当前位置:文档之家› 巨磁电阻实验

巨磁电阻实验

巨磁电阻实验
巨磁电阻实验

巨磁电阻效应及其应用

巨磁电阻( Giant magneto resistance, 简称GMR)效应表示在一个巨磁电阻系统中, 非常弱小的磁性变化就能导致巨大的电阻变化的特殊效应. 法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔( Peter Grunberg )因分别独立发现巨磁阻效应而共同荣膺2007年诺贝尔物理学奖.

G MR是一种量子力学和凝聚态物理

学现象, 是磁阻效应的一种, 可以在磁性

材料和非磁性材料相间的薄膜层(几个纳

米厚)结构中观察到. 在量子力学出现后,

德国科学家海森伯(W. Heisenberg, 1932

年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用, 这个交换作用是短程的, 称为直接交换作用. 随后, 科学家们又发现很多的过渡金属和稀土金属的化合物也具有反铁磁有序状态, 即在有序排列的磁材料中, 相邻原子因受负的交换作用, 自旋为反平行排列, 如图1所示. 此时磁矩虽处于有序状态, 但总的净磁矩在不受外场作用时仍为零. 这种磁有序状态称为反铁磁性. 反铁磁性通过化合物中的氧离子(或其他非金属离子)将最近的磁性原子的磁矩耦合起来, 属于间接交换作用. 此外, 在稀土金属中也出现了磁有序, 其中原子的固有磁矩来自4f电子壳层. 相邻稀土原子的距离远大于4f电子壳层直径, 所以稀土金属中的传导电子担当了中介, 将相邻的稀土原子磁矩耦合起来, 这就是RKKY型间接交换作用.

直接交换作用的特征长度为0.1—0.3nm, 间接交换作用可以长达1nm以上. 据此美国IBM实验室的江崎和朱兆祥提出了超晶格的概念.所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度极小的薄层材料交替生长在一起而得到的一种多周期结构材料, 其特点是这种复合材料的周期长度比各薄膜单晶的晶格常数大几倍或更长. 上世纪八十年代, 制作高质量的纳米尺度样品技术的出现使得金属超晶格成为研究前沿. 因此凝聚态物理工作者对这类人工材料的磁有序, 层间耦合, 电子输运等进行了广泛的基础方面的研究. 其中相关的代表性研究工作简介如下.

其一是德国尤利希科研中心的物理学家彼得·格伦贝格尔. 他一直致力于研

究铁磁性金属薄膜表面和界面上的磁有序状态, 其研究对象是一个三明治结构的薄膜, 两层厚度约10nm的铁层之间夹有厚度为1nm的铬层. 之所以选择选择这一材料系统, 首先是因为金属铁和铬是周期表上相近的元素, 具有类似的电子壳层, 容易实现两者的电子状态匹配. 其次, 金属铁和铬的晶格对称性和晶格常数相同, 它们之间晶格结构相匹配. 这两类匹配非常有利于对基本物理过程进行探索. 尽管如此, 长期以来该课题组所获得的三明治薄膜仅为多晶体. 随着制备薄膜技术的发展, 分子束外延(MBE)方法的应用才使得结构完整的单晶样品得以问世, 其成分依然是铁-铬-铁三层膜. 此后, 为了进一步获得铁磁矩的有关信息, 科研工作者将光散射应用于对金属三层膜进行相关研究. 在实验过程中, 薄膜上的外磁场被逐步减小直至消失. 结果发现, 在铬层厚度为0.8nm的铁-铬-铁三明治中, 两边的两个铁磁层磁矩从彼此平行(较强磁场下)转变为反平行(弱磁场下). 亦即, 对于非铁磁层铬的某个特定厚度, 在无外磁场时, 两边铁磁层磁矩处于反平行状态, 这一现象成为巨磁电阻效应出现的前奏. 在对这一现象的进一步研究过程中, 格伦贝格尔等发现当两个磁矩反平行时,铁-铬-铁三明治呈现高电阻状态. 而当两个磁矩平行时, 则对应与其低电阻状态, 且两种不同状态下的阻值差高达10%. 之后, 格伦贝格尔将此结果写成论文,并申请了将这种效应和材料应用于硬盘磁头的专利.

另一位科研工作者是巴黎十一大学固体物理实验室物理学家阿尔贝·费尔, 其课题组将铁、铬薄膜交替制成几十个周期的铁-铬超晶格, 亦称周期性多层膜. 通过对此类物质的研究, 他们发现了当改变磁场强度时, 超晶格薄膜的电阻下降近一半, 即磁电阻比率达到50%. 据此该现象被命名为巨磁电阻现象, 并用两电流模型予以合理解释. 显然, 该周期性多层膜可视为若干个格伦贝格尔三明治的重叠, 因此德国和法国的这两个独立发现实属同一个物理现象.

除了上述两位诺贝尔奖获得者的开创性工作, IBM公司的斯图尔特·帕金( S. P. Parkin )将GMR的制作材料做了进一步推广, 为其工业化应用奠定了基础. 他于1990年首次报道了铁-铬超晶格系列之外的钴-钌和钴-铬超晶格体系亦有巨磁电阻效应, 并且随着非磁层厚度增加, 其磁电阻值振荡下降. 此后, 科学家在过渡金属超晶格和金属多层膜中又发现了20种左右不同的体系均存在巨磁电阻振荡现象. 帕金的工作首先为寻找更多的GMR材料开辟了广阔空间, 为寻找适

合硬盘的GMR材料提供了可能, 1997年制成了GMR磁头即是其成功之一. 其次, 在薄膜制备方法上帕金采用较普通的磁控溅射技术用以替代精密的MBE方法, 并使之成为工业生产多层膜的标准. 磁控溅射技术克服了物理发现与产业化之间的障碍, 使巨磁电阻成为基础研究快速转换为商业应用的国际典范. 同时, 巨磁电阻效应也被认为是纳米技术的首次真正应用.

巨磁电阻效应发现的另一重大意义在于打开了一扇通向新技术世界的大门—自旋电子学. GMR作为自旋电子学的开端具有深远的科学意义. 传统的电子学是以电子的电荷移动为基础的, 电子自旋往往被忽略了. 巨磁电阻效应表明电子自旋对于电流的影响非常强烈, 电子的电荷与自旋两者都可能载运信息. 自旋电子学的研究和发展引发了电子技术与信息技术的一场新的革命. 目前电脑, 音乐播放器等各类数码电子产品中所装备的硬盘磁头, 基本上都应用了巨磁电阻效应. 利用巨磁电阻效应制成的多种传感器, 已广泛应用于各种测控领域. 除利用铁磁膜-金属膜-铁磁膜的GMR效应外, 由两层铁磁膜夹一极薄的绝缘膜或半导体膜构成的隧穿磁阻(TMR)效应, 已显示出比GMR效应更高的灵敏度. 此外, 在单晶和多晶等多种形态的钙钛矿结构的稀土锰酸盐, 以及一些磁性半导体中, 都发现了巨磁电阻效应.

实验目的

1了解GMR效应的原理.

2 测量GMR模拟传感器的磁电转换特性曲线.

3 测量GMR的磁阻特性曲线.

4 测量GMR开关(数字)传感器的磁电转换特性曲线.

5 用GMR传感器测量电流.

6 用GMR梯度传感器测量齿轮的角位移, 了解GMR转速传感器的原理.

7 通过实验了解磁记录与读出的原理.

实验原理

根据导电的微观机理, 电子在导电时并非沿电场直线前进, 而是不断和晶格中的原子产生碰撞(又称散射), 每次散射后电子都会改变运动方向, 总的运动是电场对电子的定向加速与这种无规散射运动的叠加. 电子在两次散射之间走过的平均路程称为平均自由程, 电子散射几率小, 则平均自由程长, 电阻率

低. 在电阻定律 R=ρl/S中, 电阻率ρ可视为常数, 与材料的几何尺度无关. 这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm), 可以忽略边界效应. 然而, 当材料的几何尺度小到纳米量级且只有几个原子的厚度时(例如, 铜原子的直径约为0.3nm), 电子在边界上的散射几率大大增加, 此时可以明显观察到厚度减小, 电阻率增加的现象.

电子除本身携带电荷外, 还具有自旋特性. 自旋磁矩又分为平行或反平行于外磁场方向的两种不同取向. 在自旋磁矩与材料的磁场方向平行的情况下, 电子散射的几率远小于二者反平行条件下的散射几率. 与此相应, 材料的电阻在自旋磁矩与外磁场方向平行时将远小于二者反平行时的阻值. 事实上, 材料的总电阻可视为两类自旋电流的并联电阻, 因此总电流则为两类自旋电流之和, 此即两电流模型.

如图2所示, 无外磁场时, 多层膜结构中的上下两层磁性材料反平行(反铁磁)耦合. 当施加足够强的外磁场后, 两层铁磁膜的方向都与外磁场方向一致, 外磁场使两层铁磁膜从反平行耦合变成了平行耦合. 电流的方向在多数应用中与膜面方向平行.

无外磁场时顶层磁场方向

无外磁场时底层磁场方向

图 2 多层膜GMR结构图

事实上, 有两类与自旋相关的散射对巨磁电阻效应有贡献:

其一, 界面上的散射. 在无外磁场条件下, 上下两层铁磁膜的磁场方向相反, 无论电子的初始自旋状态如何, 从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行, 或反平行-平行), 电子在界面上的散射几率很大, 对应于高电阻状态; 在有外磁场存在时, 上下两层铁磁膜的磁场方向一致, 电子在界面上的散射几率很小, 对应于低电阻状态.

其二, 铁磁膜内的散射. 即使电流方向平行于膜面, 由于无规散射, 电子也有一定的几率在上下两层铁磁膜之间穿行. 在无外磁场时, 上下两层铁磁膜的磁场方向相反, 无论电子的初始自旋状态如何, 在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程, 两类自旋电流的并联电阻相似两个中等阻值的电阻的并联, 对应于高电阻状态. 在有外磁场时, 上下两层铁磁膜的磁场方向一致, 自旋平行的电子散射几率小, 自旋反平行的电子散射几率大, 两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联, 对应于低电阻状态.

多层膜GMR结构简单, 工作可靠, 磁阻随外磁场线性变化的范围大, 在制作模拟传感器方面得到广泛应用. 在数字记录与读出领域, 为进一步提高灵敏度, 发展了自旋阀结构的GMR. 如图3所示.

自旋阀结构的SV-GMR(Spin valve GMR)由钉扎层, 被钉扎层, 中间导电层和自由层构成. 其中, 钉扎层使用反铁磁材料, 被钉扎层使用硬铁磁材料, 铁磁和反铁磁材料在交互耦合作用下形成一个偏转场, 此偏转场将被钉扎层的磁化方向固定, 不随外磁场改变. 自由层使用软铁磁材料, 它的磁化方向易于随外磁场转动. 这样, 很弱的外磁场就会改变自由层与被钉扎层磁场的相对取向, 对应于很高的灵敏度. 制造时, 使自由层的初始磁化方向与被钉扎层垂直, 磁记录材料的磁化方向与被钉扎层的方向相同或相反(对应于0或1), 当感应到磁记录材料的磁场时, 自由层的磁化方向就向与被钉扎层磁化方向相同(低电阻)或相反(高电阻)的方向偏转, 检测出电阻的变化, 就可确定记录材料所记录的信息, 硬盘所用的GMR磁头就采用这种结构.

自由层

中间导电层

被钉扎层

钉扎层

图3自旋阀SV-GMR结构图

实验仪器

一. 主体名称:ZKY-巨磁电阻效应及应用实验仪 构成及功能:

电流表部分:做为一个独立的电流表使用.

两个档位:2mA 档和200mA 档, 可通过电流量程切换开关选择合适的电流档位测量电流.

电压表部分:做为一个独立的电压表使用.

两个档位:2V 档和200mV 档, 可通过电压量程切换开关选择合适的电压档位. 恒流源部分:可变恒流源.

实验仪还提供GMR 传感器工作所需的4V 电源和运算放大器工作所需的±8V 电源. 二. 各种组件 1. 基本组件:基本特性组件由GMR 模拟传感器, 螺线管线圈及比较电路, 输入输出插孔组成. 用以对GMR 的磁电转换特性, 磁阻特性进行测量.

GMR 传感器置于螺线管的中央.

螺线管用于在实验过程中产生大小可计算的磁场, 由理论分析可知, 无限长直螺线管内部轴线上任一点的磁感应强度为: B = μ0nI . 式中n 为线圈密度, I 为流经线圈的电流强度,

m H /10470-?=πμ为真空中的磁导率. 采用国际单位制时, 由上式计算出的磁感应强度

单位为特斯拉(1特斯拉=10000高斯).

2. 电流测量组件:电流测量组件将导线置于GMR 模拟传感器近旁, 用GMR 传感器测量导线通过不同大小电流时导线周围的磁场变化, 就可确定电流大小. 与一般测量电流需将电流表接入电路相比, 这种非接触测量不干扰原电路的工作, 具有特殊的优点.

3. 角位移测量组件: 角位移测量组件用巨磁阻梯度传感器作传感元件, 铁磁性齿轮转动时, 齿牙干扰了梯度传感器上偏置磁场的分布, 使梯度传感器输出发生变化, 每转过一齿, 就输出类似正弦波一个周期的波形. 利用该原理可以测量角位移(转速, 速度). 汽车上的转速与速度测量仪利用的就是这一原理.

4. 磁读写组件:磁读写组件用于演示磁记录与读出的原理. 磁卡做记录介质, 磁卡通过写磁头时可写入数据, 通过读磁头时将写入的数据读出来.

巨磁电阻效应及其应用实验报告

一、实验时间:年月日

二、样品:巨磁阻基本特性组件, 磁读写组件, 电流测量组件, 角位移测量组件, 巨磁阻试件, 磁卡以及巨磁电阻效应及应用实验仪(01-001).

三、实验目的:

1、了解巨磁电阻效应实验原理;

2、了解巨磁阻的模拟传感器磁电转换特性;

3、了解巨磁阻的磁阻特性;

4、通过实验了解磁记录与磁读写的原理.

四、实验内容:

1、GMR模拟传感器的磁电转换特性测量:

μ=4π×10-7H/m (1) n= 24000 T/m (2) (3) 输出电压与磁感应强度B 之间的关系曲线:

图(1)

2、GMR 磁阻特性测量:

由式(3)可得磁感应强度B, 巨磁阻两端电压为4V , 则由欧姆定律可得磁阻R.

表2 磁阻特性测量 磁阻两端电压4V

输出电压

磁感应强度B 与输出电压U 之间的关系曲线

0 25

75 100 125 150 175 200 225 250 275

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

磁感应强度B

50 U(V)

0B nI μ=

磁阻与磁感应强度关系曲线:

图(2)

3、GMR开关(数字)传感器的磁电转换特性曲线测量

表3

开关特性曲线

4、用GMR模拟传感器测量电流

表4

待测电流与输出电压关系曲线:

图(3)

偏执电压越大U-I直线斜率越大, 灵敏度越高.

5、GMR梯度传感器的特性应用:

表5 齿轮角位移的测量

齿轮角位移的测量:

图(4)

6、磁记录与读出:

表6 二进制数字的写入与读出

图(1)

注意事项:

1、由于巨磁阻传感器具有磁滞现象, 因此在实验中, 恒流源只能单方向调节, 不可回

调. 否则测得的实验数据将不准确.

2、测试卡组件不能长期处于“写”状态.

3、实验过程中,实验环境不得处于强磁场中.

巨磁电阻效应及其应用 实验报告

巨磁电阻效应及其应用 【实验目的】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

磁电阻与巨磁电阻实验报告

磁电阻与巨磁电阻 姓名:刘一宁班级:核32 指导教师:王合英实验日期:2015.03.13 【摘要】:本实验使用了由基本电路原理配合巨磁电阻原件制作的一套巨磁电阻实验仪,通过改变巨磁电阻处的磁场测量了巨磁电阻的磁阻特性曲线、磁电转换特性曲线,并在体验了其在测量电流、测量转速、磁读写等方面的应用。最后获得了巨磁电阻词组特性曲线、GMR 模拟传感器的磁电转换曲线、GMR开关传感器的磁电转换特性曲线、巨磁电阻测量电流的数据、齿轮旋转过程中巨磁电阻梯度传感器输出电压曲线、磁信号读出情况,自旋阀磁电阻两个不同角度的磁阻特性曲线。发现巨磁电阻的磁阻随磁场变大而减小,且与方向无关,但是其存在磁滞现象。而自旋阀磁电阻则在磁场由一个方向磁饱和变化到另一个方向磁饱和的过程中磁电阻不断减小或增加,这与磁电阻和磁场的角度有关,且在0磁场附近变化特别明显。 关键词:巨磁电阻、自旋阀磁电阻、磁阻特性曲线、磁电转换特性 一、引言: 1988年法国巴黎大学的肯特教授研究小组首先在Fe/Cr多层膜中发现了巨磁电阻效应,在国际上引起了很大的反响。20世纪90年代,人们在Fe/Cu,Fe/Al,Fe/Au,Co/Cu,Co/Ag和Co/Au 等纳米结构的多层膜中观察到了显著的巨磁阻效应。 1994年,IBM公司研制成巨磁电阻效应的读出磁头,将磁盘记录密度一下子提高了17倍,达5Gbit/in2,最近达到11Gbit/in2,从而在与光盘竞争中磁盘重新处于领先地位。由于巨磁电阻效应大,易使器件小型化,廉价化,除读出磁头外同样可应用于测量位移,角度等传感器中,可广泛地应用于数控机床,汽车测速,非接触开关,旋转编码器中,与光电等传感器相比,它具有功耗小,可靠性高,体积小,

巨磁电阻实验报告

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、了解GMR效应的原理 2、测量GMR模拟传感器的磁电转换 特性曲线 3、测量GMR的磁阻特性曲线 4、用GMR传感器测量电流 5、用GMR梯度传感器测量齿轮的角 位移,了解GMR转速(速度)传感器的原理【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律R=ρl/S中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺

度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 电 阻 \ 欧 姆

巨磁电阻效应及其传感器的原理..

巨磁阻效应及其传感器的原理和应用 一、概述 对于物质磁电阻特性的研究由来已久,早在20世纪40年代人们就发现了磁电阻效应。所谓磁电阻是指导体在磁场中电阻的变化,通常用电阻变化率Δr/r 描述。研究发现,一般金属导体的Δr/r很小,只有约10-5%;对于磁性金属或合金材料(例如坡莫合金),Δr/r可达(3~5)%。所谓巨磁电阻(GMR)效应,是指某些磁性或合金材料的磁电阻在一定磁场作用下急剧减小,而Δr/r急剧增大的特性,一般增大的幅度比通常的磁性与合金材料的磁电阻约高10倍。利用这一效应制成的传感器称为GMR传感器。 1、分类 GMR材料按其结构可分为具有层间偶 合特性的多层膜(例如Fe/Cr)、自旋阀多层膜 (例如FeMn/FeNi/Cu/FeNi)、颗粒型多层膜(例 如Fe-Co)和钙钛矿氧化物型多层膜(例如 AMnO3)等结构;其中自旋阀(spin valve)多层膜又分为简单型和对称型两 类;也有将其分为钉扎(pinning)和非钉扎型两类 的。 2、巨磁电阻材料的进展 1986年德国的Grunberg和C.F.Majkrgak 等人发现了Y/Gd、Y/Dy和Fe/Cr/Fe多层膜中 的层间偶合现象。1988年法国的M.N.Baibich 等人首次在纳米级的Fe/Cr多层膜中发现其Δ r/r在4.2K低温下可达50%以上,由此提出了 GMR效应的概念,在学术界引起了很大的反 响。由此与之相关的研究工作相继展开,陆续 研制出Fe/Cu、Fe/Ag、Fe/Al、Fe/Au、Co/Cu、 Co/Ag、Co/Au……等具有显著GMR效应的层 间偶合多层膜。自1988年发现GMR效应后仅 3年,人们便研制出可在低磁场(10-2~10-6T) 出现GMR效应的多层膜(如 [CoNiFe/CoFe/AgCu/CoFe/CoNiFe]n)。 1992年人们利用两种磁矫顽力差别大的 材料(例如Co和Fe20Ni80)制成Co/Cu/ Fe20Ni80/Cu多层膜,他们发现,当Cu 层厚度大于5nm时,层间偶合较弱,此时利用 磁场的强弱可改变磁矩的方向,以自旋取向的 不同来控制膜电阻的大小,从而获得GMR效 应,故称为自旋阀。

巨磁电阻效应及其应用实验报告

巨磁电阻效应及其应用实 验报告 The following text is amended on 12 November 2020.

巨磁电阻效应及其应用 【实验目的】 1、了解GMR效应的原理 2、测量GMR模拟传感器的磁电转换特性曲线 3、测量GMR的磁阻特性曲线 4、用GMR传感器测量电流 5、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=l/S中,把电阻率视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 ;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 图3是图2结构的某种GMR材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 有两类与自旋相关的散射对巨磁电阻效应有贡献。 其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。 其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电阻的并联,对应于低电阻状态。

巨磁电阻实验报告

巨磁电阻实验报告 【目的要求】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【原理简述】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 无外磁场时底层磁场方向 图 2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

巨磁电阻效应及应用实验

巨磁电阻效应及其应用 2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G乃至上千G。” 凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。 人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W. Heisenberg,1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。 图 1 反铁磁有序 后来发现很多的过渡金属和稀土金属的化合物具有反铁磁有序状态,即在有序排列的磁材料中,相邻原子因受负的交换作用,自旋为反平行排列,如错误!未找到引用源。所示。则磁矩虽处于有序状态,但总的净磁矩在不受外场作用时仍为零。这种磁有序状态称为反铁磁性。法国科学家奈尔(L. E. F. Neel)因为系统地研究反铁磁性而获1970年诺贝尔奖。在解释反铁磁性时认为,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。另外,在稀土金属中也出现了磁有序,其中原子的固有磁矩来自4f电子壳层。相邻稀土原子的距离远大于4f电子壳层直径,所以稀土金属中的传导电子担当了中介,将相邻的稀土原子磁矩耦合起来,这就是RKKY型间接交换作用。 直接交换作用的特征长度为0.1~0.3nm,间接交换作用可以长达1nm以上。1nm已经是实验室中人工微结构材料可以实现的尺度。1970年美国IBM实验室的江崎和朱兆祥提出了超晶格的概念,所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度d极小的薄层材料交替生长在一起而得到的一种多周期结构材料。由于这种复合材料的周期长度比各薄膜单晶的晶格常数大几倍或更长,因此取得“超晶格”的名称。上世纪八十年代,由于摆脱了以往难以制作高质量的纳米尺度样品的限制,金属超晶格成为研究前沿,凝聚态物理工作者对这类人工材料的磁有序,层间耦合,电子输运等进行了广泛的基础方面的研究。 德国尤利希科研中心的物理学家彼得·格伦贝格尔一直致力于研究铁磁性金属薄膜表面和界面上的磁有序状态。研究对象是一个三明治结构的薄膜,两层厚度约10nm的铁层之间夹有厚度为1nm 的铬层。选择这个材料系统并不是偶然的,首先金属铁和铬是周期表上相近的元素,具有类似的电子壳层,容易实现两者的电子状态匹配。其次,金属铁和铬的晶格对称性和晶格常数相同,它们之间晶格结构也是匹配的,这两类匹配非常有利于基本物理过程的探索。但是,很长时间以来制成的三明治薄膜都是多晶体,格伦贝格尔和很多研究者一样,并没有特别的发现。直到1986年,他采用了分子束外延(MBE)方法制备薄膜,样品成分还是铁-铬-铁三层膜,不过已经是结构完整的单晶。在

巨磁阻效应的原理及应用

巨磁阻效应的原理及应用 物质在一定磁场下电阻改变的现象,称为磁阻效应。磁性金属和合金材料一般都有这种现象。一般情况下,物质的电阻率在磁场中仅发生微小的变化,在某种条件下,电阻减小的幅度相当大,比通常情况下约高十余倍,称为巨磁阻效应(GMR )。 要说这种效应的原理,不得不说一下电子轨道及自旋。种角动量在原子物理学中,对于单电子原子(包括碱金属原子)处于一定的状态,有一定的能量、轨道角动量、自旋角动量和总角动量。表征其性质的量子数是主量子数n 、角量子数l 、自旋量子数s =1/2,和总角动量量子数j 。主量子数(n=1,2,3,4 …)会视电子与原子核间的距离(即半径座标r )而定。平均距离会随着n 增大,因此不同量子数的量子态会被说成属于不同的电子层。 角量子数(l=0,1 … n-1)(又称方位角量子数或轨道量子数)通过关系式来代表轨道角动量。在化学中,这个量子数是非常重要的,因为它表明了一轨道的形状,并对化学键及键角有重大形响。有些时候,不同角量子数的轨道有不同代号,l=0的轨道叫s 轨道,l=1的叫p 轨道,l=2的叫d 轨道,而l=3的则叫f 轨道。磁量子数(ml= -l ,-l+1 … 0 … l-1,l )代表特征值,。这是轨道角动量沿某指定轴的射影。 从光谱学中所得的结果指出一个轨道最多可容纳两个电子。然而两个电子绝不能拥有完全相同的量子态(泡利不相容原理),故也绝不能拥有同一组量子数。所以为此特别提出一个假设来解决这问题,就是设存在一个有两个可能值的第四个量子数—自旋量子数。这假设以后能被相对论性量子力学所解释。 “我们对过渡金属的电导率有了如下认识:电流由s 电子传递,其有效质量近乎于自由电子。然而电阻则取决于电子从 s 带跃迁到 d 带的散射过程,因为跃迁几率与终态的态密度成正比,而局域性的 d 带在费米面上的态密度是很大的。 这就是过渡金属电阻率高的原因。这种 s-d 散射率取决于 s 电子与 d 电子自旋的相对取向。 巨磁电阻(GMR )效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化。GMR 是一个量子力学效应,它是在层状的磁性薄膜结构中观察到的。这种结构由铁磁材料和非磁材料薄层交替叠合而成。当铁磁层的磁矩相互平行时,载流子与自旋有关的散射最小,材料有最小的电阻。当铁磁层的磁矩为反平行时,与自旋有关的散射最强,材料的电阻最大。关于这种效应可以用两自选电流模型来解释: 普通磁电阻 (正, 极小, 各向异性) 巨磁电阻 (负, 巨大 , 各向同性) [])(/)0()(H R R H R MR -=[][] ) ()()0() 0()()0(21S S S H R H R R MR R H R R MR -=-=

巨磁阻效应实验报告

巨磁阻效应实验报告 篇一:磁阻效应实验报告 近代物理实验报告 专业2011级应用物理学班级(2) 指导教师彭云雄姓名同组人 实验时间 2013 年 12 月23 日实验地点 K7-108 实验名称磁阻效应实验 一、实验目的 1、 2、 3、 4、测量电磁铁的磁感应强度与励磁电流的关系和电磁铁磁场分布。测量锑化铟传感器的电阻与磁感应强度的关系。作出锑化铟传感器的电阻变化与磁感应强度的关系曲线。对此关系曲线的非线性区域和线性区域分别进行拟合。 二、实验原理 图1磁阻效应原理 1 一定条件下,导电材料的电阻值R随磁感应强度B的变化规律称为磁阻效应。如图1所示,当半导体处于磁场中时,导体或半导体的载流子将受洛仑兹力的作用,发生偏转,在两端产生积聚电荷并产生霍耳电场。 如果霍耳电场作用和某一速度载流子的洛仑兹力作用刚好抵消,那么小于或大于该速度的载流子将发生偏转,因而沿外加电场方向运动的载流子数量将减少,电阻增大,表现出横向磁阻效应。若将图1中a端和b端短路,则磁阻效应更明显。通常以电阻率的相对改变量来表示磁阻的大小,即用Δρ/ρ(0)表示。其中ρ(0)为零磁场时的电阻率,设磁电阻在磁感应强度为B的磁场中电阻率为ρ(B),则

Δρ=ρ(B)-ρ(0)。由于磁阻传感器电阻的相对变化率ΔR/R(0)正比于 Δρ/ρ(0),这里ΔR=R(B)-R(0),因此也可以用磁阻传感器电阻的相对改变量 ΔR/R(0)来表示磁阻效应的大小。 图2 图2所示实验装置,用于测量磁电阻的电阻值R与磁感应强度B之间的关系。实验证明,当金属或半导体处于较弱磁场中时,一般磁阻传感器电阻相对变化率ΔR/R(0)正比于磁感应强度B的平方,而在强磁场中ΔR/R(0)与磁感应强度B呈线性关系。磁阻传感器的上述特性在物理学和电子学方面有着重要应用。 2 如果半导体材料磁阻传感器处于角频率为ω的弱正弦波交流磁场中,由于磁电阻相对变化量ΔR/R(0)正比于B,则磁阻传感器的电阻值R将随角频率2ω作周期性变化。即在弱正弦波交流磁场中,磁阻传感器具有交流电倍频性能。若外界交流磁场的磁感应强度B为 B=B0COSωt (1) (1)式中,B0为磁感应强度的振幅,ω为角频率,t为时间。 2设在弱磁场中ΔR/R(0)=KB(2) (2)式中,K为常量。由(1)式和(2)式可得 R(B)=R(0)+ΔR=R(0)+R(0)×[ΔR/R(0)] 22=R(0)+R(0)KB0COSωt 2 1212R(0)KB0+R(0)KB0COS2ωt (3) 22 1122(3)式中,R(0)+R(0)KB0为不随时间变化的电阻值,而R(0)KB0cos2ωt为以角频22=R(0)+ 率2ω作余弦变化的电阻值。因此,磁阻传感器的电阻值在弱正弦波交流磁场中,将产生倍频交流电阻阻值变化。

巨磁电阻效应

巨磁电阻效应 ――GMR 模拟传感器的磁电转换特性测量 【实验目的】 1. 掌握GMR 效应的定义; 2. 了解GMR 效应的原理; 3. 熟悉GMR 模拟传感器的构成; 4. 测量GMR 磁阻特性曲线。 【实验仪器】 ZKY-JCZ 巨磁电阻效应及应用实验仪、基本特性组件、导线 【实验原理】 一、巨磁电阻效应定义及发展过程 1、定义 2007年10月,科学界的最高盛典—瑞典皇家科学院颁发的诺贝尔奖揭晓了。本年度,法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔(Peter Grunberg)因分别独立发现巨磁阻效应而共同获得2007年诺贝尔物理学奖。瑞典皇家科学院在评价这项成就时表示,今年的诺贝尔物理学奖主要奖励“用于读取硬盘数据的技术,得益于这项技术,硬盘在近年来迅速变得越来越小”。 巨磁阻到底是什么? 诺贝尔评委会主席佩尔·卡尔松用比较通俗的语言解答了这个问题。他用两张图片的对比说明了巨磁阻的重大意义:一台1954年体积占满整间屋子的电脑,和一个如今非常普通、手掌般大小的硬盘。正因为有了这两位科学家的发现,单位面积介质存储的信息量才得以大幅度提升。目前,根据该效应开发的小型大容量硬盘已得到了广泛的应用。 “巨磁电阻”效应(GMR ,Giant Magneto Resistance)是指磁性材料的电阻率在有外磁场作用时较之无外磁场作用时存在巨大变化的现象。也就是说,非常弱小的磁性变化就能导致巨大电阻变化的特殊效应,变化的幅度比通常磁性金属与合金材料的磁电阻数值高10余倍。 2、发展过程 人们早就知道过渡金属铁、钴、镍能够出现铁磁性有序状态。量子力学出现后,德国科学家海森伯(W. Heisenberg)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用,这个交换作用是短程的,称为直接交换作用。后来发现很多的过渡金属和稀土金属的化合物具有反铁磁(或亚铁磁)有序状态,化合物中的氧离子(或其他非金属离子)作为中介,将最近的磁性原子的磁矩耦合起来,这是间接交换作用。直接交换作用的特征长度为0.1-0.3nm ,间接交换作用可以长达1nm 以上。1nm 已经是实验室中人工微结构材料可以实现的尺度,所以1970年之后,科学家就探索人工微结构 中的磁性交换作用。 1988年法国的M.N.Baibich 等人在美国物理学会主办的Physical Review Letters 上发表了有关Fe/Cr 巨磁电阻效应的著名论文,首次报告了采用分子外延生长工艺(MBE )制成 图1(Fe/Cr )n 多层膜的GMR 效应特性曲线

磁电阻测量实验报告

竭诚为您提供优质文档/双击可除磁电阻测量实验报告 篇一:巨磁电阻实验报告 实验报告班 姓名张涛学号1003120505指导老师徐富新 实验时间20XX年5月25日,第十三周,星期日 篇二:_磁电阻特性_实验报告 实验8-1Insb磁电阻特性研究 【实验目的】 1、掌握磁感应强度的测量方法; 2、了解磁电阻的一些基本知识; 3、测量和分析Insb材料磁电阻特性;【实验原理】 磁电阻(magnetoResistance,mR)通常定义为 ?RR(0) ? R(b)?R(0) R(0) (8-1-1)

其中:R(0)是零外场下的电阻,R(b)是外场b下的电阻。有时,上式也可以表示为目前,已被研究的磁性材料的磁电阻效应大致包括:由磁场直接引起的磁性材料的正常磁电阻、与技术磁化相联系的各向异性磁电阻、掺杂稀土氧化物中特大磁电阻、磁性多层膜和颗粒膜中特有的巨磁电阻、以及隧道磁电阻等。图8-1-2列出了几种磁电阻阻值R随外磁场μ0h的变化形式。在以上磁电阻效应中,正常磁电阻应用最为普遍。 图8-1-1几种典型的磁电阻效应 正常磁电阻普遍存在于所有磁性与非磁性材料中,其来源于外磁场对载流子的洛仑兹力,它导致载流子运动发生偏转或产生螺旋运动,从而使载流子碰撞几率增加,造成电阻升高,因而,在正常磁电阻中,??//、??T和???均为正,并且有?T??//。正常磁电阻与外场的关系如图8-1-2所示。在特定的温度,随外场的增加,在低场区域,正常磁电阻近似地与外场成平方关系。对于单晶样品,在较高的磁场区域,??//显示了饱和的趋势(曲线 图8-1-2 B),而??T和???显示出各向异性,即随外场增加或正 比于(曲线A)或趋于饱和(曲线b)。对于多晶样品,在强场中,正常磁电阻则显示出与外场h的线性关系(曲线c)。正 常磁电阻的各项异性来源于费米面的褶皱。

巨磁电阻效应及应用

实验十四巨磁电阻效应及应用 【实验目的】 1.了解GMR效应的原理 2.测量GMR模拟传感器的磁电转换特性曲线 3.测量GMR的磁阻特性曲线 4.测量GMR开关(数字)传感器的磁电转换特性曲线 5.用GMR传感器测量电流 6.用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理 7.通过实验了解磁记录与读出的原理 【实验仪器】 巨磁电阻效应及应用实验仪 【实验原理】 2007年诺贝尔物理学奖授予了巨磁电阻( Giant magneto resistance,简称GMR)效应的发现者:法国物理学家阿尔贝·费尔(Albert Fert)和德国物理学家彼得·格伦贝格尔( Peter Grunberg )。诺贝尔奖委员会说明:“这是一次好奇心导致的发现,但其随后的应用却是革命性的,因为它使计算机硬盘的容量从几百、几千兆,一跃而提高几百倍,达到几百G 乃至上千G。” 凝聚态物理研究原子,分子在构成物质时的微观结构,它们之间的相互作用力,及其与宏观物理性质之间的联系。 GMR作为自旋电子学的开端具有深远的科学意义。传统的电子学是以电子的电荷移动为基础的,电子自旋往往被忽略了。巨磁电阻效应表明,电子自旋对于电流的影响非常强烈,电子的电荷与自旋两者都可能载运信息。自旋电子学的研究和发展,引发了电子技术与信息技术的一场新的革命。目前电脑,音乐播放器等各类数码电子产品中所装备的硬盘磁头,基本上都应用了巨磁电阻效应。利用巨磁电阻效应制成的多种传感器,已广泛应用于各种测量和控制领域。除利用铁磁膜-金属膜-铁磁膜的GMR效应外,由两层铁磁膜夹一极薄的绝缘膜或半导体膜构成的隧穿磁阻(TMR)效应,已显示出比GMR效应更高的灵敏度。除在多层膜结构中发现GMR效应,并已实现产业化外,在单晶,多晶等多种形态的钙钛矿结构的稀土锰酸盐中,以及一些磁性半导体中,都发现了巨磁电阻效应。 本实验介绍多层膜GMR效应的原理,并通过实验让学生了解几种GMR传感器的结构、特性及应用领域。 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规则散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自 221

巨磁电阻实验

巨磁电阻效应及其应用巨磁电阻(Giant magneto resistance, 简称GMR)效应表示在一个巨磁电阻系统中, 非常弱小的磁性变化就能导致巨大的电阻变化的特殊效应. 法国科学家阿尔贝·费尔(Albert Fert)和德国科学家彼得·格林贝格尔(Peter Grunberg )因分别独立发现巨磁阻效应而共同荣膺2007年诺贝尔物理学奖. G MR是一种量子力学和凝聚态物理学现象, 是磁阻效应的一种, 可以在磁性材料和非磁性材料相间的薄膜层(几个纳米厚)结构中观察到. 在量子力学出现后, 德国科学家海森伯(W. Heisenberg, 1932年诺贝尔奖得主)明确提出铁磁性有序状态源于铁磁性原子磁矩之间的量子力学交换作用, 这个交换作用是短程的, 称为直接交换作用. 随后, 科学家们又发现很多的过渡金属和稀土金属的化合物也具有反铁磁有序状态, 即在有序排列的磁材料中, 相邻原子因受负的交换作用, 自旋为反平行排列, 如图1所示. 此时磁矩虽处于有序状态, 但总的净磁矩在不受外场作用时仍为零. 这种磁有序状态称为反铁磁性. 反铁磁性通过化合物中的氧离子(或其他非金属离子)将最近的磁性原子的磁矩耦合起来, 属于间接交换作用. 此外, 在稀土金属中也出现了磁有序, 其中原子的固有磁矩来自4f电子壳层. 相邻稀土原子的距离远大于4f电子壳层直径, 所以稀土金属中的传导电子担当了中介, 将相邻的稀土原子磁矩耦合起来, 这就是RKKY 型间接交换作用. 直接交换作用的特征长度为0.1—0.3nm, 间接交换作用可以长达1nm以上. 据此美国IBM实验室的江崎和朱兆祥提出了超晶格的概念.所谓的超晶格就是指由两种(或两种以上)组分(或导电类型)不同、厚度极小的薄层材料交替生长在一起而得到的一种多周期结构材料, 其特点是这种复合材料的周期长度比各薄膜单晶的晶格常数大几倍或更长. 上世纪八十年代, 制作高质量的纳米尺度样品技术的出现使得金属超晶格成为研究前沿. 因此凝聚态物理工作者对这类人工材料的磁有序, 层间耦合, 电子输运等进行了广泛的基础方面的研究. 其中相关的代表性研究工作简介如下. 其一是德国尤利希科研中心的物理学家彼得·格伦贝格尔. 他一直致力于研究铁磁性金属薄膜表面和界面上的磁有序状态, 其研究对象是一个三明治结构的薄膜, 两层厚度约10nm的铁层之间夹有厚度为1nm的铬层. 之所以选择选择这一材料系统, 首先是因为金属铁和铬是周期表上相近的元素, 具有类似的电子壳层, 容易实现两者的电子状态匹配. 其次, 金属铁和铬的晶格对称性和晶格常数相同, 它们之间晶格结构相匹配. 这两类匹配非常有利于对基本物理过程进行探索. 尽管如此, 长期以来该课题组所获得的三明治薄膜仅为多晶体. 随着制备薄膜技术的发展, 分子束外延(MBE)方法的应用才使得结构完整的单晶样品得以问世, 其成分依然是铁-铬-铁三层膜. 此后,

巨磁电阻效应及其应用实验报告记录

巨磁电阻效应及其应用实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

巨磁电阻效应及其应用 【实验目的】 1、 了解GMR 效应的原理 2、 测量GMR 模拟传感器的磁电转换特性曲线 3、 测量GMR 的磁阻特性曲线 4、 用GMR 传感器测量电流 5、 用GMR 梯度传感器测量齿轮的角位移,了解GMR 转速(速度)传感器的原理 【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=ρl/S 中,把电阻率ρ视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约34nm ),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为0.3nm ),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 电子除携带电荷外,还具有自旋特性,自旋磁矩有平行或反平行于外磁场两种可能取向。早在1936年,英国物理学家,诺贝尔奖获得者N.F.Mott 指出,在过渡金属中,自旋磁矩与材料的磁场方向平行的电子,所受散射几率远小于自旋磁矩与材料的磁场方向反平行的电子。总电流是两类自旋电流之和;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向在多数应用中是平行于膜面的。 无外磁场时顶层磁场方向 顶层铁磁膜 中间导电层 底层铁磁膜 无外磁场时底层磁场方向 图2 多层膜GMR 结构图 图3是图2结构的某种GMR 材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率 ΔR/R 达百分之十几,加反向磁场时磁阻特性是对称的。注意到图2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 图3 某种GMR 材料的磁阻特性 磁场强度 / 高斯 电阻 \ 欧姆

磁性材料及巨磁电阻效应简介.

磁性材料及巨磁电阻效应简介 物理系隋淞印学号SC11002094 引言 磁性材料是应用广泛、品类繁多、与时俱进的一类功能材料, 人们对物质磁性的认识源远流长。 磁性材料的进展大致上分几个历史阶段:当人类进入铁器时代, 除表征生产力的进步外,还意味着金属磁性材料的开端,直到18世纪金属镍、钻相继被提炼成功, 这一漫长的历史时期是3d 过渡族金属磁性材料生产与原始应用的阶段; 20世纪初期(1900-1932, FeSi、FeNi 、FeCoNi 磁性合金人工制备成功,并广泛地应用于电力工业、电机工业等行业, 成为3d 过渡族金属磁性材料的鼎盛时期, 从此以后, 电与磁开始了不解之缘; 20世纪后期, 从50年代开始, 3d 过渡族的磁性氧化物(铁氧体 逐步进入生产旺期, 由于铁氧体具有高电阻率, 高频损耗低, 从而为当时兴起的无线电、雷达等工业的发展提供了所必需的磁性材料, 标志着磁性材料进入到铁氧体的历史阶段; 1967年, SmCo 合金问世, 这是磁性材料进入稀土—3d 过渡族化合物领域的历史性开端。1983年,高磁能积的钕铁硼(Nd—FeB 稀土永磁材料研制成功。现已誉为当代永磁王。TbFe 巨磁致收缩材料与稀土磁光材料的问世更丰富了稀土一3d 过渡族化合物磁性材料的内涵。1972年的非晶磁性材料与1988年的纳米微晶材料的呈现, 更添磁性材料新风采。1988年, 磁电阻效应的发现揭开了自旋电子学的序幕。因此从20世纪后期延续至今, 磁性材料进入了前所未有的兴旺发达时期, 并融入到信息行业, 成为信息时代重要的基础性材料之一。 磁性材料的分类 磁性材料应用十分广泛, 品种繁多, 存在以下多种分类方式。按物理性质分类:(1按静磁特性:即根据静态磁滞回线上的参量,如矫顽力、剩磁等来确定 磁性材料的类型。例如:永磁属高矫顽力一类磁性材料; 软磁属低矫顽力的一类 磁性材料; 矩磁属高剩磁、低矫顽力的一类磁性材料; 磁记录介质属于中等矫顽

巨磁电阻效应及其应用实验报告.docx

巨磁电阻效应及其应用【实验目的】 1、了解GMR效应的原理 2、测量GMR模拟传感器的磁电转换特性曲线 3、测量GMR的磁阻特性曲线 4、用GMR传感器测量电流 5、用GMR梯度传感器测量齿轮的角位移,了解GMR转速(速度)传感器的原理 【实验原理】 根据导电的微观机理,电子在导电时并不是沿电场直线前进,而是不断和晶格中的原子产生碰撞(又称散射),每次散射后电子都会改变运动方向,总的运动是电场对电子的定向加速与这种无规散射运动的叠加。称电子在两次散射之间走过的平均路程为平均自由程,电子散射几率小,则平均自由程长,电阻率低。电阻定律 R=?l/S 中,把电阻率 ?视为常数,与材料的几何尺度无关,这是因为通常材料的几何尺度远大于电子的平均自由程(例如铜中电子的平均自由程约 34nm),可以忽略边界效应。当材料的几何尺度小到纳米量级,只有几个原子的厚度时(例如,铜原子的直径约为),电子在边界上的散射几率大大增加,可以明显观察到厚度减小,电阻率增加的现象。 ;总电阻是两类自旋电流的并联电阻,这就是所谓的两电流模型。 在图 2所示的多层膜结构中,无外磁场时,上下两层磁性材料是反平行(反铁磁)耦合的。施加足够强的外磁场后,两层铁磁膜的方向都与外磁场 方向一致,外磁场使两层铁磁膜从反平行耦合变成了平行耦合。电流的方向

在多数应用中是平行于膜面的。 图3是图 2结构的某种 GMR材料的磁阻特性。由图可见,随着外磁场增大,电阻逐渐减小,其间有一段线性区域。当外磁场已使两铁磁膜完全平行耦合 后,继续加大磁场,电阻不再减小,进入磁饱和区域。磁阻变化率R/R 达 百分之十几,加反向磁场时磁阻特性是对称的。注意到图 2中的曲线有两条,分别对应增大磁场和减小磁场时的磁阻特性,这是因为铁磁材料都具有磁滞特性。 有两类与自旋相关的散射对巨磁电阻效应有贡献。 其一,界面上的散射。无外磁场时,上下两层铁磁膜的磁场方向相反,无论电子的初始自旋状态如何,从一层铁磁膜进入另一层铁磁膜时都面临状态 改变(平行-反平行,或反平行-平行),电子在界面上的散射几率很大, 对应于高电阻状态。有外磁场时,上下两层铁磁膜的磁场方向一致,电子在界面上的散射几率很小,对应于低电阻状态。 其二,铁磁膜内的散射。即使电流方向平行于膜面,由于无规散射,电 子也有一定的几率在上下两层铁磁膜之间穿行。无外磁场时,上下两层铁磁 膜的磁场方向相反,无论电子的初始自旋状态如何,在穿行过程中都会经历 散射几率小(平行)和散射几率大(反平行)两种过程,两类自旋电流的并 联电阻相似两个中等阻值的电阻的并联,对应于高电阻状态。有外磁场时, 上下两层铁磁膜的磁场方向一致,自旋平行的电子散射几率小,自旋反平行 的电子散射几率大,两类自旋电流的并联电阻相似一个小电阻与一个大电 阻的并联,对应于低电阻状态。 多层膜 GMR结构简单,工作可靠,磁阻随外磁场线性变化的范围大,在

巨磁电阻效应及其应用-数据处理

五、实验数据及处理 1.GMR模拟传感器的磁电转换特性测量 实验数据及由公式B = μ0nI算得的磁感应强度如下表所示:(n=24000匝/m)

以B为横坐标,输出电压U为纵坐标,作图得: 误差分析: (1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内,反应在图像上就是最低处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的; (2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响; (3)使用Excel表格处理数据的过程中可能会有精度损失;

2. GMR的磁阻特性曲线的测量 根据实验数据由公式B = μ0nI算得的磁感应强度,由R=U/I算得的电阻如下表所示:(磁阻两端电压U=4V)

作图如下: 误差分析: (1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内,反应在图像上就是最高处的输出都在y轴上,实际上应当是分别分布在y轴左右两侧的; (2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响; (3)使用Excel表格处理数据的过程中可能会有精度损失;

3. GMR开关(数字)传感器的磁电转换特性曲线测量 实验数据及由公式B = μ0nI算得的磁感应强度如下表所示: 高电平:1V,低电平:-1V 作图如下: 误差分析: (1)在实验操作中,用恒流源调节励磁电流时距离要调到的值总会有部分偏差,其范围在正负0.2mA以内;(2)用恒流源调节励磁电流时,为保证调到需要调到的励磁电流的精确度,会有很小幅度的回调,可能因磁滞现象造成影响; (3)使用Excel表格处理数据的过程中可能会有精度损失;

大学物理实验 巨磁阻效应实验报告数据

磁感应强度/高斯 磁阻/Ω 减小磁场增大磁场 励磁电流 /mA 磁感应强度/高斯 磁阻电流 /mA 磁阻/Ω 磁阻电流 /mA 磁阻/Ω 100 30.15928947 2.080 1923.077 2.090 1913.876 90 27.14336053 2.070 1932.367 2.090 1913.876 80 24.12743158 2.070 1932.367 2.080 1923.077 70 21.11150263 2.060 1941.748 2.080 1923.077 60 18.09557368 1.988 2012.072 1.990 2010.05 50 15.07964474 1.957 2043.945 1.953 2048.131 40 12.06371579 1.920 2083.333 1.916 2087.683 30 9.047786842 1.883 2124.27 1.880 2127.66 20 6.031857895 1.847 2165.674 1.845 2168.022 10 3.015928947 1.815 2203.857 1.814 2205.072 5 1.507964474 1.799 2223.457 1.791 2233.389 0 0 1.779 2248.454 1.794 2229.654 -5 -1.507964474 1.794 2229.654 1.815 2203.857 -10 -3.015928947 1.812 2207.506 1.831 2184.599 -20 -6.031857895 1.849 2163.332 1.868 2141.328 -30 -9.047786842 1.882 2125.399 1.900 2105.263 -40 -12.06371579 1.920 2083.333 1.935 2067.183 -50 -15.07964474 1.958 2042.901 1.972 2028.398 -60 -18.09557368 1.994 2006.018 1.998 2002.002 -70 -21.11150263 2.060 1941.748 2.060 1941.748 -80 -24.12743158 2.060 1941.748 2.060 1941.748 -90 -27.14336053 2.070 1932.367 2.060 1941.748 -100 -30.15928947 2.070 1932.367 2.070 1932.367

相关主题
文本预览
相关文档 最新文档