当前位置:文档之家› 双头数控车对刀的方法和技巧

双头数控车对刀的方法和技巧

双头数控车对刀的方法和技巧
双头数控车对刀的方法和技巧

在现代制造系统中,数控技术是关键技术,随着数控技术的发展,数控加工机床被普遍使用。一个熟练的双头数控车操作者必须要掌握对刀这一基本技能。在实际生产中,对刀效率和对刀误差直接影响数控加工效率和加工零件的精度。

不同的双头数控车对刀方法略有不同,但对刀原理基本一致,只要知道数控系统的对刀原理,结合具体系统的使用说明,我们就可以进行对刀操作。但数控系统的对刀方法有多种,这就要求我们知道各种对刀方式的优缺点以及使用条件。

一、为什么要对刀

通常,我们对某一零件进行数控加工。首先是数控编程人员对零件的设计图纸进行分析,确定加工方案,然后选取工件上一点作为坐标系原点进行编程,我们称之为程序坐标系和程序原点。该点的确定原则为容易确定和方便编程计算,一般与零件的工艺基准或设计基准重合,因此也被称作工件原点,以此建立的坐标系也称工件坐标系。数控编程是以工件坐标系为基础进行的,而零件加工是在数控车床上进行的。数控车床通电后,如果系统检测元件采用增量编码器时,必须进行手动返回参考点,其目的是建立数控车床进行位置测量、控制、显示的统一基准,以建立机床坐标系。如果系统检测元件采用绝对编码器时,数控车床通电后机床坐标系同时建立,不需要进行手动返回参考点操作。现在我们可以知道工件坐标系与机床坐标系二者没有任何联系,为了将二者联系起来,我们就要进行对刀操作。

二、FANUC系统确定工件坐标系有三种方法

第一种是通过对刀将刀偏值直接输入参数从而获得工件坐标系。这种方法操作简单,可靠性好。通过刀偏与机械坐标系紧密的联系在一起,只要不卸刀具、不改变刀偏值,工件

坐标系就不会变,即使更换刀片,只要稍加修正,工件坐标系还在原来的位置,断电、重启机床也不会影响坐标系位置。

第二种是在程序中G50之后指定一个值来设定工件坐标系,对刀后需将刀具上的点,比如刀尖,移动到G50设定的坐标位置才能加工。

第三种方法是运用MDI设定六个坐标系,G54~G59,这种坐标系可以通过外部工件零点偏移值或工件零点偏移值来改变其位置。改变外部工件零点偏移值或工件零点偏移值三种方法分别是从MDI面板输入,用G10或G50编程,用外部数据输入功能。

三、试切对刀

对刀一般可分为手动对刀和自动对刀,目前,绝大多数双头数控车都采用手动对刀。其中手动对刀又分四种方法:定位对刀法、光学对刀法、ATC对刀法、试切对刀法,但无论采用哪种对刀方式,皆因手动和目测等误差,对刀精度有限,最终还要通过试切加以修正。下面以采用FANUC?摇0i数控系统的CK6150数控车床为例,具体步骤如下。

工件和刀具装夹完毕,在手动工作方式下,让主轴旋转,移动刀架使刀尖车削零件外圆,然后保证X方向不动,按原路退出,主轴停止,测量零件外圆尺寸,读取数值X1,将测量值X1输入到刀具参数中刀具补偿、形状相应的的补偿号中,系统会自动用刀具当前X 坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件外端端面,在相应的刀具参数中刀具补偿、形状相应的的补偿号中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得到工件坐标系Z原点的位置。此时将程序原点O 设在工件端面,即将工件坐标系与机床坐标系建立关联。在程序中使用Taabb就可以成功建立出工件坐标系,其中aa为对应的刀具号(取值范围00~99),bb为对应的补偿号(取值范围00~99)。事实上,通过此法对刀仍然存在误差,需在粗加工后,进行精确测量并进行修正,这样就可保证加工零件尺寸在要求公差范围内。

四、对刀技巧

在日常生产中,我们通常将上面对刀过程调整为工件和刀具装夹完毕,先测量工件直径得到数值X1,然后旋转主轴,移动刀尖至刚才测量处,在刀具参数中刀具补偿、形状相应的的补偿号中输入X1+0.2,Z方向对刀方式不变,然后运行程序加工,因为对刀过程中放大了测量尺寸,所以最终零件尺寸也会被放大,用千分尺测量零件,得到直径X2,用X2减零件标注尺寸(有公差要求的取公差中间值),将得到的差值通过“+输入”方式补偿到对应补偿号中,这种方法对刀既有效率又准确。又因在程序中使用Taabb方式建立工件坐标系,我们可以为同一把刀建立不同的坐标系,例如T0101,T0102,T0103……来加工不同长度的工件,程序稍加调整而不用重新对刀。

对刀的目的是确定程序原点的位置。对刀完成后,调用程序原点方法不同,编程使用方式就不同。各种设置方式可以组合使用,以适应不同的应用条件和不同的工作效率。

数控车床对刀原理及方法步骤实用详细

数控车床对刀原理及方法 步骤实用详细 Last revision date: 13 December 2020.

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。 所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下:

数控车床对刀操作方法

数控车床对刀操作方滕 一、FANUC绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键。 5、选择手轮方式,选择合适的位移速度。 6、选择X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 键进入刀补界面,接着再按下 ―→ ,此 时CRT显示如下:(滨意:第一竖列中显示应为G001,而不是WOO1) 9、用游标卡帺测量试切过的外圆直径,帆光标移到G001行中的X列,并帆测量值Φ输入为XΦ后 按下 ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。 11、帆光标移到G001行中的Z列,输入Z0后按下 ,完成Z方向对刀设置。 12、帆刀具移至安全位置。

二、SIEMENS绻统对刀操作、设置方滕 1、必须完成回零操作。 2、装夹好刀具、工件。 3、选择手动方式(JOG),使刀具接近工件。 4、选择MDI方式,输入转速如M3S400,按下启动键 。 5、选择手轮方式,选择合适的位移速度。 6、按下JOG键,再按 键,按 键选X轴,踃整好切削深度,溿Z轴切削一段距离。 7、然后溿Z轴退回(滨意:在Z轴退回前、后,X轴方向不能移动,待输入参数后方可移动) 8、按下 键让主轴停止旋转,再按下 ―→ ,此时CRT显示如下: 9、用游标卡帺测量试切过的外圆直径,帆光标移到Φ后,输入测量值Φ如 后按 下 ―→ ,完成X方向对刀设置。 10、再次在启动主轴,踃整好端面切削量,溿X轴切平端面,并溿X轴退回(Z方向不可移动)。

教学型数控车床的对刀操作范本

实验(二)华中世纪星教学型数控车床的对刀操作 一.实验目的 1)掌握游标卡尺、千分尺、深度游标卡尺、钢直尺等的测量与读数方法; 2)掌握数控车床手动试切法对刀的工作原理及基本步骤; 3)掌握用G92与G54~G59指令对刀操作的异同点; 4)对手动试切法对刀进行误差分析,并掌握其误差补偿方法。 二.实验设备和工具 1)毛坯:φ30mm的棒料,材料:L Y12 2)常用工具:卡盘与刀架扳手、螺丝批、手锤、活动扳手等; 3)刀具与垫片:1号刀为90°外圆精车刀,2号刀为90°外圆粗车刀或60°尖刀,3号刀为切断刀、4号刀为60°三角螺纹刀; 4)测量工具:0.02mm精度的游标卡尺、0.01mm精度的千分尺、0.02mm精度的深度游标卡尺、150mm长的钢直尺; 5)油壶、刷子及清洁棉纱。 三. 常用测量工具的测量与读数方法(演示说明) 介绍0.02mm精度的游标卡尺、0.01mm精度的千分尺、0.02mm精度的深度游标卡尺的测量与读数方法。 四.华中世纪星教学型数控车床手动试切法对刀的基本原理 在数控车削中,手动试切对刀法由于不需添置昂贵的对刀、检测等辅助设备,方法简单,而且加工铝棒、尼龙棒等软材质工件,即使高速断续切削,刀尖也不容易崩落,因此被广泛地应用于教学型数控车床。 数控机床的机床坐标系是唯一固定的,CRT显示的是切削刀刀位点的机床坐标,但为计算方便和简化编程,在编程时都需设定工件坐标系,它是以零件上的某一点为坐标原点建立起来的X-Z直角坐标系统。因此,对刀的实质是确定随编程变化的工件坐标系工件零点的机床坐标以及确定数控程序调用的刀具相对于基准刀的刀偏置数值。手动试切对刀的对刀模式为“试切→测量→调整”,其原理示意图如上图1所示。 五.手动试切——相对刀偏法对刀的基本步骤 手动试切对刀中,如果确定了一把基准刀,且在刀偏表中输入它的刀偏置为零,而且非基准刀相对于基准刀有一定的刀偏置,这种试切对刀方法叫相对刀偏法对刀,具体又分为G92指令对刀和G54指令对刀两种方法。使用这种对刀方法的程序结构形式具有以下特点:%×××× G92 X_ Z_(或G54 G90 G00X_Z_) M06 T0202 …... T0200 M06 T0101 …… T0100

数控车床对刀步骤

数控车床对刀步骤 一、开机回零(返回参考点)操作 1、打开数控车床电气柜总开关。 2、按下机床面板上的“系统启动键”,接通电源,显示屏由原先的黑屏变为有文字 显示,电源指示灯亮。 3、按“急停键”,使“急停键”抬起。 4、在操作选择中按下“回零键”,这时该键左上方的小红灯亮。 5、在坐标轴选项键中按下“+X键”,X轴返回参考点,同时X回零指示灯亮。 6、依上述方法,按下“+Z键”,Z轴返回参考点,同时Z回零指示灯亮。 二、对刀操作 1、“方式选择”为“MDI”方式,显示屏将显示MDI程序编辑页面。如果没有显示此页面,则按功能键中的“PROG”键,进入该页面。在键盘上按“T0101;M03 S600”; →“INSERT”→“START”,换上1号刀,并使主轴转动。 2、“方式选择”变为“JOG”方式,利用“方向”键并结合“进给倍率”旋 钮移动1号刀,切削端面。切削完端面后,不要移动Z轴,按“+X”键以原进给速度退出。退出后,按下“主轴停止”按钮,使主轴停止转动。 3、按功能键中的“OFSETSET”键以及该页面下“形状”对应的软键盘进入下图所示页面,利用键盘上的光标键使光标移动到“G01”,在键盘上按“Z0”→“测量”软键,完成1号刀Z向的对刀。

4、“方式选择”为“MDI”方式,重新使主轴转动;再变为“JOG”方式,利用方向键移动1号刀,试切外圆。车一段外圆后,不要移动X轴,按“+Z”键以原进给速度退出。退出后,按下“主轴停止”按钮,使主轴停止转动。用外径千分尺测量试切部分的外圆直径。 5、再次进入如上图页面,在“G01”下,在键盘上输入刚才测量的外径植→“测量”,完成1号刀X向对刀。 6、完成1号刀的对刀后,利用“方向”键使刀架离开工件,退回到换刀位置附近。 7、采用同样方式继续完成各种刀具的对刀。 三、结束 至此,对刀过程已经结束,在程序中只需调取刀补号即可运行。如“T0101”后面的“01” 即为调用“G01”里的对刀数据,其他依此类推。

教学型数控车床的对刀操作范本

实验(二) 华中世纪星教学型数控车床的对刀操作 一.实验目的 1)掌握游标卡尺、千分尺、深度游标卡尺、钢直尺等的测量与读数方法; 2)掌握数控车床手动试切法对刀的工作原理及基本步骤; 3)掌握用G92与G54~G59指令对刀操作的异同点; 4)对手动试切法对刀进行误差分析,并掌握其误差补偿方法。 二.实验设备和工具 1)毛坯:φ30mm的棒料,材料:LY12 2)常用工具:卡盘与刀架扳手、螺丝批、手锤、活动扳手等; 3)刀具与垫片:1号刀为90°外圆精车刀,2号刀为90°外圆粗车刀或60°尖刀,3号刀为切断刀、4号刀为60°三角螺纹刀; 4)测量工具:0.02mm精度的游标卡尺、0.01mm精度的千分尺、0.02mm精度的深度游标卡尺、150mm长的钢直尺; 5)油壶、刷子及清洁棉纱。 三. 常用测量工具的测量与读数方法(演示说明) 介绍0.02mm精度的游标卡尺、0.01mm精度的千分尺、0.02mm精度的深度游标卡尺的测量与读数方法。 四.华中世纪星教学型数控车床手动试切法对刀的基本原理 在数控车削中,手动试切对刀法由于不需添置昂贵的对刀、检测等辅助设备,方法简单,而且加工铝棒、尼龙棒等软材质工件,即使高速断续切削,刀尖也不容易崩落,因此被广泛地应用于教学型数控车床。 数控机床的机床坐标系是唯一固定的,CRT显示的是切削刀刀位点的机床坐标,但为计算方便和简化编程,在编程时都需设定工件坐标系,它是以零件上的某一点为坐标原点建立起来的X-Z直角坐标系统。因此,对刀的实质是确定随编程变化的工件坐标系工件零点的机床坐标以及确定数控程序调用的刀具相对于基准刀的刀偏置数值。手动试切对刀的对刀模式为“试切→测量→调整”,其原理示意图如上图1所示。 五.手动试切——相对刀偏法对刀的基本步骤 手动试切对刀中,如果确定了一把基准刀,且在刀偏表中输入它的刀偏置为零,而且非基准刀相对于基准刀有一定的刀偏置,这种试切对刀方法叫相对刀偏法对刀,具体又分为G92指令对刀和G54指令对刀两种方法。使用这种对刀方法的程序结构形式具有以下特点:%×××× G92 X_ Z_(或G54 G90 G00 X_ Z_) M06 T0202 …... T0200 M06 T0101 …… T0100

数控车床对刀原理及方法步骤(实用详细)

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。

所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下: ①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。(注意:数控车床显示和编程的X坐标一般为直径值)。 ②将刀具沿+Z方向退回到工件端面余量处一点(假定为α点)切削端面,记录此时显示屏中的Z坐标值,记为Za。 ③测量试切后的工件外圆直径,记为φ。 如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为 Xo=Xa-φ(1) Zo=Za 注意:公式中的坐标值均为负值。将Xo、Zo设置进数控系统即完成对刀设置。3 程序原点(工件原点)的设置方式 在FANUC数控系统中,有以下几种设置程序原点的方式:①设置刀具偏移量补偿;②用G50设置刀具起点;③用G54~G59设置程序原点;④用“工件移”设置程序原点。 程序原点设置是对刀不可缺少的组成部分。每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。各种设置方式可以组合使用。

数控车床对刀操作指导书

课题: 数控车床对刀 任务描述 能独立完成数控车床的对刀,进行工件坐标系参数的设置工作。 相关内容 程序编辑、校验结束后,需要进行用户参数的设置,包括对刀后得到的工件坐标系参数、刀具补偿参数等。在保证这些用户参数准确、正确的前提下,零件加工质量才能得到保证。任务实施 在数控车床中工件坐标系位置通常是通过刀具偏置补偿参数体现并调用的。在仿真软件中,可以采用试切法对刀来设置刀具偏置补偿参数。 试切法指的是通过试切,由试切直径和试切长度来计算刀具偏置值的方法。根据是否采用标准刀具,它又可以分为绝对刀偏法和相对刀偏法。我们推荐采用绝对刀偏法,这样不存在标准刀具,每一把刀具独立建立自己的偏置补偿值,并反映到工件坐标系上。 绝对刀偏法对刀的具体步骤如下: ★首先做“回零”操作。 一般每次系统开机、或准备对刀时、或按过“急停”按钮后时,都要执行一次回零(又称为“回参考点”)操作。先把仿真系统机床控制面板右下角的“急停按钮”松开, 使机床可以动作;按一下“回零”按键,指示灯亮,系统处于手动回零工作模式,这时可手动返回机床零点(通常即机床参考点)。下面以Z轴回参考点为例说明。 1)按一下轴手动按键(如图1-29所示)中的“+Z”按键,即可松开; 2)Z轴将以“回参考点快移速度”参数设定的速度快进。 3)Z轴运动件碰到参考点行程开关后,将以“回参考点定位速度”参数设定的速度进给(通常此速度明显小于快移速度)。 4)当反馈元件检测到基准脉冲时,Z轴减速停止在参考点处,回零操作结束,此时“+Z”按键内的指示灯亮。 用同样的操作方法使用“+X”按键,可以使X轴回参考点。回零操作时,可以同时使用多个轴手动按键,能使多个坐标轴同时进行返回参考点动作。 图1-29 轴手动按键图1-30 俯视图观察刀架

数控车床对刀的原理及方法

一、数控车床对刀的原理: 对刀是数控加工中的主要操作和重要技能.在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率.仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件等。 一般来说,数控加工零件的编程和加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的工件坐标系,工件坐标系一般与零件的工艺基准或设计基准重合,在工件坐标系下进行零件加工程序的编制。 对刀时,应使指刀位点与对刀点重合,所谓刀位点是指刀具的定位基准点,对于车刀来说,其刀位点是刀尖.对刀的目的是确定对刀点,在机床坐标系中的绝对坐标值,测量刀具的刀位偏差值.对刀点找正的准确度直接影响加工精度。在实际加工工件时,使用一把刀具一般不能满足工件的加工要求,通常要使用多把刀具进行加工.在使用多把车刀加工时,在换刀位置不变的情况下,换刀后刀尖点的几何位置将出现差异,这就要求不同的刀具在不同的起始位置开始加工时,都能保证程序正常运行。为了解决这个问题,机床数控系统配备了刀具几何位置补偿的功能,利用刀具几何位置补偿功能,只要事先把每把刀相对于某一预先选定的基准刀的位置偏差测量出来,输入到数控系统的刀具参数补正栏指定组号里,在加工程序中利用T 指令,即可在刀具轨迹中自动补偿刀具位置偏差.刀具位置偏差的测量同样

也需通过对刀操作来实现。 生产厂家在制造数控车床,必须建立位置测量、控制、显示的统一基准点,该基准点就是机床坐标系原点,也就是机床机械回零后所处的位置。 数控机床所配置的伺服电机有绝对编码器和相对编码器两种,绝对编码器的开机不用回零,系统断电后记忆机床位置,机床零点由参 数设定。相对编码器的开机必须回零,机床零点由机床位置传感器确定. 编程员按工件坐标系中的坐标数据编制的刀具运行轨迹程序,必须在机床坐标系中加工,由于机床原点与工件原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀具的运动轨迹,才能加工出符合零件图纸的工件。这个过程就是对刀,所谓对刀其实质就是测量工件原点与机床原点之间的偏移距离,设置工件原点在以刀尖为参照的机床坐标系里的坐标。 二、对刀方法 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 1.数控车床试车对刀方法

数控车床对刀操作

《数控车床对刀操作》说课稿 各位评委老师好: 今天我说课的题目是《数控车床对刀操作》,下面我将从教材,教法,学法,教学过程等几个方面来说这节课。 一、说教材 1、教材内容: 《数控车床加工工艺与编程操作》这门课程是以培养和提高学生在数控加工过程中的工艺分析能力以及能够对中等复杂程度零件进行手工编程为目的进行编写的。数控车床对刀操作章节是学习本门课程的重点内容,要求学生能够熟练掌握对刀的基本概念,对刀的基本方法,学会试切对刀的基本操作要领。 前面我们学习的华中世纪星数控车床操作面板组成部分的内容,已熟悉各按键的作用。能够熟练应用,本节课在此基础上讲述对刀的基本概念,对刀的基本方法及试切对刀的基本操作要领。将为后期实训课题奠定基础。因此,学习并熟练掌握对刀的基本方法及试切对刀的基本操作要领是十分重要的。 2、教学目标 结合本课特点和学生的实际情况,我将本课的教学目标确定如下: 1)知识目标 对刀的基本概念,对刀的基本方法,试切对刀的方法要领。 2)能力目标 熟练试切对刀的方法要领,能正确测量并设置刀偏值。 培养学生运用所学知识解决问题的能力。提高学生动手操作能力。 3)情感目标

通过引导学生参与解决问题的过程,使学生体验成功的感受,激发学生的学习热情,增强学生自信心。通过动手操作,让学生懂得实践出真知的真理。 3、教学重难点 根据教学目标及在以往的教学过程中,学生普遍反映存在以下的问题:1、对数控机床的操作面板不熟悉,记不住刀偏表位置,不知道从何下手;2、有的同学试切之后不知道该往哪个方向退刀,出现对刀坐标值错误的情况。针对这些情况,指定以下重难点:教学重点:1、掌握对刀的基本概念 2、掌握试切法对刀的基本方法 教学难点:试切法对刀的过程及其基本方法 在教学过程中,将通过理论讲述和教学演示的方法突出重点,通过教学演示的方法突破难点。 二、教法分析 考虑到我所带班级学生的特点,基础知识薄弱,缺乏良好的学习习惯等因素。我在本节课教学中,主要采用了启发提问法、演示法、小组讨论法等多种教学方法。现场实践操作;教师针对数控机床的操作面板进行讲解,留给学生足够的时间来熟悉、操作机床,由学生进行现场实践操作,以培养学生的实践动手能力。在实习时遇到问题引导他们开动脑筋,积极思考,鼓励同学们之间展开激烈的讨论,可以加深学生对数控加工的理解和提高学习的兴趣。 三、说学法 在教学过程中,必须使学生认识到自己的主体作用。在设计学习方法时,我结合目前中职生认识事物的特点,本课指导学生采用自主学习和协作学习等方法,帮助学生在不断探索,不断交流、不断评价中自然达成学习目标,转变学习方式,提高学习能力。自主学习意在于培养学生自主探究的能力,例如:要求学生自行总结对刀的规律性,

数控车床对刀及建立工件坐标系的几种方法

数控车床对刀及建立工件坐标系的方法 在数控车床上加工零件时,我们通常先开机回零,然后安装零件毛坯和刀具,接着要进行对刀和建立工件坐标系的操作,最后才是编制程序和自动加工。对刀操作的正确与否,直接会影响后续的加工。对刀有误的话,轻则影响零件的加工精度,重则会造成机床事故。所以作为数控车床的操作者,首先要掌握对刀及工件坐标系的建立方法。 数控车床上的对刀方法有两种:试切法对刀和机外对刀仪对刀。一般学校没有机外对刀仪这种设备,所以采用试切法对刀。而根据实际需要,试切法对刀又可以采用三种形式,本文以华中数控HNC-21/T系统为例来阐述这三种形式的对刀及工件坐标系的建立方法。 一、T对刀 T对刀的基本原理是:对于每一把刀,我们假设将刀尖移至工件右端面中心,记下此时的机床指令X、Z的位置,并将它们输入到刀偏表里该刀的X偏置和Z 偏置中。以后数控系统在执行程序指令时,会将刀具的偏置值加到指令的X、Z 坐标中,从而保证所到达的位置正确。其具体的操作如下: (1)开启机床,释放“急停”按钮,按“回零”,再按“+X”和“+Z”,执行回参考点操作。 (2)按“主轴正转”启动主轴,按“手动”,将刀具移动到合适的位置然后按“-Z”手动车削外圆,最后按“+Z”沿Z向退刀,如图1所示。 (3)按“主轴停止”停止主轴,然后测量试切部分的直径,测得直径为Φ69.934,按“F4(MDI)”,再按“F2(刀偏表)”,将光条移到1号刀的试切直径

上,回车,输入69.934,再回车,1号刀的X偏置会自动计算出来,如图3所示。 图1 图2 (4)移动刀具到合适的位置,按“主轴正转”启动主轴,按“手动”,然后按“-X”手动车削端面,最后按“+X”沿X向退刀,如图2所示。 (5)按“主轴停止”停止主轴,将光条移到1号刀的试切长度上,回车,输入0,再回车,1号刀的Z偏置会自动计算出来,如图3所示。

数控车床对刀操作时容易出现的问题及操作注意事项

数控车床对刀操作时容易出现的问题及 操作注意事项Array龙永莲 (江西应用技术职业学院,江西赣州341000)摘要:介绍了数控车床对刀操作方法, 叙述了进行数控车 床对刀操作时容易出现的问题,分析了出现问题的原因,说明了避免出现类似问题的方法,提出了在进行数控车床对刀操作时应该注意的事项。 关键词: 对刀; 加工坐标系;刀具补偿值 实际生产中,在数控车床车削加工零件前,必须先进行对 刀操作, 准确的对刀操作是实现零件精确加工的基础。在进行数控车床对刀操作时,常因操作失误而出现一些问题。 1.数控车床对刀方法介绍 数控车床对刀操作主要有试切对刀和机外对刀仪对刀两种方法, 下面以F ANU C系统经济型数控车床为例来说明其操作方法。 1.1试切对刀 试切对刀用于建立加工坐标系。当工件装上车床后, 为了加工出所需工件, 必须将编程原点设为加工原点, 建立加工坐标系, 从而确定刀具和工件的相对位置, 使刀具按照编程轨迹运动, 最终加工出所需零件。其操作步骤为: (1) 选择机床的手动操作模式; (2) 启动主轴, 试切工件外圆, 保持X方向不移动; (3) 停主轴, 测量出工件的外径值; (4) 选择机床的M D I操作模式; (5) 按下“of fs et s it ti ng”按钮; (6) 按下屏幕下方的“坐标系”软键; (7) 光标移至“G54”; (8) 输入X及测量的直径值;

(9) 按下屏幕下方的“测量”软键; (10) 启动主轴,试切工件端面,保持Z方向不移动; (11) 停主轴,重复以上(4)—(9)步,将第(8) 步中的X及测量值改为Zo。 1.2机外对刀仪对刀 机外对刀仪对刀一般将显微对刀仪固定于车床上, 用于建立刀具之间的补偿值。因各把刀具尺寸不相同, 刀具在装到刀架后刀位点在机床中的坐标值各不相同,如果不设立刀具之间的补偿值, 运行相同的程序时就不可能加工出相同的尺寸,为使采用不同的刀具在运行相同的程序时能够加工出相同的尺寸, 必须建立刀具间的补偿。其操作步骤为: (1) 首先移动基准刀, 使其刀位点对准显微镜的十字线中心; (2) 将基准刀在该点的相对位置清零, 具体操作是选择相对位置显示, 按X, 按下屏幕下方的“起源”软键; (3) 将其刀具补偿值清零,具体操作是按下“of fs et s i tt in g”按钮,按下屏幕下方的“补正”软键,选择“形状”, 在基准刀相对应的刀具补偿号上输入X o、Z o; (4)选择机床的手动操作模式,移出刀架, 换刀; (5) 使其刀位点对准显微镜的十字线中心; (6) 选择机床的M D I操作模式; (7) 设置刀具补偿值, 具体操作是按下“of fs et s itt i ng” 按钮, 按下屏幕下方的“补正”软键,选择“形状”,在相对应的刀补号上输入X、Z; (8)移出刀架, 执行自动换刀指令即可。 实际生产中,也通常不采用机外对刀仪, 而直接在工件上 找一个基准点, 用基准点来建立刀具补偿值, 其操作步骤为: (1) 首先找出工件上的一点(该点一般外露, 使各刀的刀位点容易接触到) 作为基准点,移动基准刀, 使其刀位点接触到该点; (2) 将基准刀在该点的相对位置清零, 方法同前; (3) 其它操作和采用机外对刀仪的操作相同。

数控车对刀步骤

数控车对刀步骤 第一把刀的对刀步骤: 第一步:确认刀具 如果不是,需要换刀 1. 在MDI模式下,输入换刀指令:T0x0x 2. 在MDI模式下,输入转速指令:SxxxM0x 第二步:试切削 1. 快速接近工件,注意不要碰到工件。 2. Z向对刀:在手动进给方式下,切削工件端面,直至端面平整为止。 3. 注意此时不要移动Z轴,按下MENU OFSET,切换到GEOMETRY画面,确认刀号,输入MZ0. 4. X向对刀:在手动进给方式下,切削工件外圆,直至外圆平整为止。停止主轴转动,进行外圆测量,记下外圆直径测量值。 5. 注意此时不要移动X轴,按下MENU OFSET,切换到GEOMETRY画面,确认刀号,输入MX。(号为外圆直径值) 6.输入刀具其它参数,包括刀尖圆角半径(Rxx)和刀尖假想位置(Tx)。 7. 移动刀具远离工件,直至安全位置。

第一把刀对刀结束。 第二把刀的对刀步骤: 第一步:确认刀具 1. 在MDI模式下,输入换刀指令:T0x0x 2. 在MDI模式下,输入转速指令:SxxxM0x 第二步:试切削 1. 快速接近工件,注意不要碰到工件。 2. Z向对刀:在手动进给方式下,轻碰已平整的工件端面,注意不要切削工件端面。如果切削了工件端面,则第一把刀的Z向需要重新对刀。 3. 注意此时不要移动Z轴,按下MENU OFSET,切换到GEOMETRY画面, a) 确认刀号,输入MZ0. 4. X向对刀:在手动进给方式下,轻碰已平整的工件外圆,如果余量允许,可以切削文件外圆。然后,停止主轴转动,进行外圆测量,记下外圆直径测量值。 5. 注意此时不要移动X轴,按下MENU OFSET,切换到GEOMETRY画面,确认刀号,输入MX。(号为外圆直径值) 6. 输入刀具其它参数,包括刀尖圆角半径(Rxx)和刀尖假想位置(Tx)。

数控车床试切对刀(零偏设置)方法

数控车床试切对刀(零偏设置)方法 一、试切对刀法种类 试切对刀种类可分为基准刀与非基准刀的两种方式。 在设定偏置量时可用下列简便的方法,当根据标准刀具设定了坐标系后,移动实际刀具至工件表面,输入工件表面的实际测量值,系统自动计算出其差值作为该把刀具的偏置值。 二、简要操作步骤 试切对刀种类可分为基准刀与非基准刀的两种方式。 1.用基准刀试切工件设定基准坐标系的操作步骤 1)用手动方式,沿A表面切削。 2)在Z轴不动的情况下沿X轴释放刀具,并且停止主轴旋转。 3)测量A表面与工件坐标系零点之间的距离“β”,进入录入方式,按[程序],输入G50Z“β”把当前的Z方向绝对坐标设为“β”,然而设偏置号(基准刀偏置号+100)Z=“β”。 4)用手动方式沿B表面切削。 5)在X轴不动的情况下,沿Z释放刀具,并且停止主轴旋转。 6)测量距离“α”,进入录入方式,按[程序],输入G50X“α”把当前的X 轴向绝对坐标设为“α”,然后设偏置号(基准刀偏置号+100)X=“α”。 2.非基准刀偏置设置基准坐标系的操作步骤 1)用手动方式,沿A表面切削。 2)在Z轴不动的情况下沿X轴释放刀具,并且停止主轴旋转。 3)测量A表面与工件坐标系零点之间的距离“βˊ”,并且将所测得的值设到一偏置号Z中,该偏置号=要设偏置量的偏置号+100。 4)用手动方式沿B表面切削。

5)在X轴不动的情况下,沿Z释放刀具,并且停止主轴旋转。 6)测量距离“αˊ”,并且将所测得的值设到一偏置号X中,该偏置号=要设偏置量的偏置号+100。 重复执行步骤(2) 三、注意事项 1.用于刀具偏置的直接测量值输入是否有效,根据参数(12号参数的DOFSI)而定。 2.距离“α”按直径值设定。 安全教育: 1、按安全操作要求和老师示范内容(试切对 刀步骤)进行操作 2、主轴;转速选择不能高于800转/分钟 3、检查对刀是否正确时必须先带刀补再看位 置最后才移动刀具检查 试切对刀操作练习 附:GSK980T对刀详细的操作过程: 1.先装工件(设置毛坯直径,毛坯长度) 2.将所有刀补清零:刀补→将光标移到要删除的该组刀补序号前(例:002)→X0.0→输入→Z0.0→输入 3.将刀具移到一个安全地方(旋转刀架时不会碰撞工件、卡盘和尾座等)4.录入方式→程序→下翻→T0100(取消刀补,执行第一个刀位)→输入→ 循环起动(运行) 5.安装当前刀位刀具,并将刀具安装到适合的位置 6.录入方式→程序→下翻→M03→输入→S500→输入→循环起动(运行) 7.手动方式→手动向X-方向车端面→X+方向退回 8.录入方式→程序→下翻→G50→输入→Z0输入→循环起动(运行)

数控车床几种对刀方法比较

数控车床几种对刀方法比较 在数控车床的操作与编程过程中,弄清楚刀原理是非常重要的环节。这对我们更好地理解机床的加工原理,以及在处理加工过程 中修改尺寸偏差有很大的帮助。 对刀方法: 1.试切法对刀 试切法对刀是实际中应用的最多的一种对刀方法。下面以采用mitsubishi50l数控系统的rfcz12车床为例,来介绍具体操作方 法。 工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件试切一段外圆。然后保持x坐标不变移动z轴刀具离开工件,测量出该 段外圆的直径。将其输入到相应的刀具参数中的刀长中,系统会自动用刀具当前x坐标减去试切出的那段外圆直径,即得到工件坐 标系x原点的位置。再移动刀具试切工件一端端面,在相应刀具参数中的刀宽中输入z0,系统会自动将此时刀具的z坐标减去刚才 输入的数值,即得工件坐标系z原点的位置。 例如,2#刀刀架在x为150.0车出的外圆直径为25.0,那么使用该把刀具切削时的程序原点x值为150.0-25.0=125.0;刀架在z 为180.0时切的端面为0,那么使用该把刀具切削时的程序原点z值为180.0-0=180.0。分别将(125.0,180.0)存入到2#刀具参数 刀长中的x与z中,在程序中使用t0202就可以成功建立出工件坐标系。 事实上,找工件原点在机械坐标系中的位置并不是求该点的实际位置,而是找刀尖点到达(0,0)时刀架的位置。采用这种 方法对刀一般不使用标准刀,在加工之前需要将所要用刀的刀具全部都对好。 2.对刀仪自动对刀 现在很多车床上都装备了对刀仪,使用对刀仪对刀可免去测量时产生的误差,大大提高对刀精度。由于使用对刀仪可以自动 计算各把刀的刀长与刀宽的差值,并将其存入系统中,在加工另外的零件的时候就只需要对标准刀,这样就大大节约了时间。需 要注意的是使用对刀仪对刀一般都设有标准刀具,在对刀的时候先对标准刀。 下面以采用fanuc0t系统的日本wasinolj-10mc车削中心为例介绍对刀仪工作原理及使用方法。刀尖随刀架向已设定好位置的 对刀仪位置检测点移动并与之接触,直到内部电路接通发出电信号(通常我们可以听到嘀嘀声并且有指示灯显示)。在2#刀尖接

双头数控车对刀的方法和技巧

在现代制造系统中,数控技术是关键技术,随着数控技术的发展,数控加工机床被普遍使用。一个熟练的双头数控车操作者必须要掌握对刀这一基本技能。在实际生产中,对刀效率和对刀误差直接影响数控加工效率和加工零件的精度。 不同的双头数控车对刀方法略有不同,但对刀原理基本一致,只要知道数控系统的对刀原理,结合具体系统的使用说明,我们就可以进行对刀操作。但数控系统的对刀方法有多种,这就要求我们知道各种对刀方式的优缺点以及使用条件。 一、为什么要对刀 通常,我们对某一零件进行数控加工。首先是数控编程人员对零件的设计图纸进行分析,确定加工方案,然后选取工件上一点作为坐标系原点进行编程,我们称之为程序坐标系和程序原点。该点的确定原则为容易确定和方便编程计算,一般与零件的工艺基准或设计基准重合,因此也被称作工件原点,以此建立的坐标系也称工件坐标系。数控编程是以工件坐标系为基础进行的,而零件加工是在数控车床上进行的。数控车床通电后,如果系统检测元件采用增量编码器时,必须进行手动返回参考点,其目的是建立数控车床进行位置测量、控制、显示的统一基准,以建立机床坐标系。如果系统检测元件采用绝对编码器时,数控车床通电后机床坐标系同时建立,不需要进行手动返回参考点操作。现在我们可以知道工件坐标系与机床坐标系二者没有任何联系,为了将二者联系起来,我们就要进行对刀操作。 二、FANUC系统确定工件坐标系有三种方法 第一种是通过对刀将刀偏值直接输入参数从而获得工件坐标系。这种方法操作简单,可靠性好。通过刀偏与机械坐标系紧密的联系在一起,只要不卸刀具、不改变刀偏值,工件

坐标系就不会变,即使更换刀片,只要稍加修正,工件坐标系还在原来的位置,断电、重启机床也不会影响坐标系位置。 第二种是在程序中G50之后指定一个值来设定工件坐标系,对刀后需将刀具上的点,比如刀尖,移动到G50设定的坐标位置才能加工。 第三种方法是运用MDI设定六个坐标系,G54~G59,这种坐标系可以通过外部工件零点偏移值或工件零点偏移值来改变其位置。改变外部工件零点偏移值或工件零点偏移值三种方法分别是从MDI面板输入,用G10或G50编程,用外部数据输入功能。 三、试切对刀 对刀一般可分为手动对刀和自动对刀,目前,绝大多数双头数控车都采用手动对刀。其中手动对刀又分四种方法:定位对刀法、光学对刀法、ATC对刀法、试切对刀法,但无论采用哪种对刀方式,皆因手动和目测等误差,对刀精度有限,最终还要通过试切加以修正。下面以采用FANUC?摇0i数控系统的CK6150数控车床为例,具体步骤如下。 工件和刀具装夹完毕,在手动工作方式下,让主轴旋转,移动刀架使刀尖车削零件外圆,然后保证X方向不动,按原路退出,主轴停止,测量零件外圆尺寸,读取数值X1,将测量值X1输入到刀具参数中刀具补偿、形状相应的的补偿号中,系统会自动用刀具当前X 坐标减去试切出的那段外圆直径,即得到工件坐标系X原点的位置。再移动刀具试切工件外端端面,在相应的刀具参数中刀具补偿、形状相应的的补偿号中输入Z0,系统会自动将此时刀具的Z坐标减去刚才输入的数值,即得到工件坐标系Z原点的位置。此时将程序原点O 设在工件端面,即将工件坐标系与机床坐标系建立关联。在程序中使用Taabb就可以成功建立出工件坐标系,其中aa为对应的刀具号(取值范围00~99),bb为对应的补偿号(取值范围00~99)。事实上,通过此法对刀仍然存在误差,需在粗加工后,进行精确测量并进行修正,这样就可保证加工零件尺寸在要求公差范围内。

数控车床对刀原理及方法步骤实用详细修订稿

数控车床对刀原理及方法步骤实用详细 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

数控车床对刀原理及对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。 仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件(下面的论述是以FANUC OiMate数控系统为例)等。 1 为什么要对刀 一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。 数控车床通电后,须进行回零(参考点)操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具(刀尖)的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。 在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。 编程员按程序坐标系中的坐标数据编制刀具(刀尖)的运行轨迹。由于刀尖的初始位置(机床原点)与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。

所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2 试切对刀原理 对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。 以图2为例,试切对刀步骤如下: ①在手动操作方式下,用所选刀具在加工余量范围内试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。(注意:数控车床显示和编程的X坐标一般为直径值)。 ②将刀具沿+Z方向退回到工件端面余量处一点(假定为α点)切削端面,记录此时显示屏中的Z坐标值,记为Za。 ③测量试切后的工件外圆直径,记为φ。 如果程序原点O设在工件端面(一般必须是已经精加工完毕的端面)与回转中心的交点,则程序原点O在机床坐标系中的坐标为 Xo=Xa-φ(1) Zo=Za 注意:公式中的坐标值均为负值。将Xo、Zo设置进数控系统即完成对刀设置。3 程序原点(工件原点)的设置方式 在FANUC数控系统中,有以下几种设置程序原点的方式:①设置刀具偏移量补偿;②用G50设置刀具起点;③用G54~G59设置程序原点;④用“工件移”设置程序原点。 程序原点设置是对刀不可缺少的组成部分。每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。各种设置方式可以组合使用。

相关主题
文本预览
相关文档 最新文档