当前位置:文档之家› 5-5 真空电弧炉熔炼及其参数

5-5 真空电弧炉熔炼及其参数

3吨真空自耗炉

一设备基本参数 1 熔炼金属:钛、钛合金 2 铸锭最大重量:3000kg 3 熔炼电源参数: 6KV,三相 频率:50Hz 硅整流输出电压:20~60V(直流),25000A,功率因数≥0.9 4 熔炼工作电压: 20~40V(直流) 5 熔炼电流: 24000A 6 低压电源:380V,三相50Hz,200KVA 7 极限真空度: 6.67×10-3Pa 8 升压率:≤4PaL/s, 9 抽气速度: 1.33Pa小于等于10分钟 10 冷却水: 水压0.2~0.4M Pa 水温≤30℃ 流量:20M3/h 11 压缩空气:0.4~0.6 M Pa,耗量:3L/s 12设备占地空间: 主机9m×7.5m×10m(最高),地下深4 m 13 生产能力: 一次熔炼量为3000Kg; 14工作制度与时间:周期式工作,工作周期约5个小时; 15 设备总装机容量:2000KV A 16 起重设备:5吨 17 成套设备总重量:45T 18 稳弧电流:0—10A,强度,0—70高斯,搅拌时间间隔10s-1200s 19 坩埚尺寸:φ570mm×3200mm, φ660mm×2400mm 20 炉头行程:2500mm

21 电极杆行程:3000mm 熔炼速度:0—300mm/min可调, 快速提升:1m/min 22 双工位角度:90度,转换时间:60s, 速度,2.5m/min 23 X-Y轴调整:速度:0.1-1mm/s 范围: 0-10mm 24 炉头内净空间:高度:2400mm 二、设备描述 1、设计概述 1.1 本炉由真空熔炼室、滑轨导向联接体、真空系统、气动系统、水冷系统、电控系统和光学监视系统组成,设备设计蓝图如下: 1.2 该真空电弧熔炼炉是双工位结构,具有提升和旋转能力,可以在一个工位处取出锭料和装载下一个电极,同时在另一个工位处进行熔炼。 1.3 该设备地下深4米,地面高度10米。 1.4 真空熔炼室由炉体、电极杆、熔炼电源、电极升降装置、结晶器组件等系统组成。1.5 真空系统安装在地面上,以方便操作和维修。 2、结构描述 2.1 炉体为双层炉壁(内层1Cr18Ni9Ti、外层Q235),立式圆筒焊接结构,壁中间通冷却水。炉体上设有两个观察窗,熔炼时通过此窗可观察到电弧放电状态,并通过光学摄相头传送到控制室监视器显示屏上,炉体真空接管上设有真空测量规管、真空放气阀、充气阀、炉体上端设有供电极升降用的密封装置和两个观察窗及阳极(+)接线端子。阳极(+)电流流经炉体和下法兰弹性触头导入结晶器创造电弧放电条件,和电极料棒形成同轴供电。 2.2 电极杆为双层无缝管夹层水套(内管为紫铜管,外管为不锈钢管),适合于承载24000A 的连续的大电流,外径为φ300,内有滚珠丝杠,上端外有气缸,通过中空拉杆为下端的气动夹头提供夹紧(自耗电极)料棒的动力。熔炼时滚珠丝杠旋转带动电极升降,并有双立柱滚轮导向,通过炉体上部动密封进入炉体。电极杆上部安装升降装置。双立柱导向机构保证电极杆传动的稳定性。通过铜排组件将负极(—)电流的电缆连接在电极杆的顶部。在电极杆的下端安装有用于啮合与脱离辅助电极的电极夹紧装置,该装置在控制台通过按钮控制。

电弧炉炼钢车间的设计方案

1电弧炉炼钢车间的设计方案 1.1电炉车间生产能力计算 1.1.1电炉容量和座数的确定 在进行电炉炉型设计之前首先要确定电弧炉的容量和座数,它主要与车间的生产规模,冶炼周期,作业率有关。 在同一车间,所选电炉容量的类型一般认为不超过两种为宜。座数也不宜过多,一般设置一座或两座电炉。为了确定电炉的容量和座数,首先要估算每次出岗量q : y G q a ητ8760= 式中 G a —车间产品方案中确定的年产量,80万t ; τ—冶炼周期,55min=0.917h ; η—作业率,年日历天数 年作业天数=η×100% 本设计取90%; Y —良坯收得率,连铸一般95%~98%,本设计取98%; 带入数据计算得 q=95.0t 。 根据估算出的每次出钢量选取HX 2-100系列一座,以下是主要技术性能: 1.1.2电炉车间生产技术指标 (1)产量指标 年产量80万t ; 小时出钢量: (2)质量指标 钢坯合格率 98%; (3) 作业率指标

作业率:90% (4)材料消耗指标 a金属材料消耗 一般为废钢、返回废钢、合金料于脱氧合金。 b炼钢扶住材料消耗 石灰、以及其他造渣材料和脱氧粉剂。 c耐火材料消耗 主要用于炉衬的各种耐火砖以及钢包的耐火材料。 d其它原材料消耗 电极和工具材料。 e动力热力消耗指标 主要为电能和各种气体和燃油等。车间设计产品大纲见下表: (5)连铸生产技术指标 连铸比 铸坯成坯率 连铸收得率 (6)生产的钢种:主要生产Q215,年产量80万吨,连铸坯尺寸选取200×200mm方坯; 1.2 电炉车间设计方案 1.2.1电炉炼钢车间设计与建设的基础材料 (1)建厂条件 1)各种原料的供应条件,特别是钢铁材料来源; 2)产品销售对象及其对产品质量的要求; 3)水电资源情况,所在地区的产品加工,配件制作的协作条件; 4)交通运输条件,水路运输及地区公铁路的现状与发展计划; 5)当地气象,地质条件; 6)环境保护的要求; 在上述各项主要建厂条件之中,原材料条件对于工艺设计的关系尤为密切重要。 (2)工艺制度 确定工艺制度是整个工艺设计的基本方案,是设备选择,工艺布置等一系列问题的设计基础。确定工艺制度的主要依据是产品大纲所规定的钢种,生产规模,原材料条件以及后步工序的设计方案。 1)冶炼方法:利用超高功率电弧炉进行单渣冶炼,然后进行炉外精炼; 2)浇注方法:采用全连铸; 3)连铸坯的冷却处理与精整:铸坯在冷床上冷却并精整; 4)在技术或产量方面应留有一定的余地。 1.2.2电炉炼钢车间的组成

浅谈冲天炉和电炉熔炼

浅谈冲天炉和电炉熔炼 About Smelting with Cupola and Electric Furnace 铸造作为传统的成型工艺,近年来在造型、制芯、砂处理、熔化等方面得到不断的改进,由于熔化工艺关系到铸件材质、浇注成型率、运行成本等方面,特别是全球关注环境保护的今天,选用什么样的熔化设备,显得越来越重要了,为此,在新建铸造项目的可行性研究报告中,往往要对熔化设备的选用加以论证,但冲天炉和电炉熔炼那种方式更好,历来是大家争论的焦点,在此,笔者不敢妄加定论,但两种熔炼方法生产的铸件,在材料的品质、加工性能、抗冲击性和韧性方面确实略有差异,国内外两种熔炼方式都有。 1.与电炉相比,冲天炉熔炼的特点 ●可连续出铁液; ●适合于各种批量和规模的生产需要; ●设备费用低; ●占地面积少; ●铁液通过高温焦炭层时,有净化作用,可提供优质的铁液; ●铁液品质稳定,特别是对高牌号的铸件; ●熔炼过程排放大量的灰尘和废气,如果处理不好,易造成环境污染; ●铁液吸收焦炭中的硫,对生产球墨铸铁不利; ●铁液的化学成分和温度波动较大,且供应量不易改变; ●货物运输量较大。 2.投资比较 表1是国内三家近期建设的铸造项目熔化工部设备投资比较。 表1国内三家近期建设的铸造项目熔化工部设备投资比较 %,但是其占地面积及土建工程费用则要高出30%左右。 3.运行成本分析 以年产3万t铸铁件的某专业铸造厂为例,按两班制作业,计算依据如下: 冲天炉焦铁比为1:7,焦炭价为1800元/t; 石灰石占焦炭比例30%,石灰石80元/t; 脱硫剂占铁液含量2%,脱硫剂800元/t; 冲天炉熔化时铁损3%,生铁价2000元/t; 双联熔炼时,每吨铁液升温100℃,保温至浇注

真空自耗电弧炉操作规程

真空自耗电弧炉操作规程 一、操作步骤: 1.真空机组启动前,应全面检查冷却水和油,冷却水应畅通,油应超过油液面线,机械泵、增压泵进出水阀门打开。 2.开启水泵,检查冷却水出水应畅通,水压不低于2kg。同时,检查补给水闸是否打开。 3.炉体处于大气密封状态,增压泵处于大气(或真空)状态下的操作: (1)启动机械泵(机械泵未启动前,绝对不能开启V2); (2)炉体与增压泵均为大气状态时(此种情况可能是长期不开泵、不抽真空、真空系统漏气造成,或要检修、换油,更换某一部件如真空规头等造成),先开V2(蝶阀2)对增压泵抽真空,等到机械泵出口无冒烟或机械泵声音已正常,再打开V1抽炉体。如果此时炉体处于大气状态,原则上不能先开V1再开V2,因为先开V1增压泵内的大气会向上顶φ300阀门,如经常这样操作,φ300阀门极易损坏; (3)当低真空压力表达到-0.1Pa时,打开增压泵开始加热,增压泵加热30分钟左右,关闭V1并打开V3(φ300阀门),对炉体进行抽高真空。 (4)如果对增压泵油进行检查,等到油完全冷却后,必须要先对炉子破真空,然后再对增压泵破真空。 4.炉体与增压泵处于热态,即炉子连续生产时,真空操作如下: (1)关闭V2(此时V3处于关闭状态); (2)打开V1对炉子抽低真空; (3)当机械泵出口不冒烟,低真空压力表读数为-0.1Pa时,打开V2并关闭V1后打开V3,对炉体进行抽高真空; 5.放气操作 (1)关闭真空仪表; (2)关闭V3(φ300阀门); (3)打开V4电动放气阀; (4)放气完毕,关闭V4电动放气阀。(注意:用手按电动放气阀按钮时,不能超过2秒钟,否则放气阀线圈容易烧毁。) 6.检漏操作 (1)测漏气率必须在0.133Pa~1.33Pa(即1μ~10μ)压力范围内进行; (2)打开V3; (3)测完关闭V3; (4)漏气率E=,E的单位为μ(或Pa)·升/秒 ΔP为检漏时真空度下降值(μ或Pa) V为炉体总体积(升) t为检漏时真空度下降所需时间(秒) 10Kg真空自耗电弧炉在熔炼前漏气率应达15μ(或Pa)·升/秒(以熔炼工艺流程卡要求为准) 7.停止真空系统运转的操作 (1)关闭增压泵加热30分钟后才能关闭V1、V2、V3阀门。此前增压泵和炉体内均为真空状态; (2)关闭机械泵运转;

冲天炉生产工艺技术大全

生产工艺技术大全 1.风口排距改进的大排距冲天炉 2.冲天炉高增碳强还原溶化铸铁工艺 3.分装再燃式冲天炉 4.一种具有开边式炉膛的冲天炉 5.温差式供风冲天炉 6.一种电渣精炼冲天炉铸造铁水工艺 7.向竖炉和冲天炉送进添加剂的方法和装置 8.内插风管式冲天炉 9.一种局部石灰石炉衬碱性冲天炉 10.冲天炉内衬耐高温材料 11.冲天炉除尘方法及其装置 12.冲天炉烟气的净化方法及其装置 13.冲天炉消烟除尘装置 14. 炉气余热回收热风水冷净化冲天炉 15. 一种用于冲天炉的热风炉胆 16.冲天炉消烟除尘装置 17.熔化钢铁屑的新型冲天炉 18.冲天炉加稀土氧化渣的方法 19.转换风口脉动鼓风冲天炉 20.熔化钢铁屑的新型冲天炉 21.干湿二级冲天炉炉帽旋流除尘器 22.冲天炉炉帽旋流除尘器 23.一种化铁炉(冲天炉)脱硫工艺 24.带冲天炉型加料预热炉的熔炼装置 25.利用冲天炉余热的热处理炉 26.利用冲天炉余热的烘干设备 27.冲天炉 28.冲天炉除尘器 29.高风位热旋风过热型冲天炉 30. 冲天炉用除尘换热装置 31. 冲天炉的高温热风炉胆 32.内密筋式冲天炉小热风胆 33.反吹式冲天炉除尘器 34.无烟筒温差式供风冲天炉 35.冲天炉熔炼用铸铁屑压块的生产方法 36.双炉胆高温热风大双冲天炉 37.冲天炉空气预热分离器 38.无烟筒温差式供风冲天炉 39.冲天炉膨胀补偿器 40.冲天炉换热器 41.自热高温供风冲天炉 42.节能冲天炉

43.冲天炉废气的净化除尘器 44.钢屑还原铸铁冲天炉 45.水冷无炉衬冲天炉 46.封闭叠加式热风冲天炉 47.冲天炉用含铁氧化物球团及其制取工艺 48.全风套薄炉衬猪嘴形进风口冲天炉 49.冲天炉、炼铁炉中的废气循环燃烧法 50.用于在高炉或冲天炉中获取金属的方法 51.冲天炉热风炉胆 52. 酸性炉衬冲天炉动态平衡增熔方法 53.冲天炉铁水生产小口径铸态球墨铸铁管工艺 54.修补冲天炉风带炉衬的胎模 55.一种冲天炉除尘设备 56.冲天炉炉前纯碱连续脱硫及熔渣粒化装置 57.余热渐开式偏心均衡供风冲天炉 58.水冷式冲天炉 59.高温节能冲天炉 60.简外热水冷冲天炉 61.冲天炉用卧式换热除尘装置 62.多功能冲天炉 63.热风冲天炉 64.冲天炉热风装置 65.冲天炉、感应电炉炉体衬套 66.冲天炉结构改进及废气回收节能装置 67.冲天炉空气冷却装置 68.外热风冲天炉及烟尘净化工艺装备 69. 喷淋式水冷风口冲天炉 70.冲天炉用水冷供风管 71.直燃式热风冲天炉 72.无烟筒温差式供风冲天炉 73.冲天炉型高效蜂窝煤炉及炉身套群 74.直燃式热风冲天炉 75.冲天炉炉顶装置 76.冲天炉炉缸升降器 77.无渣棉的冲天炉 78.冲天炉空气内冷却装置 79.冲天炉用耐火材料 80.冲天炉熔炼铸铁屑生产球墨铸铁件及灰铸铁件的工艺 81.冲天炉外水冷装置 82.冲天炉分渣器 83.前炉返热式冲天炉 84.热强供风大双冲天炉 85.一种外热风冲天炉 86.冲天炉热交换器

中频炉熔炼工艺操作规程

中频炉熔炼工艺操作规程 1、中频炉范围 本标准规定了中频感应电炉,熔炼技术操作规程。 本标准适用于阳极组装车间生产。 2、设备主要技术性能 2.1 产品型号KGPS—1250 额定容量2t 额定功率1250KW 额定频率500HZ 额定温度1500℃ 感应器电压2000V 熔化效率1.8t/h 2.2 冷却水系统 冷却水压力0.1~0.25MPa 冷却水进水温度≤35℃ 冷却水耗量12t/h 冷却水出口温度≤55℃ 冷却水PH 值7-8.5 总硬度不大于10度 导电率<500u.s/cm 3、生产前的检查 3.1操作人员必须认真了解中频炉系统设备的结构、性能。 3.2生产前仔细检查炉体及部件是否完好。 3.3仔细检查炉衬、炉口烧损情况,如发现问题及时处理 3.4检查和维修熔炼时所用的工器具是否齐全。 3.5检查冷却水系统及液压系统管路是否有滴漏现象。 3.6检查各个部位的仪表和显示是否正常。 3.7检查炉料是否清理干净和数量充足,配比是否合理。 3.8检查铁水包及输送电胡芦是否完好。 3.9检查各控制系统是否正常,灵活可靠。 3.10检查漏炉报警装置是否灵敏、可靠,电气绝缘情况是否达到要求。 3.11检查倾炉系统是否灵活、可靠。 3.12检查中频炉电源系统及纯水冷却系统是否正常完好。 4、熔炼操作

4.1检查无误后,如是冷炉或空炉,必须先加入干净炉料,成份必须符合要求。 4.2炉料要干燥,严禁潮湿料及杂物入炉,一般情况炉料入炉前应予热,加料时应小心操作,不能砸伤炉口炉衬,空心料更应该小心加,防止炉气和铁水喷出飞溅伤人。 4.3开通冷却水,先用低功率进行炉料预热。几分钟后,改用高功率熔炼、炉料开始熔化,此时注意冷却水、根据水温和经验进行调整。 4.4熔炼过程中要经常检查炉衬的烧损情况电源功率表。检查炉口是否有凝结现象。炉膛里不准有炉料架空棚料现象,有应及时处理。 4.7在熔炼过程中、铁水不能溢出,应与炉沿保持50mm 的距离。 4.8铁料彻底熔化浇铸前,观测铁水温度是否达到1450℃,用渣耙除渣。按要求每周取样一次进行分析,参照分析结果及时调整配料。 4.9正确操作炉子液压倾炉系统,倒出铁水至铁水包。铁水距离包沿50mm. 4.10出炉后炉内应留有少量铁水,并及时添加新炉料,继续通电熔炼。 4.11根据浇铸组装块任务量熔化铁水,待生产结束后炉内不应留有铁水。为保护炉衬,一般情况下趁热加入炉料,准备下一班次的生产。 4.12停炉后冷却水不能停,仍继续循环24小时。 4.13待炉子冷却后,用照明灯或手电照明检查炉衬情况如有破损及时修理。 4.14停炉必须停掉电源,清理现场,做好所有记录。 5、中频炉突发事件 5.1当熔炼过程中中频炉产生报警或漏液时,应立即关掉电源停止熔化,倒出已熔化铁水、按应急预案处理故障。 5.2熔炼过程中,突然停水或停电时间又长时,应立即停掉中频电源,开启备用泵或备用水箱及自来水直接引至炉冷却管路,按应急预案处理故障,绝不能扩大事故范围

普通电弧炉设计与电极升降控制

普通电弧炉的一般设计与电极升降控制

摘要: 为了提高所熔炼速度和钢水的质量、减少电能及电极的消耗量、保证维持规定的电气工作条件,使设备获得较高的生产率。从电弧炉的一般设计概况,到电弧炉电极的升降控制。系统了解电弧炉中存在的缺点与不足。通过分析,更好的提高电气控制的稳定性,提高电网提高熔炼速度。 关键词:电弧炉、短网电流、电极升降。

目录 一、电弧炉的简介及特点 1.电弧炉简介 2.电弧炉特点 二、电弧炉的一般设计 1.电弧炉组成部分 2.炉体设计 3.变压器设计 4.短网电流的计算 5.电极直径计算 6.电极升降计算 7.其他相关参数 三、电极升降自动控制 1.调节器的组成及工作原理 2.调节器的结构原理 四、小结 五、参考文献

一、电弧炉的简介及特点 1.电弧炉简介 电弧炉是利用电极间电弧产生的热能冶炼金属的一种设备。电弧炉炼钢就是靠电极与炉料之间放电产生的电弧,使电能在弧光中转变为热能,并借助辐射和电弧的直接作用加热并熔化金属和炉渣,冶炼出各种成分的钢和合金。 现代化炼钢电弧炉均为直接加热、炉底不导电式电炉。该电炉按直接加热金属的原理工作,电弧发生在每一电极与炉料之间,

己熔化的金属则形成负荷的中心点。 2.电弧炉的特点 电弧炉进行冶炼,电弧炉是一个多变量、非线性、大滞后、强藕合、时变、随机干扰较强的系统,使得系统电极位置、电弧长度、电弧电流以及系统功率很难保持最佳工作状态。电极升降调节系统是电弧炉的重要组成部分,其工作性能的好坏直接影响钢的产量、质量和能源消耗。在电弧炉冶炼过程中,三相交流电弧炉的电力负载是不稳定的、不对称的;无功冲击及闪变;产生谐波电流。 电弧炉的整个炼钢过程一般分为熔化期、氧化期、还原期三个时期,由于各个时期所完成的任务不同,因而相应地对冶炼温度和功率的要求也不同。 (熔化期)开始熔化阶段,固体炉料熔化,能量需求最大。 (氧化期)初精炼及加热阶段。 (还原期)精炼期,此阶段输入能量只需平衡热损耗。 在废钢冶炼时电弧炉的工作特性为:

冲天炉熔炼工艺基础

冲天炉熔炼工艺基础 1、冲天炉熔炼基本原理 (1)底焦燃烧:冲天炉底焦燃烧可以划分为两个区带: A、氧化带:从主排风口到自由氧基本耗尽.二氧化碳浓度达到最大值的区域。 B、还原带:从氧化带顶面到炉气中[CO2]/[CO]浓度基本不变的区域.从风口引入的风容易趋向炉壁.形成炉壁效应.形成一个下凹的氧化带和还原带.对熔化造成不利影响。 ①不易形成一个集中的高温区.不利于铁水过热; ②加速了炉壁的侵蚀; ③铁料熔化不均匀.铁液不易稳定下降,影响化学成分。 解决方法: ①采用较大焦炭块度.使风均匀送入; ②采用插入式风嘴; ③采用曲线炉膛; ④采用中央送风系统; ⑤熔炼过程中为使焦炭不易损耗.送风量要与焦炭损耗相适应。 根据炉气、炉料、铁水浓度和温度.炉身分为4个区域: (1)预热区:从加料口下沿.炉料表面到铁料开始熔化的区域称为预热区.下面的炉气温度可达1200℃—1300℃.预热带的上部炉气温度为200℃—500℃。由于这一区域的平均温度不高.炉气黑度和辐射空间较小.炉气在料层内流速较大.炉料与炉气之间的热交换以对流为主.炉料在预热区内停留时间较长.一般为30分钟左右.预热区的高度受有效高度、底焦高度、炉内料面的实际位置、炉料块度、熔化速度、焦铁比的影响。 (2)熔化区:从铁料开始熔化到熔化完毕这一区域称为熔化区.在实际熔炼过程中.底焦顶面高度的波动范围大致等于层焦的厚度.熔化区内的热交换方式仍以对流为主.在实际熔炼过程中.熔化区不是一个平面区带.而是一个中心下凹的曲面.从铁水过热和成分均匀度出发希望熔化区窄而平直.熔化区在炉内位置的高低基本上是由炉气和温度分布状态决定.也受焦炭的烧失速度、批料重量、炉料块度等因素影响.这些因素将使铁料的受热面积、受热时间、受热强度发生变化.造成熔化区高度波动(影响出铁温度).当焦铁比一定.熔化区的平均高度将会因批料重量的减小而提高.从而扩大了过热区.提高了铁水温度.但是批料层不宜过薄.否则易混料使加料操作不便。 (3)过热区:从铁液熔化以后.铁水下滴过程中.与高温炉气和炽热的焦炭相接触.温度进一步提高.此区域称为过热区(过热区炉气温度一般在1600℃—1700℃)。过热区内以焦炭与铁水接触传导传热为主.焦炭表面燃烧温度对热交换效果有重要影响。因而设法强化底焦燃烧.经测定铁水滴成铁水小流穿越底焦的时间一般不超过30秒.而在这一区间内铁水却要提高350℃左右.比预热区大了24倍左右.其传热强度为11KJ/Kg.s.达到这样高的传热强度.

非自耗真空电弧炉

东西仪器科技有限公司 产品名称:非自耗真空电弧炉 产品货号: wi69773 产地:国产 价格: 235000增票 详细说明 非自耗真空电弧炉是在真空条件下充入氩气熔炼各种金属样品的设备,适用于金属材料的研究、实验工作。可以广泛应用于高纯金属,难熔金属,半导体材料及放射性材料的冶炼及稀土材料的熔炼。主要特点: https://www.doczj.com/doc/c210305027.html, ? 功率大,性能稳定,操作简便;? 熔点高,含氧量低,杂质少;功能多:熔炼,吸铸,压片,任客户选择。技术指标:https://www.doczj.com/doc/c210305027.html, 熔化物料(g)7×70 电极最大电流(A) 550 引弧方式手动工作气体 Ar 真空度(Pa) 2x10-3 分子泵5x10-4 (价格另加)冷却方式水冷自动报警搅拌方式手动功能熔炼及成型特殊配置增加柱状和片状模具各一个,尺寸:4×70,1×10×70,其它同配630A电焊机、JK—200真空机组。注:图片及文字介绍仅供参考,请以实物为准

东西仪器科技有限公司 产品名称:非自耗真空电弧炉/真空熔炼炉 产品货号: wi58557 产地:中国 价格:215000增票 详细说明 非自耗真空电弧炉是在真空条件下充入氩气熔炼各种金属样品的设备,适用于金属材料的研究、实验工作。可以广泛应用于高纯金属,难熔金属,半导体材料及放射性材料的冶炼及稀土材料的熔炼。https://www.doczj.com/doc/c210305027.html, 一、设备配置: 1.卧式真空熔炼室一个; 2.电源:630A直流焊机一台; 3.真空设备:真空机组一套. 4.控制柜一个(内含复合真空计一台); 5.备用密封胶圈以及工具各一套。注:氩气瓶和气表自备. 二.应达到的技术指标和参数: https://www.doczj.com/doc/c210305027.html, 1.电源极限电流:630A.使用电流400-500A 2.真空度:2×10-3Pa; 3.冷却方式:水冷,含自动报警功能; 4.熔炼样品重量:7×70(g); 5.具有手动引弧,弧光保护,水压保护及机械手翻转系统。注:图片及文字介绍仅供参考,请以实物为准

3电弧炉控制系统方案

五矿<湖南)铁合金有限责任公司103#硅锰合金冶炼炉优化控制系统 方 案 设 计 说 明 书 中南大学信息科学与工程学院 二○一○年三月

一、开发背景 五矿<湖南)铁合金集团有限公司103#10000KV A矿热炉主要用于熔炼硅锰合金和碳锰合金,整个生产系统由炉体、供电变压器及保护系统、配加料系统、电极卷扬升降控制系统、电极压放子系统和炉体水冷系统等组成。目前,配加料子系统采用了计算机自动控制;电极压放子系统依靠人工凭经验综合考虑炉况、二次电压、一次电流、熔炼时间等因素,输入控制信号给PLC,由PLC来完成电极的定长压放;电极升降是依靠人工凭经验综合考虑二次电压、一次电流及炉盖温度等因素进行调节;供电变压器二次侧电压等级靠人工根据炉况和电压、电流、功率等因素凭经验进行调整。这种靠人工凭经验来控制冶炼过程的方法难以保证矿热炉稳定持续地工作在最佳工作范围内,调节过程相对滞后、工人操作强度大、工作效率低,容易出现电极烧结不好、耗电量大、炉况不稳定等问题,难以保证产品的产量和质量。 二、设计要求 针对五矿<湖南)铁合金集团有限公司103#矿热炉熔炼过程控制自动水平低下带来的各种问题,通过现场调研和与工艺技术人员交流沟通,结合生产的实际需要,搭建103#矿热炉优化控制系统,以达到如下目标:1.通过建立电极位置模型,在线检测电极的升降量和压放量,实现电极自动升降和自动压放;并通过采用合理的算法,计算电极长度及其位置,控制电极处于最优位置区域内,使三相有功功率平衡度在原有基础上提高2-3%,提高功率因数。 2.通过建立实时数据库,实时采集熔炼过程数据,实现整个矿热炉控制系统的运行监视、事故报警与记录、统计分析和报表打印、日常生产

真空自耗电弧炉熔炼钛铸锭的质量控制

真空自耗电弧炉熔炼钛铸锭的质量控制 安红刘俊玲范丽颖/AnHongLiuJunlingFanLiying Technology&Equipment 真空白耗电弧炉 熔炼钛铸锭的质量控制Qualitycontrolinsmeltingtitaniumingotsinvacuumarc-meltingfurnace 目前,我国生产钛及钛合金铸锭的基本方法仍为 真空白耗电弧炉熔炼法,该方法可满足一般工业的要 求,是一种成熟的工业熔炼方法(如下图). 评价钛及钛合金铸锭冶金质量的好坏,主要有以 下几点: ①化学成分均匀,各合金元素含量不仅达到标准 要求,而且要稳定地控制在一个最佳的含量水平. ②主要杂质(Fe,O等)控制适当范围,其它杂质 符合标准要求. ③铸锭内部无杂质,偏析,气孔,裂纹,缩孔和疏 松等冶金缺陷. ④铸锭表面光滑,无冷隔,折皱等表面缺陷,头 部缩孔切除量小,铸锭成品率高. ⑤合理的形状和精确的尺寸,适合压力加工的要

求,否则会增加工艺废品,降低成本. 图1钛及钛合金铸锭生产工艺流程图 影响铸锭质量的主要因素 Mainfactorsinfluencing价equalityofingots 原料,熔炼工艺参数(熔炼电流,电弧电压,真空 度,漏气率,冷却速度,搅拌磁场强度)选择的合理性 以及工艺过程控制的严密性决定着钛及钛合金铸锭的冶金质量.下面分别进行论述. (1)海绵钛海绵钛中常含有H,MgC1 (NaC1),Fe和H,O等杂质.当H含量高时,它将在熔炼过程大量排出,会使电弧不稳;氯化物含量多时,熔炼 过程操作困难,并会影响设备的寿命;铁含量高时,会 使材料耐腐蚀性能降低;原料潮湿将使钛锭含氧,氢量增高,从而降低其强度.因此,海绵钛必须满足相关标 准的要求,如纯度,均匀性和粒度.最为重要的是不能 含有高熔点钛的氧化物,氮化物或者其它高熔点颗粒. 这些高熔点颗粒有可能在最终产品中成为裂纹源. 据资料,分析高间隙缺陷发现,这些区域含有较 高的O,N,C,认为这些颗粒的来源之一就是海绵 钛.海绵钛生产过程中漏气或者污染的反应剂,有可 能导致N,O与产品反应. 迄今为止没有自动方法检验原料,并剔除这些污

自耗电极真空电弧炉控制系统的设计

收稿日期:2007-03-10. 作者简介:宁欣(1976-),女,河南长垣人,讲师,河南科技大学在读硕士研究生。 自耗电极真空电弧炉控制系统的设计 宁 欣 1,2 ,李建朝 1 (1.河南科技大学,河南洛阳471003;2.河南科技学院,河南新乡453003) 摘要:针对纯模拟器件自耗电极真空电弧炉电极升降控制系统故障率高、维护量大等一系列问题,设计出了由P LC 和模糊控制组成的电极升降控制系统。介绍了系统主要硬件配置,并给出了主程序循环块方框图。该系统控制算法采用模糊控制算法,且根据现场工艺要求实现了从手动到自动的无扰切换功能。实验运行数据表明,基于模糊控制规律的电弧炉电极升降P LC 控制系统运行稳定可靠,操作方便,维护量小,对同行业的生产将起到推动作用。 关键词:电极升降;模糊控制;P LC;触摸屏 中图分类号:T M924.42 文献标识码:A 文章编号:167326060(2007)022******* D esi gn of Con sumable Vacuum Arc Furnace Electr i c Con trol System N ing Xin 1,2 ,et al . (1.Henan University of Science and Technol ogy,Luoyang,Henan 471003,China;2.Henan I nstitute of Science and Technol ogy,Xinxiang,Henan 453003,China ) Abstract:A i m ing at a series of p r oblem s such as high failure rate,a great deal of maintenance resulting fr om the self 2con 2su mp ti on electric pole vacuu m arc furnace electric pole fluctuati on contr ol syste m consisting of si m p le anal og device,the e 2lectric pole fluctuati on contr ol system consisting of P LC and fuzzy contr ol is designed .The main hard ware of the system and the skelet on diagra m of the main p r ogra m circulati on bl ock is als o given .Fuzzy algorith m is adop ted in the syste m,and the functi on of non 2disturbance shifting fr om manual mode t o aut omatic mode is realized according t o field p r ocess require ment .The date got fr om field manifests that arc furnace electric pole fluctuati on P LC contr ol system based on fuzzy contr ol rule has features of stable running,convenient operati on and little maintenance .The syste m will p r omote and i m pulse functi on t o p r o 2ducti on advance ment of the sa me trade . Key words:electric pole fluctuati on;fuzzy contr ol;P LC;t ouch screen 目前,自耗电极真空电弧炉电极升降控制系统一般采用模拟器件控制方式,实践证明,这种模拟器件 的控制方式带来了诸如故障率高、维护量大、生产成本高等一系列问题。为了解决这些问题,必须采用一种新的控制方式。考虑到P LC 功能齐全、应用灵活、操作方便、稳定可靠,是现代控制系统设备的发展方向,并且已经成功应用于冶金、石化、机械等多种工业场合,因此,选择P LC 设计出了电极升降的控制系统。 1 控制系统的设计 1.1 控制系统简介 本操作系统是采用触摸屏(A I GT3100B )结合松 下P LC (FPG 2C24R2)对电弧炉三个电极的数据采集仪表进行检测、控制,系统以P LC 为核心,由A,B ,C 三相电流互感器检测电极电流,后由智能仪表分别对A,B ,C 三相电流进行A /D 采样,采样信号由RS 2485总线送入P LC,P LC 根据采集到的信号按预置模糊控制算法进行运算,运算后由P LC 分别驱动六个液压换向阀进行相应时间的动作,进而控制各电极的自动升降速度及位置,同时使电弧炉满足所输入功率,从而达到了低电耗、高熔化率的炼钢目的。同时具有电流、功率、限位保护等功能。1.2 控制系统的硬件配置1.2.1 可编程控制器 FPG 2C24R2P LC 属于小型 4 6第35卷 第2期Vol .35 No .2河南科技学院学报(自然科学版) Journal of Henan I nstitute of Science and Technol ogy 2007年6月Jun .2007

3电弧炉控制系统方案

#硅锰合湖南)铁合金有限责任公司103五矿<金冶炼炉优化控制系统 方 案 设 计 说 明 书 中南大学信息科学与工程学院 二○一○年三月

1 / 29 一、开发背景 #10000KV A103<湖南)铁合金集团有限公司矿热炉主要用于熔炼五矿硅锰合金和碳锰合金,整个生产系统由炉体、供电变压器及保护系统、配加料系统、电极卷扬升降控制系统、电极压放子系统和炉体水冷系统等组成。目前,配加料子系统采用了计算机自动控制;电极压放子系统依靠人工凭经验综合考虑炉况、二次电压、一次电流、熔炼时间等因素,输入控制信号给PLC,由PLC来完成电极的定长压放;电 极升降是依靠人工凭经验综合考虑二次电压、一次电流及炉盖温度等因素进行调节;供电变压器二次侧电压等级靠人工根据炉况和电压、电流、功率等因素凭经验进行调整。这种靠人工凭经验来控制冶炼过程的方法难以保证矿热炉稳定持续地工作在最佳工作范围内,调节过程相对滞后、工人操作强度大、工作效率低,容易出现电极烧结不好、耗电量大、炉况不稳定等问题,难以保证产品的产量和质量。 二、设计要求 #矿热炉熔炼过程控制自动103针对五矿<湖南)铁合金集团有限公司水平低下带来的各种问题,通过现场调研和与工艺技术人员交流沟通,结#矿热炉优化控制系统,以达到如下目标:103 合生产的实际需要,搭建1.通过建立电极位置模型,在线检测电极的升降量和压放量,实现电极自动升降和自动压放;并通过采用合理的算法,计算电极长度及其位置,控制电极处于最优位置区域内,使三相有功功率平衡度在原有基础上提高2-3%,提高功率因数。 2.通过建立实时数据库,实时采集熔炼过程数据,实现整个矿热炉

冲天炉熔炼层焦比

) k )(g kg 层焦量(每批焦料量层铁焦比= 例如:铁焦比是10时,若已定每批铁料为400kg ,则层焦为40kg 。 层焦量:按照炉内焦炭层厚度来决定,其厚度以100~160mm 为宜。 层焦重量可用下式计算: Ahr W =焦 式中: W 焦—每批层焦量,kg ; A ——熔化带处炉膛断面积,m 2; r ——焦炭的堆积比重,400~500kg/m 3 例如:有一冲天炉直径为900mm ,层焦厚度去120mm ,则层焦量为: g W k 34.3445012.0)9.0(4 2=??= 焦 则每批层焦量为35kg. 底焦高度:1.7m π0.452 ×1.7×450=486kg 加500kg 焦炭。

风量:一般以每分钟送入炉内空气在标态下的立方米来计算,其单位为m3/min 。 )m min)/23路断面积(送风量(送风强度A m Q = 曲线炉膛的冲天炉,在计算送风强度时,一般按主风口处的炉断面积来计算,一般冲天炉的送风强度在90~150m 3/(min ·m 2 )。 例如: 一冲天炉,熔化带处内径为720mm ,主风口处炉膛内径为450mm ,最佳送风强度取120m 3(min ·m 2),则风量为: min /08.19)45.0(412032m Q =?= 按焦炭消耗量和燃烧比计算: S C K W ??+=)1(60 4450νη 式中:W ——送风量,(m 3/min 标态) ;燃烧比(),%% %%22co co co +--νη K —焦耗量,%;即熔化100kg 铁料所消耗的焦炭量。 C —焦炭中所含固定碳量,%; S —冲天炉的熔化率,t/h 。 例如: 某冲天炉的熔化记录数据如下:

KG钛及钛合金真空自耗熔炼工艺规程

本规程适用于技术(研发)中心钛及钛合金电极的熔炼。编制依据:《钛镍加工材项目初步设计》 GB/T2524-2010《海绵钛》 设备合同 1.主要设备性能 1.1 真空自耗电弧炉技术性能。 设备主要技术参数

2.原料 原料来自315T制样用自耗电极成形液压机压制的¢30X390的电极 3.钛及钛合金熔炼 3.1 钛及其合金的熔炼工艺流程 水、电、气输送正常—开机—装炉—抽真空—熔炼—坩埚冷却—破真空—取出铜坩锅倒出钛锭—停止工作—关水、关电、关气。 3.2 熔炼工艺参数 3.2.1 熔炼工艺参数。

3.2.2熔铸前检查系统并进行预抽空,炉内预真空度不得低于0.133Pa,泄漏率不得大于0.667Pa/min。 3.2.3在熔炼过程中,熔炼电流需逐渐增加。 3.2.4在结晶器周围设有稳弧线圈,以保证熔炼电弧的稳定。通过“稳弧调节”电位器调节其电流,最大电流为5A。 3.2.5电弧电压的大小代表电弧的长短,熔炼过程中保证弧压的稳定非常重要。熔炼过程中弧压的大小为0-40V。 3.2.6 补缩工艺参数实际生产中生产。 3.3 引弧料 同批号的钛料、铺满坩埚底为益。

3.4 注意事项 3.4.1 压制完的电极在熔炼前必须放入干燥箱内干燥20~40min,干燥温度在90~105℃之间。 3.4.2 在熔炼开炉前,必须对真空自耗电弧炉的传动系统、冷却系统、电控系统、真空系统及炉体进行检查,检查无误,方可开炉熔炼。 3.4.3抽空 真空泵使用必须遵照使用说明书的要求,进行启动、停泵、维护。 3.4.4每炉熔炼工作完成后,必须清洗结晶器。防止熔炼时电极与结晶器侧壁放电。 3.4.5熔炼期间冷却水不能间断。 3.4.6熔炼进行时,现场要有操作控制人员,观察炉内熔炼情况和监视冷却水水温水压等。 3.4.7 在熔炼完的铸锭或扒完皮的铸锭上,必须有明显的标记。 3.4.8试锭和试样的制备严格按GB/T2524-2010进行。 4.主要工模具

第5章 冲天炉熔炼

第五章冲天炉熔炼 第一节冲天炉熔炼的基本原理 一、冲天炉基本结构 图5—1所示为冲天炉的主要结构简图。炉子由以下几部分组成: 1 炉底与炉基 炉底与炉基是冲天炉的支撑部分,对整座炉子和炉料柱起支撑作用。 2 炉体与前炉 炉体是冲天炉的基本组成部分,包括炉身和炉缸两部分。炉体内壁砌耐火材料,临近加料口处的炉膛则用钢板圈或铁砖构筑,以承受加料时炉料的冲击。 前炉由前炉体和可分离的炉盖组成。前炉的作用是储存铁水,并使铁水的成分和温度均匀,减少铁水在炉缸内的停留时间,从而有利于降低炉缸对铁水的增碳与增硫作用,而且还有利于渣铁分离,净化铁水。目前国内外的冲天炉大多是带有前炉的。前炉的容量大致为冲天炉每小时熔化铁水量的0.8-2倍。 3 烟囱与除尘装置 烟囱在加料口上面,其外壳与炉身连成一体,内壁砌耐火砖。烟囱的作用是引导炉气向上流动并排出炉外。除尘装置的作用是消除或减少炉气中的烟灰及有害气体成分,使废气净化。 4 送风系统 冲天炉的送风系统是指自鼓风机出口至风口出口处为止的整个系统,包括进风管、风箱、风口及鼓风机输出管道。送风系统的作用是按照炉子工作的要求,将来自鼓风机的供底焦燃烧用的一定量空气送入冲天炉内。 5 热风装置 热风装置的作用是加热供底焦燃烧用的空气,以强化冲天炉底焦的燃烧。常用热风装置有内热式和外热式两种。 以上是冲天炉的几个主要组成部分。除此以外,冲天炉还必须配备鼓风设

备、加配料设备、控制与调节设备以及有关的测试仪器。 二、冲天炉内炉气与温度的分布 1 冲天炉内炉气的分布 图5-2所示为沿冲天炉纵截面与横截面的炉气分布示意图。 由图5-2a可知,在冲天炉纵截面上,由于炉壁效应的影响,炉气比较集中在炉壁附近,离炉壁愈近,炉气的流速就越大。 在冲天炉横截面上,在风口前缘,因空气流速高,流量大,形成了强烈的燃烧带,而在两个风口之上的区域,则由于空气量少而形成所谓“死区”A。此外,来自风口的空气流股,因焦炭块的阻力而逐渐失去动能,难于深入炉子中心,因而在炉膛截面的中心区域出现“死区”B。所以,在冲天炉风口区域的炉膛截面上,空气及其与焦炭反应后所生成的炉气,无论沿炉膛四周或炉子径向

中频炉熔炼作业指导书

1.目的:规范熔炼操作,保证产品质量和生产的顺利进行。 2.范围:本公司的高、低铬合金铸铁熔炼操作。 3.内容: 3.1 生产准备:在炉料、工具、记录文件及人员的准备齐全后开始生产。如果准备不齐全,应准备齐全 后再开始生产。 3.1.1 炉料的准备:准备足够一个班次使用的炉料。废钢、和回炉料不能潮湿,不能严重锈蚀;回 炉料要求除净残砂。锰铁、铬铁、增碳剂、孕育剂和聚渣剂等,必须保持干燥无杂物。 3.1.2 工具、记录的准备:检查电炉、加料天车、加料车、测温枪和其它称量仪器,确保它们能够正常 工作。准备足够一个班次使用的除渣工具、孕育剂处理工具等。准备各种记录表格。扒渣、挡渣、搅拌等工具必须干燥,残汤罐必须刷涂料并烘干后方可使用。 3.1.3 中间包的准备,确保其处于良好状态。 3.1.3.1 中间包可采用混制好的浇注耐火材料制作。也可用与中频炉坩埚相同配比的石英砂和水玻璃制 作,混制方法同炉衬耐火材料。 3.1.3.2 包底厚度约150-180mm,包壁厚度约50-80mm。浇包内壁要轻轻打实、打平。 3.1.3.3 中间包制作完成后须用燃气烤包器彻底烘烤,或用木材、焦炭烘烤。要确保烤干烤透。任何时 候禁止用潮湿的中间包装盛转运或浇注铁水。 3.1.3.4 中间包的预热:每次重新生产前或浇注过程停工1 小时以上时,应将中间包充分烘烤至暗红色 状态(约600℃以上)后使用。 3.1.4 人员的准备:对临时代理或替班人员,代理人必须知道自己应做的工作,当班班组长保证代理人 可以完成相应的工作。 3.2 备料 3.2.1 准备主料:备料的数量要按生产指令的安排进行。废钢、回炉料的比例按技术部门最后提 出的《配料单》执行。 3.2.2 准备增碳剂、铬铁、锰铁等合金材料。 3.2.3 准备孕育处理:根据生产安排,依据相关技术文件《配料单》,准备相应份数和 重量的孕育剂。 3.3 电炉的检查 3.3.1 开炉熔炼前,必须认真进行下列项目的检查,以避免熔炼过程出现意外事故。 3.3.2 检查坩埚内部侵蚀程度:仔细检查坩埚底部和内壁,发现凹陷和裂纹要及时修补。 3.3.3 检查炉顶、炉嘴和炉盖板,发现掉砂和松动要注意修整和紧固。 3.3.4 检查感应圈四周是否有铁豆、铁屑和其他杂物,如有须清除干净。检查感应圈与绝缘柱的连接螺 栓是否松动和脱落,如有松动要紧固,如有脱落要全部补上并紧固。

自动称重真空自耗电弧炉

目前,航空航天、深水探测、国防军工等多项事业都在高速发展, 对高性能的钛、锆等活泼金属材料的各项性能提出了更高、更苛刻的要求, 原有的真空自耗电弧炉由于其结构和功能设计上的限制, 已经无法满足这些要求, 因而研制技术先进、自动化程度高、 满足工艺要求的真空自耗电弧炉已势在必行。真空自耗电弧炉的电子称重系统用于称量电极在熔化过程中的剩余重量, 一方面与计算机控制系统相配合, 实现恒熔速控制, 另一方面对熔炼工艺进行量化,即准确知道熔化过程是否该结束及结束前进行自动降电流补缩, 即对熔炼工艺过程进行量化控制。 以ALD的真空自耗电弧炉为例(见下图),在炉头上一般装有三个高精度传感器, 信号进入PLC 系统,工业控制计算机实现恒熔速、恒熔池深度控制,同时可使操作人员在熔炼过程中随时在计算机液晶显示屏上直接看到自耗电极的剩余重量, 当自耗电极重量为零时电源自动跳闸, 有利于安全操作。对于称重传感器的要求非常高-----高精度、抗干扰性强,另外称重系统的动态测量特性要好。

恰好,森玛特的丹麦Eilersen(艾勒森)全数字称重系统可以很好的满足以上要求, 与传统的应变式称重系统相比,艾勒森采用了电容式测量技术,拥有国际专利,测量精度高,传感器本身精度可达 1.5/10000,传感器变形量极小只有0.1mm, 称量速度快,最高可达1000次/S,传感器输出数字信号,抗干扰性能强,分辨率高,传感器本身分辨率可达100kg 分辨到200mg。实际应用稳态可达1/50000。 目前在光伏行业的蓝宝石晶体生长炉上应用广泛! 效果显著!

下图为基于两种不同测量技术的常规悬臂梁传感器。图2为传统的应变式传感器,应变计通过特殊的胶粘贴在弹性体表面,弹性体受力产生应变时会使得应变计电桥的电阻值发生变化,传感器的过载能力不允许超过额定载荷的200%,否则会损坏传感器的测量特性。 图1为 Eilersen 基于电容式测量原理的传感器,其核心为一陶瓷厚膜电容测量元件,放置在传感器弹性体内,并不与弹性体直接接触,因而完全不受过载、冲击和焊接电压的影响。工业测力、称重应用的最佳选择 电容式传感器受力产生的应变使得电容测量元件的电容参数发生变化。 电容测量技术简介 DIGITAL CAPACITIVE BASED MEASURING TECHNOLOGY Etc. 数字电容式称重传感器>> 传统应变式称重传感器>> 传感器弹性体受压变形产生内部测量元件电容的变化,测量元件直接将电容的变化转换成相应的RS485数字信号。通过单根RG-58同轴电缆将力的信号传输给传感器接口单元,经过接口单元对信号补偿和滤波处理再提供给控制单元使用,如PLC、PC、重量终端仪表等。接口单元能提供多种形式输出接口,如Profibus DP、DeviceNet、Modbus ASCII/RTU、RS232、RS485/422、4-20mA/0- 10VDC等,使得信号的处理更为灵活和方便。 电容测量元件对力的作用非常敏感。在相同力作用下,应变式传感器通常仅有0.1%的电阻变化,而电容测量元件的信号变化量为10%,相同量程规格的电容式 传感器所需弹性体的变形要求非常小,比应变式传感器变形量要小5至10倍。因此,极小的弹性体变形量以及测量元件与弹性体非接触的特点,使得电容式传感器与应变式传感器相比具备极强的抗冲击、抗过载能力。 艾勒森——全数字测力传感器信号处理过程 图1. 图2.

相关主题
文本预览
相关文档 最新文档