响。我国地处世界上两个最活跃的地震带上,是世界上的多地震国家之一,强烈地震给我国人民带来的灾难尤为严重。从历史上来看,我国的地震灾害面积己达到我国的国土面积的一半以上,尤其在近几年地震活动相当频繁。因为很多特大地震给人类带来了巨大的经济损失,一些特大地震己给人类社会带来了不可估量的经济损失,这就使得我们要对深入研究土木工程结构的抗震设计理论和应用方法进行深入的研究。不同阶段,客观因素和人类的认识水平是不一样的,这就形成了不同的抗震设计思想和方法。通过工程技术措施,保证建筑物和工程设施的抗震安全,是减轻地震灾害的有效手段,作为抗震灾害的重要环节,结构抗震设计理论的不断完善是世界各国重点研究的课题之一。结构在塑性变形中形成的塑性铰在抗震中能发挥重要作用,塑性铰能否在罕遇地震中出现,对结构安全和生命财产的安危是至关重要的。所以,很有必要对其进行研究和探讨,并应充分利用塑性铰来消耗地震的能量,提高结构的抗震性能,降低地震灾害。

夷陵长江大桥三塔斜拉桥

夷陵长江大桥三塔斜拉桥 上部结构设计 邓青儿孔德军 (铁道部大桥工程局勘测设计院) 【摘要】本文概要介绍了夷陵长江大桥三塔斜拉桥上部结构设计技术特点.并对设计中的一些特殊技术问题及所采取相应技术措施进行了介绍。 【关键词】夷陵长江大桥三塔斜拉桥结构设计 一、工程概况 夷陵长江大桥位于湖北省宜昌市,跨越长江,是联系宜昌市南、北两岸的城市桥梁。桥位距葛洲坝水利枢纽大坝下游7.6km,桥址区江面宽约800m,最大水深约23m。 夷陵长江大桥经初步设计确定采用单索面三塔混凝土加劲梁斜拉桥方案,跨径布置为(38.0+38.5+43.5)+348+348+(43.5+38.5+38.0)=936(m),其主跨达348m,是目前国内最大跨度的三塔斜拉桥,也是目前世界上最大跨度的三混凝土加劲梁斜拉桥。 该桥斜拉桥目前已完成基础施工。三个主塔正在施工中。主梁顶制和现浇工作也全面展开,预计200l年7月1日建成通车。 二、主要技本标准 1.荷载:汽——超20设计,挂——120检算,人群荷载3.5kN/平方米; 2.设计车速:60km/h; 3.桥面宽度:公路四车道,两侧各2.0m宽人行道; 4.坡度:全桥位于竖曲线上,桥面处半径R=1872 5.9m,桥面设1.5%双面横坡; 5.通航标准:净高18m,净宽≥125m; 6.地震基本烈度:6度; 7.风速:V10=23.53m/s。 三、结构设计

l.结构布置 斜拉桥纵向布置为:120+348+348+120=936m,其中120m边跨又分为三个小跨,即 38+38.5+43.5=120(m)。 桥梁全宽23.0m,中央索区宽3.0m,两侧人行道宽各2.0m,边栏杆宽0.25m,即0.25(边栏杆)+2.0(人行道净宽+7.75(车行道)+3.0(中央索区)+7.75(车行道)+2.0(人行道净宽)+0.25(边栏杆)=23.0m。全桥主梁等高架高3.0m。宽跨比为1:15,高跨比为1:116。 全桥3个主塔塔高不等,两边塔结构相同,中塔高于边塔。主塔采用钻石型钢筋混凝土结构,边、中塔自承台顶以上度分别为106.5m,126.0m。塔身均为单箱单室或单箱双室截面。 本桥为单索面斜拉桥,斜拉索置于桥面中央,断面上每个编号的斜拉索均由两根组成,间距1.2m。梁上索距主跨8m,边跨5.5m,塔上索距约为1.6m。每个边塔上布置了18对斜拉索,中塔上布置了23对斜拉索,全桥共236根斜拉索。斜拉桥立面布置见图1。 2.支承体系 全桥除三个桥塔及两个边墩之外,还没有四个辅助墩,四个辅助墩均为独柱墩,设于桥中线处,每墩设一个纵向活动座。每个边墩处均设两个纵向活动支座,其横桥向间距12m。每个边塔处各设两个纵向活动支座,其横桥向间距10.4中塔处为塔梁固结。两个边墩、两个边塔和中塔处的竖向支承共同组成全桥的抗扭支承体系。 在各边墩、边塔处设有横向支座,起抗风、防震、限位作用。 3.主塔 主塔采用钻石型钢筋混凝土结构,中、边塔纵向尺寸分别为7.0m,5.5m。主塔分上塔往、中塔柱、下塔往三部分。上中塔柱为单箱单室截面;下塔柱采用单箱双室截面,见图2。

塑性铰计算长度

塑性铰计算长度研究 现状调查 课程名称: 指导老师: 姓名: 学号:

目录 1 概述 (3) 2 塑性铰计算长度经验公式的比较 (3) 3 不同构件塑性铰计算长度的研究 (6) 4 参考文献 (10)

1 概述 混凝土开裂后,截面的应力分布发生了变化,称应力发生了重分布。钢筋屈服后,在荷载无明显增加的情况下,截面的变形可以急剧增大,称出现了“塑性铰。而截面“屈服”并不仅限于受拉钢筋首先屈服的那个截面,实际上钢筋会在一定长度上屈服,受压区混凝土的塑性变形也在一定区域内发展,这一非弹性变形集中产生的区域理想化为集中于一个截面上的塑性铰,该区段的长度称为塑性铰长度。 2 塑性铰计算长度经验公式的比较研究 塑性铰长度是进行结构延性计算和塑性设计的一个重要参数。从20世纪50年代开始,各国学者们做了大量试验,提出了不同的塑性铰长度经验公式。根据所查阅文献,总结出塑性铰长度经验公式如表1~表3 所示。 表一:柱的塑性铰长度经验公式 表二:梁的塑性铰长度经验公式 这里所说的“柱的塑性铰长度经验公式”是指适用于柱或压弯构件的经验公

式;“梁的塑性铰长度经验公式”是指适用于受弯构件的经验公式。表三则是梁柱都适用的公式。 表三:梁柱经验公式 由表1~表3 可见,关于塑性铰长度的经验公式形式多样,所包含的参数也有所不同。早期的研究者们似乎认为剪跨是影响塑性铰长度的主要因素,如公式(1) 和公式(6) ~ (8) ,只是在公式(1) 中还有轴压比参数,以区分梁与柱的不同;另一种理论则认为截面的配筋特征决定塑性铰长度的大小,如公式(2) 和公式(9) ,从形式上看,公式(2) 显然受公式(9) 的影响,只是其中多了轴压比参数以反映轴力存在的影响;后来的研究者们综合这两种理论,即同时考虑剪跨和配筋特征的影响,如公式(4) 、公式(12)和公式(16) ,其中公式(12) 中的混凝土广义受压区高度系数ξ实际上是拉区和压区配筋特征的综合反映,公式(4) 和公式(16) 之所以没有ξ ,是因为所依据的试验构件截面均为对称配筋,相当于ξ = 0 ,且同样公式(4) 和(16) 比公式(12) 多了轴压比以考虑压弯构件与受弯构件的不同,并且公式(16) 中还包含了钢筋类型影响系数。除了这三类之外,公式(3) 主要考虑偏心距大小对塑性铰长度的影响; 公式(13) 中引入rh0 / 3 一项,作为塑性铰的扩展长度,以考虑支座截面较大的剪力对塑性转动的有利影响。公式(10) 和(14) 形式非常简单,不牵涉诸如轴压比、剪跨比或广义混凝土受压区高度系数等影响因素,但较为常用。 通过以上比较,我们发现,由于各个经验公式考虑的影响因素不同,造成不同的公式计算得到的塑性铰长度值之间有很大差别。这种差别并不代表公式孰好孰劣,因为每个公式都有其提出背景,一个公式与其所依据的试验数据符合很好,但可能与其他的试验数据符合较差甚至相差很大。因此,我们这里所做的比较,也只是寻求各个公式计算所得的塑性铰长度的大致范围,找到各个公式的普遍规律,像前文所述,有些公式计算值偏高,有些公式计算值偏低,这样使用者在应用这些公式时,能够根据具体情况选择合适的公式。 上面我们比较了各个塑性铰长度经验公式,所做的比较是针对长度公式本身

三塔斜拉桥结构计算书

附件二新蕉门大桥工程B线主桥方案计算书 一、概述 1.结构型式 新蕉门大桥是一座公铁两用的特大桥,B线推荐方案为三塔双索面钢桁斜拉桥,钢梁分上、下两层,下层为人行道和轻轨交通,上层为六车道公路交通。斜拉桥跨径布置为(180+530+530+180)m,两边跨各布置一个辅助墩。主梁在边墩和主塔处均设有支座。 2.设计基本参数 公路:按汽-超20设计。 人群:按2 m / k3N设计。 轻轨:单线每节竖向静活载为6轴车,轴重11t,影响线加 载时按四节编组和作用在双线来确定。 荷载组合:1.2倍恒载+1.4倍(汽-超20+人群)+1.4倍轻轨荷载。 其中,公铁组合时,公路活载折减0.75(参考芜湖长江大桥计算荷载组合)。 二、计算模型 该桥采用大型有限元软件A N S Y S进行空间分析,建立计算模型时,对结构简化作如下处理: 1.主梁为空间钢桁架,上弦杆、下弦杆、横梁和腹杆均简化为空 间梁单元。 2.主塔、主塔横梁和桩基础也简化为空间梁单元。 3.拉索简化为杆单元。 4.位移边界简化时,桩底完全固结,主梁在边墩、辅助墩和主塔 根部处均采用竖向支撑。 整个计算模型共3748个节点,7977个单元,计算模型如图1。 图1计算模型 三、静力分析 1、内力计算 通过恒载计算、活载最不利加载分析,得各主要构件的最大内力如表1。 表1主要构件最大计算内力一览表

可见,各主要构件的强度均满足设计要求。 2、活载挠度计算 通过各种工况分析,得主梁和主塔的最大活载挠度如表2。 表2主要构件活载位移一览表 可见,各主要构件的刚度均满足设计要求。 四、模态分析 利用已经建立的空间模型,计算前8阶振型和相应的模态,如图2~图9。 图2一阶振型(频率:0.180H Z)图3二阶振型(频率:0.215H Z)图4三阶振型(频率:0.225H Z)

桥梁抗震论文

桥梁抗震的研究进展 摘要:路线是一种线状工程构造物,所经过的自然地理环境复杂多变,经常遭受自然灾害的破坏。其中地震对公路工程具有极大的破坏作用,常常造成严重的交通中断。国内外的地震灾害表明,交通网络在整个社会生命线抗震防灾系统中越来越重要。震区桥梁的损坏坍塌,不仅阻碍当时的救援工作,而且影响灾后的救援工作。所以对桥梁抗震应给予充分的重视。 关键词:桥梁抗震;历史;现状;展望;减震;动力响应分析;设计理论 近几年来,世界各地强震不断,汶川等地震给人民的生命财产带来巨大危害。地震使交通系统严重毁坏,地震造成的交通中断直接影响着救灾工作的进行,扩大了次生灾害损失,使生命财产遭受巨大损失。近30 多年来,地震灾害的沉痛教训不断地警示着世人,使人们对桥梁的抗震研究工作逐渐受到重视,桥梁抗震理论及技术水平日渐提高。简要叙述了桥梁抗震研究中概念、分析方法、设计方法、抗震设计规范、减震加固技术的历史概况和现状,并展望了今后桥梁抗震研究的发展趋势。 1 桥梁抗震研究的重要转折点 尽管在1926 年,就有了第一部涉及桥梁抗震设计条款的规范——《关于公路桥梁细则草案》 [1],与建筑结构的抗震研究相比,桥梁抗震研究相对滞后,但是在近30 多年来,每次惨痛的地震灾害发生后,桥梁抗震理论和技术水平都会迈上一个新的台阶。 1906 年4 月18 日San Francisco 发生7.9 级地震,这次地震是美国加州历史上破坏最严重的一次地震,对于地震工程来讲也是最有意义的地震之一,也是历史上第一次有桥梁震害记录的地震,但是,这次地震并未引起人们对桥梁抗震的关注。1971 年2 月9 日美国发生San Fernando 地震,震源深度12.8km,仅6.7 级就显示出生命线工程破坏的严重后果,由于桥梁抗震能力不足,地震造成5 座桥梁塌落,42 座桥梁损坏。在地震发生之前,美国一直套用建筑结构抗震设计规范,这次地震对美国桥梁抗震设计的发展是一个非常重要的转折点,十年后,也就是1981 年美国联邦公路局出版了《桥梁抗震设计指南》,经过不断的应用与修改,于1992 年纳入了美国《公路桥梁标准规范》,也就是常说的AASHTO 规范。在1971 年San Fernando 地震后,提出了生命线工程的概念,延性抗震设计也开始被各国重视[2]。美国Loma Prieta地震发生在1989年10月17日,太平洋夏令时间17 时04 分,震级为M7.0,此次地震的震源深度为16.5km。地震中高速公路880 号线双层的Cypress 高架桥在地震中倒塌,SanFrancisco-Okaland 海湾大桥发生落梁,震后用于修复桥梁的费用估计约为20 亿美元。美国学者Bertero 在总结这次地震后提出了基于性能的抗震设计理论,基于性能的抗震设计理论是抗震设计理论的一次重大变革。1994 年1 月17 日,当地时间凌晨 4 时31 分,美国加州发生Northridge 地震,震级为M6.7,震源深度为16km。这次地震是美国有史以来造成经济损失最为惨重的一次自然灾害,地震造成Los Angeles 市高速公路上多座桥梁严重破坏,交通运输网络被切断,也再一次警示人们交通网络中断的危害性。 1923 年9 月1 日在日本发生8.2 级的关东地震,震源深度10km。由于地震强度大,震源浅,再加上当时东京都地区经济发达、人口密度大等因素,地震造成巨大的经济损失,这次地震也使人们意识到桥梁抗震安全的重要性。关东地震的第二年,日本建立了最早的桥梁下部结构工程的抗震方法,1926 年日本制定并颁布了第一部与公路桥梁抗震设计有关的

midas桥梁抗震分析与设计例题-new0810

桥梁抗震分析与设计 北京迈达斯技术有限公司 2007年8月

前言 为贯彻《中华人民共和国防震减灾法》,统一铁路工程抗震设计标准,满足铁路工程抗震设防的性能要求,中华人民共和国建设部发布了新的《铁路工程抗震设计规范》,自2006年12月1日起实施。新规范规定了按“地震动峰值加速度”和“地震动反应谱特征周期”进行抗震设计的要求,明确了铁路构筑物应达到的抗震性能标准、设防目标及分析方法,增加了钢筋混凝土桥墩进行延性设计的要求及计算方法。 从1999年开始,中华人民共和国交通部也在积极制定新的《公路工程抗震设计规范》、《城市桥梁抗震设计规范》。从以上规范的征求意见稿中可以看出,新规范中桥梁抗震安全设置标准采用多级设防的思想,增加了延性设计和减隔震设计的相应规定,对于结构的计算模型、计算方法、以及计算结果的使用有更加具体的规定。 随着新规范的推出,工程师急迫需要具备桥梁抗震分析与设计的能力。Midas/Civil具备强大的桥梁抗震分析功能,包括振型分析、反应谱分析、时程分析、静力弹塑性分析以及动力弹塑性分析,可以很好地辅助工程师进行桥梁抗震设计。

目录 一桥梁抗震分析与设计注意事项 (1) 1. 动力分析模型刚度的模拟 (1) 2. 动力分析模型质量的模拟 (1) 3. 动力分析模型阻尼的模拟 (1) 4. 动力分析模型边界的模拟 (2) 5.特征值分析方法 (2) 6.反应谱的概念 (3) 7.反应谱荷载工况的定义 (4) 8.反应谱分析振型组合的方法 (4) 9.选取地震加速度时程曲线 (5) 10.时程分析的计算方法 (5) 二桥梁抗震分析与设计例题 (7) 1. 概要 (7) 2. 输入质量 (8) 3. 输入反应谱数据 (10) 4. 特征值分析 (12) 5. 查看振型分析与反应谱分析结果 (13) 6. 输入时程分析数据 (18) 7. 查看时程分析结果 (20) 8. 抗震设计 (22)

抗震分析 (使用塑性铰做桥梁的动力弹塑性分析)

北京迈达斯技术有限公司 2008年7月

目录 1.概要 (2) 2.midas Civil中的塑性铰 (3) 3.桥梁资料 (4) 4.输入质量 (5) 5.修改边界条件 (6) 6.结构的非线性特性 (7) 7.定义时程分析数据 (10) 8.运行结构分析 (11) 9.定义分析结果函数 (11) 10.查看分析结果 (12)

1.概要 结构抗震设计根据设防的目标不同有两种不同形式:一种是弹性设计法,另一种是弹塑性设计法。弹性设计法主要适合在较小地震作用下的结构抗震设计,它是以结构在设计地震作用下截面的应力保持在线弹性范围内为目标,用结构的弹性强度抵抗地震荷载。与弹性设计法不同,弹塑性设计法是允许截面应力在地震时进入塑性范围的抗震设计方法,主要是通过提高结构极限变形能力的途径改善它的抗震性能,而不是简单地增加截面尺寸、提高截面强度来加强结构的抗震能力。 《公路桥梁抗震设计规范》(报批稿)6.3.6条,根据抗震设防的原则,E2地震作用下,允许结构出现塑性,发生损伤;即在E2地震作用下,桥梁已经进入非线性工作范围,因此只有进行结构非线性时程地震反应分析才能比较真实地模拟结构实际反应。梁柱单元的弹塑性可以采用 Bresler 建议的屈服面来表示,也可采用非线性梁柱纤维单元模拟。 《公路桥梁抗震设计规范》(报批稿)7.4.1条,E2地震作用下,一般情况下,应按式7.4.2验算潜在塑性铰区域沿纵桥向和横桥向的塑性转动能力,但是对于规则性桥梁,可按式7.4.6验算桥墩墩顶位移,对于矮墩(高宽比小于2.5)的桥墩,可不验算桥墩的变形,但应按7.3.2条验算强度。 u p θθ≤ (7.4.2) 式中,p θ:在E2地震作用下,潜在塑性铰区域的塑性转角;u θ:塑性铰区域的最大容许转角。 u ?≤? (7.4.6) 式中,?:在E2地震作用下墩顶的位移反应;u ?:桥墩容许位移。 《铁路工程抗震设计规范》GB 50111-2006 中的7.3.3条,钢筋混凝土桥墩在罕遇地震作用下的弹塑性变形分析,宜采用非线性时程反应分析法,延性验算应满足下式的要求: []u y u μμ

相关主题
文本预览
相关文档 最新文档