当前位置:文档之家› 4 常见溶剂的凝固点和凝固点降低常数

4 常见溶剂的凝固点和凝固点降低常数

4 常见溶剂的凝固点和凝固点降低常数

介电常数

一些溶剂的介电常数

介电常数(Dielectric constants) 表1列出常见气体在20℃,101 325 Pa条件下的介电常识(ε)。 数据中的有效数字表示测试精度,其中Ar,H2,He,N2,O2,CO2等被推荐为参比数据,其精度为百万分之一或更高。 1 气体的介电常数(Dielectric constants of gases) 表1 气体的介电常数 Table 1 Dielectric constants of gases

2 饱和水蒸气的介电常数(Dielectric constants of saturated water vapor) 表2给出不同温度下的液态水成平衡的水蒸气的介电常数。 表2 饱和水蒸气的介电常数 Table 2 Dielectric constants of saturated water vapor 3 液体的介电常数(Dielectric constants of liquid) 表3给出常见液体在指定温度下的介电常数(ε),测试压力为101325Pa。 加*表示测试压力为液体的饱和蒸气压(该温度下其饱和蒸气压大于101325Pa)。 表3 液体的介电常数 Table3 Dielectric constants of liquid

3 He 氦-269 1.408 I2 碘118 11.1 NH3 氨-77 25 N2氮-195 1.433 N2H4 肼20 52.9 N2O 一氧化二氮0 1.61

CH2Br2 二溴甲烷10 7.77 CH2Cl2二氯甲烷20 9.08 CH2I2二碘甲烷25 5.32 CH2O2甲酸16 58.5 CH3Br 溴甲烷0 9.82 CH3Cl 氯甲烷-20 *12.6 CH3I 碘甲烷20 7.00

凝固点降低法测定摩尔质量的思考题与答案

实验七十三凝固点降低法测定摩尔质量 1、简述凝固点降低法测定摩尔质量的基本原理 2、在凝固点降低法测定摩尔质量实验中,当溶质在溶液中有离解,缔合和生成络合物的情况下,对摩尔质量的测定值各有什么影响? 3、在凝固点降低法测定摩尔质量实验中,根据什么原则考虑加入溶质的量,太多太少影响如何? 4、凝固点降低的公式在什么条件下才适用?它能否用于电解质溶液? 5、在凝固点降低法测定摩尔质量实验中,为什么会产生过冷现象?过冷太甚对结果有何影响?如何控制过冷程度? 6、在凝固点降低法测定摩尔质量实验中,为了提高实验的准确度,是否可用增加溶液浓度的办法来增加ΔT值?为什么? 7、什么是稀溶液依数性质?稀溶液依数性质和哪些因素有关? 8、测定溶液凝固点时若过冷程度太大对结果有何影响?两相共存时溶液系统和纯溶剂系统的自由度各为多少? 9、什么叫凝固点?凝固点降低的公式在什么条件下才适用?它能否用于电解质溶液? 10、在凝固点降低法测定摩尔质量实验中,为什么要使用空气夹套?过冷太甚有何弊病? 11、在凝固点降低法测定摩尔质量实验中,实验测量成败的关键是什么? 12、在凝固点降低法测定摩尔质量实验中,加入萘的时候,不小心将萘附着在内管壁上,对实验结果有何影响? 13、在凝固点降低法测定摩尔质量实验中,为什么要先测近似凝固点? 14、当溶质在溶液中有解离、缔合、溶剂化和形成配合物时,测定的结果有何意义? 15、在凝固点降低法测定摩尔质量实验中,测定环已烷和萘丸质量时,精密度要求是否相同?为什么? 16、用凝固点降低法测定摩尔质量在选择溶剂时应考虑哪些因素? 17、为什么纯溶剂和稀溶液的的凝固曲线不同? 18、在凝固点降低法测定摩尔质量实验中,寒剂温度的温度应控制在什么范围?为什么? 19、在凝固点降低法测定摩尔质量实验中,为什么实验所用的内套管必须洁净、干燥? 20、在凝固点降低法测定摩尔质量实验中,搅拌速度的控制是做好本实验的关键,在实验过程中怎样控制搅拌速度?

常用溶剂参数表

常用溶剂参数表 产品溶剂系列首页> 产品溶剂系列

个体溶剂: (A)芳香族溶剂(A r o m a t i c S o l v e n t s) 甲苯(T O L U E N E) 油漆、清漆、黏合剂及油墨制造业及天那水配方用之稀释剂;树脂溶剂;化学及制药工业用之溶剂;尤以萃取及脱脂两工 序最为适用。另也为化学合成用之原料。 二甲苯(X Y L E N E) 脂肪、蜡、沥青及各天然与人工合成树脂之溶剂。也为油漆、清漆及亮漆制造用之溶剂及稀释剂。也用于油墨及粘合剂制 造业,也是杀虫药制剂最常用之溶剂。亦是化工合成用之中 间体。分异构级和溶剂级,涂料常用溶剂级,异构级比溶剂 级一般情况要贵一点。粗二甲苯臭、便宜。 三甲苯(S-100) 慢干漆油,树脂溶剂及高级印刷油配方用。粗三甲苯臭、便宜。 四甲苯(S-150) 慢干漆油,焗漆,杀虫药溶剂。 物理数据: 溶劑餾程℃比重15℃芳香族化相對揮發速閃

/15℃合物含量 (%)度(乙酸丁酯 =100) 點 ℃ 甲苯 110.3-110.90.87299.91537二甲 苯 138–1400.87199.77027 三甲 苯 165–1730.875981943 四甲 苯 190–2070.89599466 页顶 (B)酮类(K E T O N E S) 丙酮(A c e t o n e) 电子零件清洗剂,树脂溶剂,粘合剂,油漆,清漆和天拿水用溶剂;皮革及羊毛脱脂。 丁酮(M E K) 硝化纤维素及其衍生物、丙烯酸树脂、乙烯基树脂、苯酚树脂、环氧树脂、醇酸树脂等低沸点溶剂。普遍用于油漆制造及天拿水配方,并用于磁带涂层以溶解聚氨脂树脂及乙桸基脂,也用于人造皮革之表面处理。

常见物质介电常数汇总知识交流

常见物质介电常数汇 总

精品资料 Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒 空气 1 300 水淡81 33 水咸81 33 极地雪 1.4 - 3 194 - 252 极地冰 3 - 3.15 168 温带冰 3.2 167 纯冰 3.2 167 淡水湖冰 4 150 海冰 2.5 - 8 78 - 157 永冻土 1 - 8 106 - 300 沿岸砂干燥10 95 砂干燥 3 - 6 120 - 170 砂湿的25 - 30 55 - 60 粉沙湿的10 95 粘土湿8 - 15 86 - 110 粘土土壤干 3 173 沼泽12 86 农业耕地15 77 畜牧土地13 83 土壤平均16 75 花岗岩 5 - 8 106 - 120 石灰岩7 - 9 100 - 113 白云岩 6.8 - 8 106 - 115 玄武岩湿8 106 泥岩湿7 113 砂岩湿 6 112 煤 4 - 5 134 - 150 石英 4.3 145 混凝土 6 - 8 55 - 112 沥青 3 - 5 134 - 173 聚氯乙烯 pvc 3 173 仅供学习与交流,如有侵权请联系网站删除谢谢2

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书) 常见介质的相对介电常数—网上搜集

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。

物化实验报告_凝固点降低法测定摩尔质量

凝固点降低法测定摩尔质量 丛乐 2005011007 生51 实验日期:2007年10月13日星期六 提交报告日期:2007年10月27日星期六 助教老师:马林 1 引言 1.1实验目的 1. 用凝固点降低法测定萘的摩尔质量 2. 学会用步冷曲线对溶液凝固点进行校正 3. 通过本实验加深对稀溶液依数性的认识 1.2 实验原理 稀溶液具有依数性,凝固点降低是依数性的一种表现,它与溶液质量摩尔浓度的关系为: *×f f f f B T T T K b ?=-= 其中,f T ?为凝固点降低值,*f T 、f T 分别为纯溶剂、溶液的凝固点,B b 为溶液质量摩尔浓度,f K 为凝固点降低常数,它只与所用溶剂的特性有关。如果稀溶液是由质量为B m 的溶质溶于质量为A m 的溶剂中而构成,则上式可写为: 1000××B f f A m T K M m ?= 即 310B f f A m M K T m =? (*) 式中: f K ——溶剂的凝固点降低常数(单位为1 K kg mol -g g ); M ——溶质的摩尔质量(单位为1 g mol -g )。 如果已知溶液的f K 值,则可通过实验测出溶液的凝固点降低值 f T ?,利用上式即可求出溶质的摩尔质量。 常用溶剂的f K 值见下表。 表1 常用溶剂的f K 值 于新相形成需要一定的能量,故结晶并不析出),温度降低至一定值时出现结晶,当晶体生成时,放出的热量使体系温度回升,而后温度保持相对恒定。对于纯溶剂来说,在一定压力下,凝固点是固定不变的,直到全部液体凝固成固体后才会下降。相对恒定的温度即为凝固点。 对于溶液来说,除温度外还有溶液浓度的影响。当溶液温度回升后,由于不断析出溶剂晶体,所以溶液的浓度逐渐增大,凝固点会逐渐降低。因此,凝固点不是一个恒定的值。如把回升的最高点温度作为凝固点,这时由于已有溶剂晶体析出,所以溶液浓度已不是起始浓度,而大于起始浓度,这时的凝固点不是原浓度溶液的凝固点。要精确测量,应测出步冷曲线,按下一页图1(b )所示方法,外推至f T 校正。

常见有机溶剂的性质大全

溶剂的定义 溶剂(solvent)这个词广义指在均匀的混合物中含有的一种过量存在的组分。狭义地说,在化学组成上不发生任何变化并能溶解其他物质(一般指固体)的液体,或者与固体发生化学反应并将固体溶解的液体。溶解生成的均匀混合物体系称为溶液。在溶液中过量的成分叫溶剂;量少的成分叫溶质。 溶剂也称为溶媒,即含有溶解溶质的媒质之意。但是在工业上所说的溶剂一般是指能够溶解油脂、蜡、树脂(这一类物质多数在水中不溶解)而形成均匀溶液的单一化合物或者两种以上组成的混合物。这类除水之外的溶剂称为非水溶剂或有机溶剂,水、液氨、液态金属、无机气体等则称为无机溶剂。 溶解现象 溶解本来表示固体或气体物质与液体物质相混合,同时以分子状态均匀分散的一种过程。事实上在多数情况下是描述液体状态的一些物质之间的混合,金与铜、铜与镍等许多金属以原子状态相混合的所谓合金也应看成是一种溶解现象。所以严格地说,只要是两种以上的物质相混合组成一个相的过程就可以称为溶解,生成的相称为溶液。一般在一个相中应呈均匀状态,其构成成分的物质可以以分子状态或原子状态相互混合。 溶解过程比较复杂,有的物质在溶剂中可以以任何比例进行溶解,有的部分溶解,有的则不溶。这些现象是怎样发生的,其影响的因素很多,一般认为与溶解过程有关的因素大致有以下几个方面: ⑴相同分子或原子间的引力与不同分子或原子间的引力的相互关系(主要是范德华引力); ⑵分子的极性引起的分子缔合程度; ⑶分子复合物的生成; ⑷溶剂化作用; ⑸溶剂、溶质的相对分子质量; ⑹溶解活性基团的种类和数目。 化学组成类似的物质相互容易溶解,极性溶剂容易溶解极性物质,非极性溶剂容易溶解非极性物质。例如,水、甲醇和乙醇彼此之间可以互溶;苯、甲苯和乙醚之间也容易互溶,但水与苯,甲醇与苯则不能自由混溶。而且在水或甲醇中易溶的物质难溶于苯或乙醚;反之在苯或乙醚中易溶的却难溶于水或甲醇。这些现象可以用分子的极性或者分子缔合程度大小进行判断。纤维素衍生物易溶于酮、有机酸、酯、醚类等溶剂,这是由于分子中的活性基团与这类溶剂中氧原子相互作用的结果。有的纤维素衍生物在纯溶剂中不溶,但可溶于混合溶剂。例如硝化纤维素能溶于醇、醚混合溶剂;三乙酸纤维素溶于二氯乙烷、甲醇混合溶剂。这可能是由于在溶剂之间,溶质与溶剂之间生成分子复合物,或者发生溶剂化作用的结果。总之,溶解过程能够发生,其物质分子间的内聚力应低于物质分子与溶剂分子之间的吸引力才有可能实现。 溶液浓度的表示方法 溶质在溶剂中溶解的多少,彼此间存在着相对量的关系,通常用以下几种方法表示:⑴质量分数 即混合物中某一物质的质量与混合物的质量之比,符号为ω。 物质B的质量分数(ωB)=物质B的质量(mB)/溶液的质量(m) 例如:氯化钠的质量分数ω(NaCl)=15%,即表示100g该溶液中含有NaCl 15g。 ⑵体积分数 通常用于表示溶质为液体的溶液浓度(略) ⑶物质的量的浓度

凝固点降低实验报告

华南师范大学实验报告 学生姓名学号 专业化学(师范) 年级、班级 课程名称物理化学实验实验项目凝固点降低法测定物质的相对分子质量实验类型:□验证□设计□综合实验时间年月日 实验指导老师蔡跃鹏实验评分 【实验目的】 1、明确溶液凝固点的定义及获得凝固点的正确方法。 2、确定环己烷的凝固点降低值,计算萘的相对分子质量。 3、掌握凝固点将定分子量的原理,加深对稀溶液依数性的理解。 4、掌握贝克曼温度计的使用方法。 【实验原理】 物质的相对分子质量是了解物质的一个最基本且重要的物理化学数据,其测定方法有许多种。凝固点降低法测定物质的相对分子质量是一个简单又比较准确的方法,在溶液理论研究和实际应用方面都具有重要意义。 凝固点降低是稀溶液的一种依数性,这里的凝固点是指在一定压力下,溶液中纯溶剂开始析出的温度。由于溶质的加入,使固态纯溶剂从溶液中析出的温度T f比纯溶剂的凝固点T f*下降,其降低值△T f =T f*-T f与溶液的质量摩尔浓度成正比,即 △T f =K f m (3-1)式中,△T f为凝固点降低值;m为溶液质量摩尔浓度;K f为凝固点降低常数,它与溶剂的特性有关。表3-1给出了部分溶剂的凝固点降低常数值。 表3-1 几种溶剂的凝固点降低常数值 若称取一定量的溶质W B(g)和溶剂W A(g),配成稀溶液,则此溶液的质量摩尔浓度m B为 W B

m B = ×103 mol/kg (3-2) 式中,M B 为溶质的相对分子质量。将式(3-2)代入式(3-1),整理得 M B = ×103 mol/kg (3-3) 若已知某溶剂的凝固点降低常数K f 值,通过实验测定此溶液的凝固点降低值△T f ,即可计算溶质的相对分子质量M B 。 通常测定凝固点的方法有平衡法和贝克曼法(或步冷曲线法)。本实验采用后者。其基本原理是将纯溶剂或溶液缓慢匀速冷却,记录体系温度随时间的变化,绘出步冷曲线(温度-时间曲线),用外推法求得纯溶剂或稀溶液中溶剂的凝固点。 首先,将纯溶剂逐步冷却时,体系温度随时间均匀下降,到某一温度时有固体析出,由于结晶放出的凝固热抵消了体系将温室传递给环境的热量,因而保持固液两相平衡,当放热与散热达到平衡时,温度不再改变。在步冷曲线上呈现出一个平台;当全部凝固后,温度又开始下降。从理论上来讲,对于纯溶剂,只要固液两相平衡共存,同时体系温度均匀,那么每次测定的凝固点只应该不变。但实际上由于过冷现象存在,往往每次测定值会有起伏。当过冷现象存在时,纯溶剂的不冷曲线如图3-1(a)所示。即先过冷后足够量的晶体产生时,大量的凝固热使体系温度回升,回升后在某一温度维持不变,此不变的温度作为纯溶剂的凝固点。 稀溶液的凝固点测定也存在上述类似现象,如图3-1(b)所示。没有过冷现象存在时,溶液首先均匀降温,当某一温度有溶剂开始析出时,凝固热抵消了部分体系向环境的放热,因此降温变缓慢,在步冷曲线上表现为一个转折点,此温度即为该平衡浓度稀溶液的凝固点,随着溶剂析出,溶液浓度增加,凝固点逐渐降低。但溶液的过冷现象也是普遍存在的。当某一浓度的溶液逐渐冷却成过冷溶液(冷却到凝固点,并不析出晶体),通过搅拌或加入晶种促使溶剂结晶,凝固热抵消了体系降温时传递给环境的热量,使体系温度回升,当凝固放热与体系散热达到平衡时,温度不再回升。此固液两相共存的平衡温度即为溶液的凝固点。后又随着溶剂析出,凝固点逐渐降低。但过冷太厉害或寒剂温度过低,则凝固热抵偿不了散热,此时温度不能回升到凝固点,在温度低于凝固点时完全凝固,就得不到正确的凝固点。上述也可从相律分析,溶剂与溶液的冷却曲线形状不同。对纯溶剂两相共存时,自由度f * =1-2+1=0,冷却曲线出现水平线段,其形状如图3-1(a)所示。对溶液两相共存时,自由度f * =2-2+1=1,温度仍可下降,但由于溶剂凝固时放出凝固热,使温度回升,但回升到最 M B W A △T f W A K f W B

常见介电常数

Material物质名* 温度(°C) 介电常数 ABS RESIN, LUMP 丙烯晴-丁二烯-苯乙烯树脂块2.4-4.1 ABS RESIN, PELLET 丙烯晴-丁二烯-苯乙烯树脂球1.5-2.5 ACENAPHTHENE 二氢苊21 3.0 ACETAL 聚甲醛21 3.6 ACETAL BROMIDE 溴代乙缩醛二乙醇16.5 ACETAL DOXIME 乙二醛肟20 3.4 ACETALDEHYDE 乙醛5 21.8 ACETAMIDE 乙酰胺20 41 ACETAMIDE 乙酰胺82 59 ACETANILIDE 乙醛22 2.9 ACETIC ACID 乙酸20 6.2 ACETIC ACID 乙酸2 4.1 ACETIC ANHYDRIDE 乙酸酐19 21.0 ACETONE 丙酮25 20.7 ACETONE 丙酮53 17.7 ACETONE 丙酮0 1.0159 ACETONITRILE 乙睛21 37.5 ACETOPHENONE 苯乙酮24 17.3 ACETOXIME 丙酮肟-4 3 ACETYL ACETONE 乙酰丙酮20 23.1 ACETYL BROMIDE 乙酰溴20 16.5 ACETYL CHLORIDE 乙酰氯20 15.8 ACETYLE ACETONE 乙酰丙酮20 25 ACETYLENE 乙炔0 1.0217 ACETYLMETHYL HEXYL KETONE 己基甲酮19 27.9 ACRYLIC RESIN 丙烯酸树脂2.7 - 4.5 ACTEAL 乙醛21.0-3.6 AIR 空气1 AIR (DRY) 空气(干燥)20 1.000536 ALCOHOL, INDUSTRIAL 工业酒精16-31 ALKYD RESIN 醇酸树脂3.5-5 ALLYL ALCOHOL 丙烯醇14 22 ALLYL BROMIDE 溴丙烯19 7.0 ALLYL CHLORIDE 烯丙基氯20 8.2 ALLYL IODIDE 碘丙烯19 6.1 ALLYL ISOTHIOCYANATE 异硫氰酸丙烯酯18 17.2 ALLYL RESIN (CAST) 烯丙基脂(CAST) 3.6 - 4.5 ALUMINA 氧化铝9.3-11.5 ALUMINA 氧化铝4.5 ALUMINA CHINA 氧化铝瓷3.1-3.9 ALUMINUM BROMIDE 溴化铝100 3.4 ALUMINUM FLUORIDE 氟化铝2.2 ALUMINUM HYDROXIDE 氢氧化铝2.2 ALUMINUM OLEATE 油酸铝20 2.4 ALUMINUM PHOSPHATE 硷式磷酸铝-14 ALUMINUM POWDER 铝粉1.6-1.8 AMBER 琥珀2.8-2.9 AMINOALKYD RESIN 酸硬化树脂3.9-4.2 AMMONIA 血氨-59 25 DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表Material 物质名* 温度(°C) 介电常数DIELECTRIC CONSTANT REFERENCE GUIDE介电常数参考表AMMONIA 血氨-34 22 AMMONIA 血氨4 18.9 AMMONIA 血氨21 16.5 AMMONIA (GAS? ) 血氨(气体)0 72 AMMONIUM BROMIDE 溴化铵7.2 AMMONIUM CHLORIDE 氯化铵7 AMYL ACETATE 醋酸戊酯20 5 AMYL ALCOHOL 戊醇-118 35.5 AMYL ALCOHOL 戊醇20 15.8 AMYL ALCOHOL 戊醇60 11.2 AMYL BENZOATE 苯甲酸戊酯20 5.1 AMYL BROMIDE 溴化环戊烷10 6.3 AMYL CHLORIDE 戊基氯11 6.6 AMYL ETHER 戊基醚16 3.1 AMYL FORMATE 甲酸戊基19 5.7 AMYL IODIDE 碘化戊基17 6.9 AMYL NITRATE 硝酸戊基17 9.1 AMYL THIOCYANATE 硫氰酸盐戊基20 17.4 AMYLAMINE 戊胺22 4.6 AMYLENE 戊烯21 2 AMYLENE BROMIDE 溴戊烯14 5.6 AMYLENETETRARARBOXYLATE 19 4.4 AMYLMERCAPTAN 戊基硫醇20 4.7 ANILINE 苯胺0 7.8 ANILINE 苯胺20 7.3 ANILINE 苯胺100 5.5 ANILINE FORMALDEHYDE RESIN 苯氨-甲醛树脂3.5 - 3.6 ANILINE RESIN 苯胺树脂3.4-3.8 ANISALDEHYDE 茴香醛20 15.8 ANISALDOXINE 茴香肟63 9.2 ANISOLE 苯甲醚20 4.3 ANITMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY PENTACHLORIDE 五氯化锑20 3.2 ANTIMONY TRIBROMIDE 三溴化锑100 20.9 ANTIMONY TRICHLORIDE 三氯化锑5.3 ANTIMONY TRICHLORIDE 三溴化锑74 33 ANTIMONY TRICODIDE 三碘化锑175 13.9 APATITE 磷灰石7.4 ARGON 氩-227 1.5 ARGON 氩20 1.000513 ARSENIC TRIBROMIDE 三溴化砷37 9 ARSENIC TRICHLORIDE 三氯化砷66 7 ARSENIC TRICHLORIDE 三氯化砷21 12.4 ARSENIC TRIIODIDE 三碘化砷150 7 ARSINE 胂-100 2.5

常见物质介电常数汇总

Sir-20说明书普通材料的介电值和术语集 1

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书)

------------------《探地雷达方法与应用》(李大心)

2007第二期勘察科学与技术

电磁波在部分常见介质中的传播参数 (The propagation parameters of the electromagnetic wave in the medium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于1.7-6之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相同。所以天然材料的电学特性的变化,一般都是由于含水量的变化所致。对于岩石和土壤含水量和介电常数的关系国内外进行了详细研究(P.Hoekstra, 1974; J.E.Hipp,1 974;J .L.Davis,1 976;G A.Poe,1 971;J .R.Wang,1 977;E .G.巧okue tal ,1 977)。在实验室内大量测量了不同粒度的土壤一水混合物介电常数,考虑到束缚水和游离水,提出了经验土壤介电常数混合模型(J.R.Wang, 1985)。实验室内用开路探头技术和自由空间天线技术测量干燥岩石的介电常数(F.TUlaby, 1990)。国内肖金凯等人(1984, 1988)测量了大量的岩石和土壤的介电常数,王湘云、郭华东(1999)研究了三大岩类中所含的矿物对其介电常数的影响。研究表明,土壤中

含水量的变化影响介电常数的实部,水溶液中含盐量的变化影响土壤的导电性,即介电常数的虚部。水与某些铁锰化合物具有高的介电常数,绝大多数矿物的介电常数较低,约为4--12个相对单位,由于主要造岩矿物与水的相对介电常数存在较大差异,所以,具有较大孔隙度岩石的介电常数主要取决于它的含水量,泥岩由于含有大量的弱束缚水,所以其相对介电常数可高达50--60,岩石含泥质较多时,它们的介电常数与泥质含量有明显的关系,很多火成岩的孔隙度只有千分之几,其相对介电常数主要取决于造岩矿物,一般变化范围为6--12,水的介电常数与其矿化度的关系较弱,与此相应,岩石孔隙中所含水的矿化度同样对其介电常数不应有大的影响,水的矿化度的增大只导致岩石介电常数的少许增加。 表1 常见介质的电性参数值 媒质电导率 / (S/m) 介电常 数(相对 值) 电磁波速度/ (m/ns) 空气0 1 0.3 水10-4~3х10-281 0.033 花岗岩(干)10-8 5 0.15 灰岩(干)10-97 0.11 灰岩(湿) 2.5х10-28~10 0.11~0.095 粘土(湿)10-1~1 8~12 0.11~0.087 混凝土10-9~10-86~15 0.12~0.077 钢筋∞∞

常用用有机溶剂的相对极性

常用用有机溶剂的相对极性 常用用有机溶剂的相对极性 solvent polarity Viscosity(cp20℃) Boiling point(℃) UV cutoff(nm) i-pentane戊烷 0.00 -- 30 -- n-pentane 0.00 0.23 36 210 Petroleum ether石油醚0.01 0.30 30-60 210 Hexane己烷0.06 0.33 69 210 Cyclohexane环己烷 0.10 1.00 81 210 Isooctane异辛烷 0.10 0.53 99 210 Trifluoroacetic acid三氟乙酸 0.10 -- 72 -- Trimethylpentane三甲基戊烷0.10 0.47 99 215 Cyclopentane(环戊烷) 0.20 0.47 49 210 n-heptane(庚烷) 0.20 0.41 98 200 Butyl chloride (丁基氯; 丁酰氯) 1.00 0.46 78 220 Trichloroethylene (三氯乙烯; 乙炔化三氯) 1.00 0.57 87 273 Carbon tetrachloride (四氯化碳) 1.60 0.97 77 265 Trichlorotrifluoroethane (三氯三氟代乙烷) 1.90 0.71 48 231 i-propyl ether (丙基醚; 丙醚) 2.40 0.37 68 220 T oluene(甲苯) 2.40 0.59 111 285 p-xylene(对二甲苯) 2.50 0.65 138 290 Chlorobenzene(氯苯) 2.70 0.80 132 -- o-dichlorobenzene (领二氯苯) 2.70 1.33 180 295 Ethyl ether(二乙醚; 醚) 2.90 0.23 35 220 Benzene(苯) 3.00 0.65 80 280 Isobutyl alcohol(异丁醇) 3.00 4.70 108 220 Methylene chloride(二氯甲烷) 3.40 0.44 40 245 Ethylene dichloride(二氯化乙烯)3.50 0.79 84 228 n-butanol(丁醇) 3.90 2.95 117 210 n-butyl acetate(醋酸丁酯; 乙酸丁酯)4.00 --- 126 254 n-propanol(丙醇) 4.00 2.27 98 210 Methyl isobutyl ketone 4.20 -- 119 330 T etrahydrofuran( 四氢呋喃)4.20 0.55 66 220 ethanol 4.30 1.20 79 210 Ethyl acetate 4.30 0.45 77 260 i-propanol(丙醇) 4.30 2.37 82 210 Chloroform(氯仿) 4.40 0.57 61 245 Methyl ethyl ketone(甲基乙基酮)4.50 0.43 80 330

常见介质介电常数

薅H2O (水) 78.5 螅HCOOH (甲酸) 58.5 袃HCON(CH3)2 (N,N-二甲基甲酰胺)36.7 蕿CH3OH (甲醇) 32.7 芇C2H5OH (乙醇) 24.5 薄CH3COCH3 (丙酮) 20.7 羃n-C6H13OH (正己醇)13.3 羀CH3COOH (乙酸或醋酸) 6.15 螅 莃温度对介电常数的影响 肃C6H6 (苯) 2.28 肇CCl4 (四氯化碳) 2.24 蒇n-C6H14 (正己烷)1.88 肂电介质的相对介电常数

【正文】:@@1.判别乳状液的类型和稳定性常规测定乳状液类型的方法主要有染料法,冲淡法,电导法,荧光法和润湿滤纸法,这些方法均简单易行其实利用介电常数测试法也可以判别乳状液的类型,其道理同电导法类似电导法所依据的原理是水和油电导率的差异,当乳状液为WO型时,由于外相是油,乳状液的电导率很小,当乳状液为O W型时,由于外相是水,乳状液的电导率很大水和油不仅在电导率方面有差异,在介电常数方面也有很大区别一般纯净原油的相对介电常数接近2,纯净水的相对介电常数接近80,所以原油乳状液的相对介电常数基本介于2和80之间当原油乳状液的外相为油时,乳状液的介电性质同油的性质类似,所以测得的介电常数偏小当乳状液的外相为水时,乳状液的介电性质同水的性质类似,所以介电常数偏大,因此,根据被测乳状液介电常数的大小,可判断乳状液的类型曾测试两种原油乳状液的相对介电常数分别是6.8和75.4,初步判断前一种是WO型,后一种是OW型,当用染料法和润湿滤纸法进行验证后,确认判断结果是正确的,这说明用介电常数测试法判别乳状液的类型是可行的 For personal use only in study and research; not for commercial use

凝固点降低法测定分子量

凝固点降低法测定分子量 一、实验目的及要求 1)用凝固点降低法测定物质的摩尔质量。 2) 掌握自冷式凝固点测定仪的使用方法。 二、实验原理 非挥发性溶质二组分溶液,其稀溶液具有依数性,凝固点降低就是依数性的一种表现。根据凝固点降低的数值,可以求溶质的摩尔质量。对于稀溶液,如果溶质和溶剂不生成固溶体,固态是纯的溶剂,在一定压力下,固体溶剂与溶液成平衡的温度叫做溶液的凝固点。溶剂中加入溶质时,溶液的凝固点比纯溶剂的凝固点低。那么其凝固点降低值ΔT f 与溶质的质量摩尔浓度b 成正比。 ?T f = T f 0-T f =K f b 式中:T f 0纯溶剂的凝固点、T f 浓度为b 的溶液的凝固、K f 溶剂的凝固点降低常数。 若已知某种溶剂的凝固点降低常数K f ,并测得溶剂和溶质的质量分别为m A , m B 的稀溶液 的凝固点降低值?T f ,则可通过下式计算溶质的摩尔质量M B 。 A f B f B m T m K M ?= 式中K f 的单位为K · kg ·mol -1 纯溶剂的凝固点为其液相和固相共存的平衡温度。若将液态的纯溶剂逐步冷却,在未凝固前温度将随时间均匀下降,开始凝固后因放出凝固热而补偿了热损失,体系将保持液一固两相共存的平衡温度而不变,直至全部凝固,温度再继续下降。其冷却曲线如图1中1所示。但实际过程中,当液体温度达到或稍低于其凝固点时,晶体并不析出,这就是所谓的过冷现象。此时若加以搅拌或加入晶种,促使晶核产生,则大量晶体会迅速形成,并放出凝固热,使体或加入晶种,促使晶核产生,则大量晶体会迅速形成,并放出凝固热,使体系温度迅速回升到稳定的平衡温度;待液体全部凝固后温度再逐渐下降。冷却曲线如图1中2。

凝固点降低实验报告

华 南 师 范 大 学 实 验 报 告 学生姓名 学 号 专 业 化学(师范) 年级、班级 课程名称 物理化学实验 实验项目凝固点降低法测定物质的相对分子质量 实验类型 :□验证□设计□综合 实验时间 年 月 日 实验指导老师 蔡跃鹏 实验评分 【实验目的】 1、明确溶液凝固点的定义及获得凝固点的正确方法。 2、确定环己烷的凝固点降低值,计算萘的相对分子质量。 3、掌握凝固点将定分子量的原理,加深对稀溶液依数性的理解。 4、掌握贝克曼温度计的使用方法。 【实验原理】 物质的相对分子质量是了解物质的一个最基本且重要的物理化学数据,其测定方法有许多种。凝固点降低法测定物质的相对分子质量是一个简单又比较准确的方法,在溶液理论研究和实际应用方面都具有重要意义。 凝固点降低是稀溶液的一种依数性,这里的凝固点是指在一定压力下,溶液中纯溶剂开始析出的温度。由于溶质的加入,使固态纯溶剂从溶液中析出的温度T f 比纯溶剂的凝固点T f * 下降,其降低值△T f =T f * -T f 与溶液的质量摩尔浓度成正比,即 △T f =K f m (3-1) 式中,△T f 为凝固点降低值;m 为溶液质量摩尔浓度;K f 为凝固点降低常数,它与溶剂的特性有关。表3-1给出了部分溶剂的凝固点降低常数值。 表3-1 几种溶剂的凝固点降低常数值 若称取一定量的溶质W B (g)和溶剂W A (g),配成稀溶液,则此溶液的质量摩尔浓度m B 为 m B = ×103 mol/kg (3-2) 式中,M B 为溶质的相对分子质量。将式(3-2)代入式(3-1),整理得 M B = ×103 mol/kg (3-3) 若已知某溶剂的凝固点降低常数K f 值,通过实验测定此溶液的凝固点降低值△T f ,即可计算溶质的相对分子质量M B 。 通常测定凝固点的方法有平衡法和贝克曼法(或步冷曲线法)。本实验采用后者。其基本原理是 M B W A W B △T f W A K f W B

展开剂的选择以及常用溶剂极性表

展开剂的选择以及常用溶剂极性表 选择适当的展开剂是首要任务.一般常用溶剂按照极性从小到大的顺序排列大概为:石油迷<己烷<苯<乙醚 Petroleumether/Ethylacetate,petroleumether/Acetone,Petroleumether/Ether, Petroleumether/CH2Cl2, ethylacetate/MeOH,CHCl3/ethylacetate 展开剂的比例要靠尝试.一般根据文献中报道的该类化合物用什么样的展开剂,就首先尝试使用该类展开剂,然后不断尝试比例,直到找到一个分离效果好的展开剂。展开剂的选择条件:①对的所需成分有良好的溶解性;②可使成分间分开;③待测组分的Rf在0.2~0.8之间,定量测定在0.3~0.5之间;④不与待测组分或吸附剂发生化学反应;⑤沸点适中,黏度较小;⑥展开后组分斑点圆且集中;⑦混合溶剂最好用新鲜配制。 一般来说,弱极性溶剂体系的基本两相由正己烷和水组成,再根据需要加入甲醇、乙醇,乙酸乙酯来调节溶剂系统的极性,以达到好的分离效果,适合于生物碱、黄酮、萜类等的分离;中等极性的溶剂体系由氯仿和水基本两相组成,由甲醇、乙醇,乙酸乙酯等来调节,适合于蒽醌、香豆素,以及一些极性较大的木脂素和萜类的分离;强极性溶剂,由正丁醇和水组成,也靠甲醇、乙醇,乙酸乙酯等来调节,适合于极性很大的生物碱类化合物的分离。 很多时候,展开剂的选择要靠自己不断变换展开剂的组成来达到最佳效果。我们在实验中,为了实现一个配体与其他杂质有效分离,曾经尝试了很多种的溶剂组合,最后才找到石油醚—EtOAc—HCOOH(5.5:3.5:0.1)混合溶剂。一般把两种溶剂混合时,采用高极性/低极性的体积比为1/3的混合溶剂,如果有分开的迹象,再调整比例(或者加入第三种溶剂),达到最佳效果;如果没有分开的迹象(斑点较“拖”),最好是换溶剂。对于在硅胶中这种酸性物质上易分解的物质,在展开剂里往往加一点点三乙胺,氨水,吡啶等碱性物质来中和硅胶的酸性。(选择所添加的碱性物质,还必须考虑容易从产品中除去,氨水无疑是较好的选择。)分离效果的好坏和所用硅胶和溶剂的质量很有关系:不同厂家生产的硅胶可能含水量以及颗粒的粗细程度,酸性强弱不同,从而导致产品在某个厂家的硅胶中分离效果很好,但在另一个厂家的就不行。溶剂的含水量和杂质含量对分离效果都有明显的影响。温度,湿度对分离效果影响也很明显,在实验中我们发现有时同一展开条件,上下午的Rf截然不同 展开剂的选择主要根据样品的极性、溶解度和吸附剂的活性等因素来考虑 在进行薄层层析时,首先应该知道未知化学成分的类型,其极性的大致归属,从提取液或从色谱柱的流动相极性可知,另外某样品里含多种化学成分先按极性不同大致分,然后细分,对于分离未知的化学物质,展开剂的选择也是一个摸索的过程,不应该仅仅从展开剂考虑,多因素综合衡量!

常用介电常数

物质名温度介电常数物质名温度介电常数物质名温度介电常数 三甲基苯 20 1.9 苯乙酮 24 17.3 丁醇(1) 20 17.8 苯 20 2.3 苯甲醛 20 17.8 环己酮 20 18.2 对二甲苯 20 2.3 苯乙醚 21 4.5 苯乙腈 20 18.3 三甲苯 20 2.3 丁酸乙脂 19 5.1 丁酮 20 18.5 间二甲苯 20 2.4 丁酸乙脂 19 5.1 异丁醇 20 18.7 甲苯 20 2.4 丁胺 21 5.4 丙酮 25 20.7 三乙胺 25 2.4 丁酸甲酯 20 5.6 丁腈 21 20.7 二甲苯 20 2.4 乙酸 20 6.2 乙酸酐 19 21 萘 20 2.5 乙胺 21 6.3 甲醛 23 三甲胺 25 2.5 乙酸甲酯 25 6.7 酒精 25 24.3 己酸 71 2.6 甲酸乙脂 25 7.1 苯甲腈 20 26 戊酸 20 2.6 苯胺 20 7.3 乙二腈 20 27 乙醛 22 2.9 正丁醇 19 7.8 丙腈 20 27.7 正丁酸 20 2.9 丁酸酐 -7 12 甲醇 25 32.6 丁酸 20 3 丁酸酐 20 12 乙二醇 20 37 乙苯 24 3 吡啶 20 12.5 乙二醇 25 37 呋喃 25 3 二苯甲酮 20 13 乙腈 21 37.5 丙酸 14 3.1 苯甲醇 20 13 乙酰胺 20 41 辛酸 18 3.2 丁醛 26 13.4 丙二腈 36 47 脲 22 3.5 戊酮 25 13.9 甲酸 16 58 二乙胺 20 3.7 环己醇 25 15 水 20 80.4 乙酸 2 4.1 戊纯 20 15.8 工业酒精 16~31 苯甲醚 20 4.3 茴香醛 20 15.8 环氧乙烷 25 14 乙醚 20 4.3 乙二胺 18 16 氯甲烷-4~12.6 苯甲醚 24 4.3 甲丙酮 14 16.8 氧化铝 9.3~11.5 For personal use only in study and research; not for commercial use

常用有机溶剂性质

常用有机溶剂性质 粘度(20℃)/mPa·s; —介电常数 名称沸点密度粘度波长极性E T(30) 介电分子量溶解性水100 1 1 268 10.2 63.1 58.8 18 二甲亚砜189 2.24 268 7.2 45 48.9 78.14 DMSO能与水、醇、醚、丙酮、乙醛、吡啶、乙酸乙酯等混溶,不溶于乙炔以外的脂肪烃化合物 乙二醇197 1.1155 19.9 210 6.9 56.3 26.33 62.07 与水/乙醇/丙酮/醋酸甘油吡啶等混溶,微溶于醚等,不溶于石油烃及油类.能够溶解氯化锌/氯化钠/碳酸钾/氯化钾/碘化钾/氢氧化钾等无机物. 甲醇64.9 0.7914 0.6 210 6.6 55.5 32.6 32.04 溶于水、乙醇、乙醚、苯等 二甲基甲酰胺152.8 0.92 270 6.4 43.8 36.71 73.10 能和水及大部分有机溶剂互溶,是高沸点的极性(亲水性)非质子性溶剂,能促进SN2反应机构的进行 苯胺184 4.4 - 6.3 44.3 6.98 乙酸118 1.28 230 6.2 51.9 6.19 乙腈81.1 0.37 210 6.2 46 37.5 41.05 相对密度0.79,与水混溶,溶于醇等多数有机溶剂硝基甲烷101 0.67 330 6 46.3 38.6 丙酮56.5 0.32 330 5.4 42.2 20.5 58.08 与水、乙醇、氯仿、乙醚及多种油类混溶吡啶115 0.97 305 5.3 40.2 12.3 二恶烷; 二氧 六环 102 1.04 1.54 220 4.8 36 2.21 88.11 与水混溶,可混溶于多数有机溶剂 2-丁酮80 0.8054 0.43 330 4.5 72.11 甲基乙基酮能溶于4份水中,但温度升高时溶解度降低,20℃时,水中溶解度26.8%(w),水在2-丁酮中的溶解度11.8%(w)。溶于乙醇和乙醚,可与油混溶。与水形成共沸物,其沸点74.3℃,含丁酮88.7%。在空气中的爆炸极限1.97%-10.1%(v) 氯仿61.2 0.57 245 4.4 39.1 4.7 119.39 微溶于水,能与醇、醚、苯等有机溶剂及油类混溶 乙酸乙酯77.0 0.45 260 4.30 38.1 6.03 88.1 能与水、乙醇、乙醚、丙酮及氯仿等混溶 异丙醇82 0.78505 2.37 210 4.3 48.6 18.3 60.07 溶于水、醇、醚、苯、氯仿等多数有机溶剂。与水能形成共沸物。 四氢呋喃66 0.8892 0.55 220 4.2 37.4 7.58 溶于水、乙醇、乙醚、脂肪烃、芳香烃、氯化烃、丙酮、苯等有机溶剂 甲基异丁酮119 - 330 4.2

常见物质介电常数汇总

常见物质介电常数汇总 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

Sir-20说明书普通材料的介电值和术语集材料介电值速度毫米/纳秒空气1300 水淡8133 水咸8133 极地雪194-252 极地冰168 温带冰167 纯冰167 淡水湖冰4150 海冰78-157 永冻土1-8106-300 沿岸砂干燥1095 砂干燥3-6120-170 砂湿的25-3055-60 粉沙湿的1095 粘土湿8-1586-110 粘土土壤干3173 沼泽1286 农业耕地1577 畜牧土地1383 土壤平均1675 花岗岩5-8106-120 石灰岩7-9100-113 白云岩106-115 玄武岩湿8106 泥岩湿7113 砂岩湿6112 煤4-5134-150 石英145 混凝土6-855-112 沥青3-5134-173 聚氯乙烯pvc3173

常见物质的相对介电常数值和电磁波传播速度(RIS-K2说明书) 常见介质的相对介电常数—网上搜集

------------------《探地雷达方法与应用》(李大心) 2007第二期勘察科学与技术 电磁波在部分常见介质中的传播参数(Thepropagationparametersoftheelectromagneticwaveinthemedium) 地球表面大部分无水的物质(如干燥的土壤和岩石等)的介电常数,实部一般介于之间,水的介电常数一般为81,虚部很小,一般可以忽略不计。岩石和土壤的介电常数与其含水量几乎呈线形关系增长,且与水的介电常数特性相

相关主题
文本预览
相关文档 最新文档