当前位置:文档之家› 新兴高分子建筑材料

新兴高分子建筑材料

新兴高分子建筑材料
新兴高分子建筑材料

新兴高分子建筑材料————————聚乙烯丙纶复合防水卷材

聚乙烯丙纶复合防水卷材【【【【摘要摘要摘要摘要】】】】纳米技术改性高分子复合卷材(聚乙烯丙纶复合卷材)是继沥青油毡、改性沥青卷材、水性防水涂料、高分子片材之后最理想的换代产品,也是国家鼓励、支持和推广的一代绿色环保防水材料。【【【【关键词关键词关键词关键词】】】】聚乙烯丙纶聚乙烯丙纶聚乙烯丙纶聚乙烯丙纶防水防水防水防水绿色环保绿色环保绿色环保绿色环保【【【【引言引言引言引言】】】】防水是建筑物的主要使用功能之一,也是房屋建筑的一项重要分部工程。其施工质量的优劣,直接影响到建筑物的使用功能和寿命。据了解,我国平屋顶钢筋混凝土建筑普遍存在漏雨,厕所、卫生间渗水和地下室渗漏等工程质量问题,而且耐久性差,维修费用较高,给用户生产和生活造成十分严重的经济损失,直接影响到各项工作的正常运转。此时防水材料就显得很必要了,为了改善建筑工程防水质量及其耐久性能,近几年来,世界各国都在研究防水新材料。1、产品结构及性能特点聚乙烯丙纶复合防水卷材是在充分研究了现有防水防渗类卷材产品的基础上,根据现代工程对防水防渗材料的新要求,采用新技术,以原生聚乙烯合成高分子材料加入抗老化剂、稳定剂、助粘剂等与高强度新型丙纶涤纶长丝无纺布经过自动化生产线一次复合而成的新型防水卷材。该复合卷材的问世彻底改变了历史建筑行业中因水泥基层湿,含水率高而不能施工的难题,产生可直接与水泥结构面粘结。其防水性能优良、无毒、无味、抗拉强度大、抗渗能力强、使用寿命高、耐冻、耐腐蚀、易粘贴、柔性好、重量清、施工操作简便、不动火、不用油、施工无噪音是一种理想的新世纪绿色环保产品。它是四层结构为一体的新型防水材料,表层为非织布、该布具有良好的机械性能、提高卷材的拉伸强度、抗撕裂强度和园球顶破强度,同时也保护芯层不被破坏,第二层设计为防老化导,该层在原料基添加了一定量的光屏蔽剂、抗氧剂等其他助剂,增加了产品抗紫外线能力和抗氧化,从而延长了卷材的使用寿命,第三层为主防水层,采用聚乙稀添加部分助剂,具备优良的防水性、而候性和耐腐性、下表层呈立体网状结构,与多种粘结剂都有良好的粘结强度。聚乙烯丙纶复合防水卷材在施工中采用水泥专用胶粘结、冷作业施工、无任何三废生成,避免了沥青油毡施工时产生的空气污染和易引发为灾的危险,是一种环保型绿色建材。聚乙烯丙纶复合防水卷材对基层温度无严格要求,无明水即可施工,因此全国大部分地区常年均可施工,这样就有利于施工企业及时交工验收。聚乙烯丙纶卷材用于屋面防水,其耐老化时间可达50年以上,是沥青油毡防水的5-10倍,防水耐用年限为15年以上,实为新一代小康建筑的优选建材。聚乙烯丙纶卷材的防水平方造价仅相当于沥青油毡防水的价格。其防护层上可刷涂任意颜色,做成彩色屋面,有利于屋面保温和美化环境,在地下室做防水,不需要做单墙护体,可为国家建设节约大量资金。聚乙烯丙纶卷材可广泛用于建筑屋面、厕浴间地面、地下室地面墙面、水利工程堤坝、渠道防漏防渗、治金化工工程污染防渗、粮仓防潮等,施工后外表面可直接进行瓷砖、地砖粘贴工程。2、聚乙烯丙纶复合防水卷材防水机理及生产工艺聚乙烯丙纶双面复合防水卷材是从设计防水系统开始的,不但考虑材料本身防水性能,同时考虑工程应用的系统因素。分析防水系统各因素,对其分解并进行分配,将部分系统功能转由防水卷材以外的结构承担,发挥工程整体效能。防水工程设计应解决以下问题以保证稳定的防水效能:结构稳定性、不透水性、耐大气老化、施工可行性、环保可行性。聚乙烯丙纶双面复合防水卷材的结构稳定性是依靠其可与水泥结构直接固化粘合的表面网状结构实现的。不透水性是依靠卷材聚乙烯芯层和横向不透水的稳定粘合界面结构实现的。耐大气老化是依靠卷材聚乙烯、聚丙烯良好的抗氧化、耐臭氧性能和能与卷材稳定结合完全隔断紫外光的水泥结构实现的。<1> 以下是聚乙烯丙纶双面复合防水卷材防水工程设计的基本模式:<2> 该模式的防水机理:1) 防护层承担隔绝紫外光、机械防护作用的有填充料的水泥材料,应有防裂措施。土工工程中防护层或为土或细沙垫层。2) 粘接层A 承担防护层与防水卷材之间粘接作用的含有阻水剂的水泥材料。在水平

情况下,粘接层A可以省略,防护层在重力下能与卷材进行粘接。在垂直情况下,粘接层A 排除卷材表面网状结构中的空气,保证防护层施工时的粘合力。粘接层A能弥补卷材的点状、线状破损,阻止水通透。3) 防水卷材除承担隔断水渗外,要承担与防护层、基本层粘接的作用,即为粘接材料提供“锚固”切向通透空隙。防水卷材中间层是聚乙烯不透水层,表面层是丙纶构成的足够强度的网状结构层。聚乙烯不透水层是模式的中心。由于采用面层增强卷材芯层厚较小,这对克服合成高分子材料热膨胀大的缺点有利。4) 粘接层N 承担防水卷材与工程结构基本层的粘接,同时阻止意外损坏卷材渗水的切向通透。5) 基本层这里指工程与防水系统连接的部分,并已用水泥材料找平的规则结构面或其他材料构件。聚乙烯与聚丙烯粘合是依靠色散力实现的。热熔状态的聚乙烯在聚丙烯表面润湿铺展,在压力作用下分子相互靠近,聚乙烯分子剧烈的热运动,其分子中电子的不断运动和原子核的不断振动,瞬间偶极产生分子间的色散力。聚乙烯在熔融状态温度120-135℃时,其表面张力约为28.8dyne/cm。聚丙烯在温度30-50℃时,其表面张力约为30.1dyne/cm。这时聚乙烯能够在聚丙烯表面铺展、润湿具有与聚丙烯粘合的条件。只有聚乙烯熔融温度比聚丙烯温度高才能保证面层与芯层粘合强度,实现的产品性能。根据面层与芯层粘接原理,采用热熔直压复合是唯一正确的加工方式。聚乙烯在熔融状态下通过挤出成膜,熔融温度120-135℃,与固态温度30-50℃的聚丙烯纤维粘合成型。聚乙烯塑化挤出,粘流态与丙纶在压力下接触粘合(复合),其复合温度决定复合效果,聚乙烯塑化复合温度较高复合效果较好。聚乙烯塑化温度超过聚丙烯软化温度或超过熔化温度,复合过程中聚乙烯携带的热量能够将丙纶软化或熔化。聚乙烯塑化低于粘流态温度,面层与芯层粘合强度急剧下降。复合过程中应降低丙纶温度,加大聚乙烯与聚丙烯的温差,优化表面铺展、润湿粘合条件,同时防止聚乙烯携带的热量将丙纶软化或熔化。无纺布纤维直径在21±2μm为最优。纤维直径小时,法向强度下降,间隙空间减小。纤维直径大时,投影孔隙率下降,与主防水层粘合面积下降,纤维压入主防水层深度过大。纤维点热轧后无纺布成型,热轧点面积影响卷材性能。热轧点面积在6-12%为宜,面积减小纤维联结率下降,无纺布抗拉强度降低;面积增加无纺布投影孔隙率下降,孔隙空间不足。热轧点分布每1.5-2.0mm2一点较好。3、国内聚乙烯丙纶复合防水卷生产工艺目前,国内的聚乙烯丙纶复合防水卷的生产工艺按其原理分为一次成型挤出法和二次复合法两大类,相应的设备亦分为一次成型挤出生产设备和二次复合生产设备两类。生产工艺及设备的不同势必导致产品的质量及性能方面的差异,以下是关于两种生产工艺的比较分析:<1>一次成型挤出法,是将聚乙烯与其它辅材经过加热、塑化后一次挤出成热熔状膜片,然后利用辊压设备将热熔状膜片与丙纶无纺布进行复合的方法。生产时,将特定配方的低密度线性聚乙烯树脂粒料主料和抗氧剂、光稳定剂、防老化剂和增塑剂等辅料加入混料机中,充分混合,然后由真空吸料装置送入挤出机的螺杆料桶中,经过分区段的加热、塑化、搅拌、压缩,使混合料充分塑化后经过减压过滤,由平口模具挤出成热熔装的膜片,膜片直接进入辊压光机中与无纺布复合、压光,冷却定型后,经切边、印字、标记、再冷却、计量长度、收卷。包装而形成产品。目前国内一次成型挤出法的生产设备有两种,即进口生产线和国产生产线。<2>二次成型复合法是将已吹塑成片的塑料膜片夹在两层无纺布中间、经上下两面,加热后使聚乙烯膜片表层熔融、再经过一次热轧辊挤压与无纺布复合的生产方法。与一次成型挤出法相比、二次复合法虽然成型工艺简单,投资少,但在原理、工艺及生产设备方面具有明显的缺陷与不足,因而生产的产品质量低劣、各项性能指标难以得到保证。由于二次复合的聚乙烯防水丙纶防水卷材生产成本低,进入时市场后严重冲斥着高品质卷材的销售渠道,已经形成了市场价格的恶性竞争。二次复合的劣质产品和假冒产品混迹各类防水行业中,势必给聚乙烯丙纶防水卷材的推广和应用带来很大的负面影响,因而中国建筑防水材料工业协会于2002年11月1日实施的《防水卷材企业质量管理规程》中明确规定:聚乙烯丙纶复合防水卷材生产设备必须采用一次成型挤出的设备生产。【【【【结束语结束语

结束语结束语】】】】聚乙烯丙纶复合防水卷材是依据国家发展需要开发出的高档防水材料,目前需要发展的是要如何引用高新技术,使产品的生产成本控制在一般用户能接受的基础上,并规范市场使生产的成品都是一次成型挤出品。

高分子材料在各领域的应用与前景

200810230129 许莎莎08材化(一)班(材料合成与加工课程论文) 高分子材料在各领域的应用及前景 1高分子材料的发展现状与趋势 高分子材料作为一种重要的材料, 经过约半个世纪的发展巳在各个工业领域中发挥了巨大的作用。从高分子材料与国民经济、高技术和现代生活密切相关的角度说, 人类已进人了高分子时代。高分子材料工业不仅要为工农业生产和人们的衣食住行用等不断提供许多量大面广、日新月异的新产品和新材料又要为发展高技术提供更多更有效的高性能结构材料和功能性材料。鉴于此, 我国高分子材料应在进一步开发通用高分子材料品种、提高技术水平、扩大生产以满足市场需要的基础上重点发展五个方向:工程塑料,复合材料,液晶高分子材料,高分子分离材料,生物医用高分子材料。近年来,随着电气、电子、信息、汽车、航空、航天、海洋开发等尖端技术领域的发展和为了适应这一发展的需要并健进其进?步的发展, 高分子材料在不断向高功能化高性能化转变方面日趋活跃,并取得了重大突破。 2 高分子材料各领域的应用 (1)高分子材料在机械工业中的应用 高分子材料在机械工业中的应用越来越广泛, “以塑代钢”、

“塑代铁”成为目前材料科学研究的热门和重点。这类研究拓宽了材料选用范围,使机械产品从传统的安全笨重、高消耗向安全轻便、耐用和经济转变。如聚氨酉旨弹性体,聚氨醋弹性体的耐磨性尤为突出, 在某些有机溶剂如煤油、砂浆混合液中, 其磨耗低于其它材料。聚氨醋弹性体可制成浮选机叶轮、盖板, 广泛使用在工况条件为磨粒磨损的浮选机械上。又如聚甲醛材料聚甲醛具有突出的耐磨性, 对金属的同比磨耗量比尼龙小, 用聚四氟乙烯、机油、二硫化钥、化学润滑等改性, 其摩擦系数和磨耗量更小, 由于其良好的机械性能和耐磨性, 聚甲醛大量用于制造各种齿轮、轴承、凸轮、螺母、各种泵体以及导轨等机械设备的结构零部件。在汽车行业大量代替锌、铜、铝等有色金属, 还能取代铸铁和钢冲压件。 2 高分子材料在燃料电池中的应用 高分子电解质膜的厚度会对电池性能产生很大的影响, 减薄膜的厚度可大幅度降低电池内阻, 获得大的功率输出。全氟磺酸质子交换 膜的大分子主链骨架结构有很好的机械强度和化学耐久性, 氟素化合物具有僧水特性, 水容易排出, 但是电池运转时保水率降低, 又要影响电解质膜的导电性, 所以要对反应气体进行增湿处理。高分子电解质膜的加湿技术, 保证了膜的优良导电性, 也带来电池尺寸变大增大左右、系统复杂化以及低温环境下水的管理等问题。PEFC的发展离不开新材料的发现及其在燃料电池中的应用, 今后随着高性能、低成木的高分子材料开发研究, 有希望促进实现商业应用, 成为

高分子材料加工技术

实训1 海带中海藻酸钠的提取 1.实训目的 1.1巩固常用基本仪器的操作 1.2巩固几种常用溶液的配制 1.3巩固EDTA标准溶液的配制与标定方法 1.4掌握EDTA测定溶液中钙离子的测定 1.5掌握茚三酮溶液与蛋白质颜色反应的原理和方法 1.6掌握从虾壳中提取甲壳素的原理和方法 2.实训原理 甲壳素的提取方法主要有酸碱法、EDTA脱钙法和酸碱交替法等,其中酸碱交替法具有可提高反应温度、反应时间短,无需脱色处理等优点而为本文采用。 原理:盐酸处理溶去其中的碳酸钙;碱煮处理去除与甲壳素共价交联的蛋白质;虾壳中含有的虾红素在碱煮过后,仍有大部分存在,故甲壳素显现红色,须用氧化还原的方法来处理虾红素。 3.实训原料、仪器、药品 3.1实训材料 虾壳、蟹壳 3.2实训仪器 序号名称规格数量备注 1 烧杯100、250 、500 mL 10、5、5个按顺序 2 锥形瓶250mL 6个 3 移液管5、10、25、50mL 各一支

4 容量瓶100、250mL 各3个 5 酸性滴定管25mL 一支 6 数显恒温水浴箱一台 7 电子天平 8 电热恒温烘干箱 9 玻璃棒数支 10 滤纸若干 11 量筒10、50、100mL 各一支 3.3实训药品 序号名称规格数量备注 1 浓盐酸(体积百分数 为35~38%) 2 NaOH 3 30%过氧化氢 4 高锰酸钾 5 亚硫酸氢钠 6 酸性络蓝K K—B指示剂的 7 萘酚绿B 配制 8 EDTA EDTA的配制与 9 ZnO 滴定 10 氨水(1:1) 11 1%的铬黑T(EBT) 12 茚三酮配制1%茚三酮 13 氯化亚锡 溶液

高分子材料应用技术专业建设方案

“高分子材料应用技术”专业建设方案 一、行业背景与建设基础 1、行业背景 从中国塑料工业协会公布的数据可知:我国塑料工业产量逐年递增,年均增长率超过10%,利润率和利税均保持两位数增长,塑料树脂表观消费量已经突破4000万吨,在世界各国塑料制品产量排名中名列第2位,年销售收入在500万元以上的规模企业过万家,成为名副其实的塑料生产大国和消费大国。 江苏是我国塑料加工业大省,05年塑料制品产量列全国第三,其中,泡沫塑料和塑料合成革产量为全国第一。作为江苏塑料工业主力军的常州市,地处沪宁线中段,有着颇具实力的工业基础和得天独厚的区域优势,现代制造业基地建设已初见成效。国内最大塑化市场——江苏国际塑化城落户常州,将为常州实现产业结构的战略调整和塑化行业的加快发展增添新活力。 由于塑料加工业是集材料、机械、模具、电子、计算机控制于一体的复合型制造业。塑料工业的进步,是科学技术各领域交叉复合的结果。它标志着一个国家或地区工业发达程度与科学技术的先进程度。技术要进步,人才是关键。具有一批高素质、高技能的高分子材料应用技术专业人才,是现代塑料工业企业迫切的需求。 2、现有基础和优势 “高分子材料应用技术”专业(原为“塑料成型工艺及设备”,“高分子材料与工程”)是我院的重点骨干专业,该专业创办于1978年,1996年成为江苏省第一批五年制高职试点专业,2003年被评为江苏省五年制高职示范专业,2006

年被评为江苏省高等学校特色专业建设点。1998年7月,国家轻工业局在我院建立了中国塑料加工行业职工培训中心,2000年5月,江苏省劳动厅批准在我院设立了江苏省塑料加工行业国家职业技能鉴定所,学院还是全国轻工行业塑料专业指导委员会主任单位与秘书长单位。 自98年开始,学院在本专业试行“双证书制”,学生毕业时除获得毕业证书外还需获得与本专业相关的职业资格证书,如塑料注塑工(中级)、塑料挤出工(中级)等。2000年以来,我院“高分子材料应用技术”专业,依托江苏省塑料加工行业国家职业技能鉴定所,广泛开展对学生的职业技能培训,并参加由省技能鉴定中心组织的鉴定考核,取得中级以上职业资格证书的比例为99%以上。 本专业1996年开始招收五年制高职学生,2002年招收高中后三年制高职学生,2005年面向外省招生,至2006年已有高职毕业生575人,目前在校生641人。 本专业现有专任教师25人,非专任教师6人。在专任教师中,具有高级职称的9人;双师型教师19人;具有硕士学位的8人。在非专任教师中,具有高级职称的4人。目前,该专业曾有2名教师被评为全国优秀教师,1名教师是教育部高职高专轻化类教指委委员。近年来,专任教师共编著出版教材、专著19部;发表教研论文15篇;发表科研论文39篇;承担省级及以上教学课题研究5项;进行纵横向科研课题研究15项;获省级及以上教学成果奖3项。 本专业建有化学基础课教学实验中心和塑料加工实训中心,其中,化学基础课教学实验中心是省级教学实验中心建设点。实验实训中心内的仪器设备先进,实验室装备条件良好,教学、科研仪器设备总价值400余万元,实验、实训场

高分子材料的应用

高分子材料的应用——防水防尘新型材料等方面的研究进展的介绍 高分子材料是门内容广泛,与其他许多学科交叉渗透,相互关联的综合性新兴学科随着社会的发展,普通的材料已经不能满足需求,高分子材料则越来越多的用于人们的日常生活.目前高分子材料的发展迅猛,应用的方面也越来越多,越来越广!下面就高分子材料用于防水方面的研究进展进行介绍! 一开始想到这个方面是由于一年前班主任开班会时候对高分子进行的介绍,其中有一点就是应用于防水方面。当时他举了个列子——荷叶.众所周知,荷叶表面的水可以聚成水珠,不会粘在荷叶上,从这个出发研究荷叶的结构从而得到防水防尘方面的启发! 荷叶的叶面上布满了一个紧挨一个的“小山包”,“山包”上长满绒毛,好像山上密密的植被,“山包”的顶上又长出一个馒头状的“碉堡”凸顶。因此,在“山包”的凹陷处充满了空气,这样就在紧贴的叶面上形成一层极薄的只有纳米级的空气层。由于雨水和灰尘对于荷叶叶面上的这些微结构来说,无异于庞然大物,于是,当雨水和灰尘降落时,隔着一层纳米空气,它们只能同“小山包”上的“碉堡”凸顶构成几个点的接触,无法进一步“入侵”。水形成水珠,滚动着洗去了叶面的尘埃。荷叶的这种纳米级的超微结构,不仅有利于它自洁,还有利于防止空气中飘浮的大量的各种有害细菌和真菌对它的侵害! 对于这方面我从一些文献中找出了一点将荷叶的功能应用的实际的列子——德国Sto 上市公司下属ISPO 公司,根据荷叶效应机理和硅树脂外墙涂料的实际应用结果,经过3 年研究工作,成功地把荷叶效应移植到外墙乳胶漆中,开发了微结构有机硅乳胶漆,即荷叶效应乳胶漆。这种荷叶效应乳胶漆采用具有持久憎水性的少乳化剂有机硅乳液等一些专门物质,并形成一个纳米级显微结构,从而使其涂膜具有类似荷花叶子的表面结构,达到拒水保洁功能 但是荷叶的防水防尘功能是有限的,我们需要做的就是从荷叶的结构方面进行改进,用高分子技术做出更加全面的防水防尘材料!荷叶只是一个列子,只是给我们一个启发。真正要研究的是高分子的结构和结构所表现出来的功能! 1防水方面 世界各地对高分子的研究都是积极的。以前用于防水的材料主要是沥青和砂浆虽然这2种方法能起到防水作用但是作用远远没有高分子的作用好台湾一流的防水中心{张百兴张凯然}在土木建筑工程中使用了一种新型的施工方法——高分子涂膜防水!

第九章 聚合物的化学反应

第九章聚合物的化学反应 思考题9.1聚合物化学反应浩繁,如何考虑合理分类,便于学习和研究? 答目前聚合物化学反应尚难按照机理进行分类,但可按结构和聚合度的变化粗分为3类: (1)聚合度不变,如侧基反应,端基反应; (2)聚合度增加,如接枝、扩链、嵌段和交联等; (3)聚合度变小,如降解、解聚和热分解。 思考题9.2聚集态对聚合物化学反应影响的核心问题是什么?举一例子来说明促使反应顺利进行的措施。 答欲使聚合物与低分子药剂进行反应,首先要求反应的基团处于分子级接触,结晶、相态、溶解度不同,都会影响到药剂的扩散,从而反映基团表观活性和反应速率的差异。 对于高结晶度的聚合物,结晶区聚合物分子链间的作用力强,链段堆砌致密,化学试剂不容易扩散进去,内部化学反应难以发生,反应仅限于表面或非结晶区。此外,玻璃态聚合物的链段被冻结,也不利于低分子试剂的扩散和反应。因此反应之前,通常将这些固态聚合物先溶解或溶胀来促进反应的顺利进行。 纤维素分子间有强的氢键,结晶度高,高温下只分解而不熔融,也不溶于一般溶剂中,但可被适当浓度的氢氧化钠溶液、硫酸、醋酸所溶胀。因此纤维素在参与化学反应前,需预先溶胀,以便化学试剂的渗透。 思考题9.3几率效应和邻近基团效应对聚合物基团反应有什么影响?各举一例说明。 答当聚合物相邻侧基作无规成对反应时,中间往往留有未反应的孤立单个基团,最高转化程度因而受到限制,这种效应称为几率效应。 聚氯乙烯与锌粉共热脱氯成环,按几率计算,环化程度只有86.5%,尚有13.5%氯原子未能反应,被孤立隔离在两环之间,这就是相邻基团按几率反应所造成的。 高分子中原有基团或反应后形成的新基团的位阻效应和电子效应,以及试剂的静电作用,均可能影响到邻近基团的活性和基团的转化程度,这就是邻近基团效应。 (1)邻近基团的位阻效应当聚合物分子链上参加化学反应的基团邻近的是体积较大的基团时,往往会由于位阻效应而使参与反应的低分子反应物难以接近反应部位,使聚合物基团转化程度受到限制。如聚乙烯醇的三苯乙酰化反应。在反应先期进人大分子链的体积庞大的三苯乙酰基对邻近的羟基起到“遮盖”或“屏蔽”作用,严重妨碍了低分子反应物向邻位羟基的接近,最终导致该反应的最高反应程度为50%。 (2)邻近基团的静电作用聚合物化学反应往往涉及酸碱催化过程,或者有离子态反应物参与反应,该化学反应进行到后期,未反应基团的进一步反应往往受到邻近带电荷基团的静电作用而改变速度。 带电荷的大分子和电荷相反的试剂反应,结果加速,例如以酸作催化剂,聚丙烯酰胺可以水解成聚丙烯酸,其初期水解速率与丙烯酰胺的水解速率相同。但反应进行之后,水解速率自动加速到几千倍。因为水解所形成的羧基-COOH与邻近酰氨基中的羰基静电相吸,形成过渡六元环,有利于酰氨基中氨基一NHz的脱除而迅速水解。如聚甲基丙烯酰胺在强碱液中水解时,某一酰氨基两侧如已转变成羧基,则对碱羟基有斥力,从而阻碍了水解,故水解程度一般在70%以下。 思考题9.4在聚合物基团反应中,各举一例来说明基团变换、引入基团、消去基团、环化反应。

高分子材料按应用分类

高分子材料按应用分类 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。 ②高分子纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。 ④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。 ⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。⑦功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。 按高分子主链结构分类 ①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC②杂链高聚物:分子主链由C、O、N等原子构成。如:聚酰胺、聚酯③元素有机高聚物:分子主链不含C 原子,仅由一些杂原子组成的高分子。如:硅橡胶 新型高分子材料 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子分离膜 高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有反渗透、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚烯烃、纤维素脂类和有机硅等。膜的形式也有多种,一般用的是平膜和空中纤维。推广应用高分子分离膜能获得巨大的经济效益和社

潘祖仁《高分子化学》(第5版)【章节题库】-第7~9章【圣才出品】

第7章配位聚合 一、填空题 1.Ziegler-Natta引发剂至少由两种组分,即______和______构成。 【答案】主引发剂;共引发剂 【解析】Ziegler-Natta引发剂由由ⅣB~ⅧB族过渡金属化合物和ⅠA~ⅢA族金属有机化合物两大组分配合而成。Ziegler-Natta引发体系可分成不溶于烃类(非均相)和可溶(均相)两大类,溶解与否与过渡金属组分和反应条件有关。 2.在丙烯的配位聚合反应中常需要加入第三组分如六甲基磷酸三酰胺,其目的是______和______。 【答案】增加等规度;增大相对分子质量 【解析】引发剂是α-烯烃配位聚合的核心问题,为了提高聚合活性、提高立构规整度、使聚合度分布和组成分布均一等目标,关键措施有:添加给电子体(加入第三组分)和负载。加入六甲基磷酸胺(HMPTA),能够使丙烯聚合活性增加10倍。 3.对Ziegler-Natta催化剂而言,第一代典型的Ziegler催化剂组成为______,属______相催化剂,而典型的Natta催化剂组成为______,属______相催化剂;第二代催化剂是______;第三代催化剂是______;近年发展较快的是______。 【答案】TiCl4+AlEt3;均;TiCl3+AlEt3;非均;加入适量带有孤对电子的第三组分——Lewis碱;将TiCl4负载在载体,如MgCl2上,同时在制备过程中引入第三组分作为内电

子给体,聚合时加入外电子给体;茂金属引发剂 【解析】第一代α-TiCl3-AIEt3两组分引发剂对丙烯的聚合活性只有5×103gPP/gTi。第二代曾添加六甲基磷酸胺(HMPTA),使丙烯聚合活性提高了l0倍。第三代,添加酯类给电子体并负载,活性进一步提高。活性提高后,引发剂用量减少,残留引发剂不必脱除,后处理简化。茂金属引发剂可用于多种烯类单体的聚合,包括氯乙烯。 4.二烯烃配位聚合的引发剂大致分为______、______和______三类。 【答案】Ziegler-Natta型;π-烯丙基型;烷基锂型 【解析】①Ziegler-Natta引发体系数量最多,可用于α-烯烃、二烯烃、环烯烃的定向聚合。②π-烯丙基镍(π-C3H5NiX)限用于共轭二烯烃聚合,不能使α-烯烃聚合。③烷基锂类可引发共轭二烯烃和部分极性单体定向聚合。 5.配位聚合的概念最初是______解释α-烯烃聚合(用Ziegler-Natta引发剂)时提出的,配位聚合是指单位分子首先在______的空位上配位,形成某种形式的______,常称______,随后单体分子相继插入______中增长。 【答案】Natta;活性种;络合物;σ-π络合物;金属-烷基键 【解析】配位聚合过程可以归纳为:形成活性中心(或空位),吸附单体定向配位,络合活化,插入增长,类似模板地进行定向聚合,形成立构规整聚合物。 二、名词解释 1.配位聚合和插入聚合 答:配位聚合是指单体分子首先在活性种的空位处配位,形成某些形式(σ-π)的配位

2019高分子材料应用技术专业就业方向与就业前景

2019高分子材料应用技术专业就业方向与就 业前景 1、高分子材料应用技术专业简介 高分子材料应用技术专业要求学生掌握高分子材料成型加工工艺设计能力,高分子材料成型设备操作能力,高分子材料分析检测能力,车间生产管理能力。高分子材料应用技术专业培养掌握化学工艺、材料科学方面的的基本理论知识和专业技能,在高分子材料成型加工领域从事生产、应用、开发及生产管理的高级技术应用性专门人才。 2、高分子材料应用技术专业就业方向 本专业毕业的可以进涂料、粘接剂、塑料、纤维等企业,也可以进一些生物医用材料、光线等公司。工资不是很高,但是工作比较容易找。高分子材料应用技术专业毕业生主要面向煤炭深加工产品中的高分子材料(如聚乙烯、聚氯乙烯、聚苯乙烯等)生产和应用企业,可从事产品设计、工艺操作、中央控制、质量检测、理化分析、成型加工等岗位工作,也可在电子电器材料、功能材料、环保材料、汽车材料、包装材料等生产企业从事产品开发与生产、质量检测与控制、技术管理与市场营销等工作。 从事行业: 毕业后主要在石油、新能源、原材料和加工等行业工作,大致如下:

1石油/化工/矿产/地质 2新能源 3原材料和加工 4机械/设备/重工 5汽车及零配件 从事行业: 毕业后主要在研发工程师、工艺工程师、材料工程师等行业工作,大致如下: 1研发工程师 2工艺工程师 3材料工程师 4高分子材料工程师 5技术研发工程师 工作城市: 毕业后,上海、广州、杭州等城市就业机会比较多,大致如下: 1上海 2广州 3杭州 4北京 5深圳 3、高分子材料应用技术专业就业前景怎么样 高分子材料应用技术专业很多都是和化学相关的,专业难度不小,不过认真学习的话,就业不成问题。专科生毕业之后很少

第九章 聚合物材料结晶度

第九章聚合物材料结晶度 聚合物系部分结晶或非晶. 前者如PE、PET、PP等,后者如无规立构PS、PMMA等,部分结晶聚合物习惯上称为结晶聚合物. 结晶度是表征聚合物材料的一个重要参数,它与聚合物许多重要性质有直接关系. 随着聚合物材料被日益广泛应用,准确测定聚合物结晶度这个重要参数越来越受到人们的重视. 目前在各种测定结晶度的方法中, X射线衍射法被公认具有明确意义并且应用最广泛. 本文将重点介绍此方法. §9.1 结晶聚合物结构模型 §9.1.1 樱状胶束模型 对结晶聚合物分子链在晶体中的形态,早期用“经典两相模型”—樱状胶束模型(fringed micelle model)(图9.1)解释. 这个模型的特点是结晶的聚合物分子链段主要属于不同晶体,即一个分子链可以同时穿过若干个晶区和非晶区,分子链在晶区中互相平行排列,在非晶区相互缠结卷曲无规排列. 这个模型似乎解释了早期许多实验结果,受到高分子科学工作者近30年的偏爱. 图9.1 结晶聚合物樱状胶束模型 §9.1.2 插线板模型 60年代初Flory等提出“插线板”模型(Switchboard model),与Keller等的邻位规则折叠模型(图9.2(a))相比,此模型主要特点是组成片晶的杆(Stem)为无规连接. 即从一个片晶出来的分子链,并不在其邻位处回折到同一片晶,而是在非邻位以无规方式再折回,也可能进入另一片晶(图9.2(b)).

(a) (b) 图9.2 结晶聚合物分子链折叠模型 (a) 邻位规则折叠(b) 非邻位无规折叠 §9.1.3 结晶-非晶中间层 随着对聚合物结晶结构研究的深入,“两相模型”结构已不能满意解释聚合物的结晶结构,已证明在PE的晶区与非晶区间存在一个过渡区(transition zone),或称中间层(中间相)(interphase)(图9.3). 不久前Flory等从统计力学出发,将晶格理论应用到高分子界面,指出半结晶聚合物片层间存在一个结晶—非晶中间相(Crystal-amorphous interphase).中间相的性质既不同于晶相,也不同于非晶相(各向同性),即高聚物结晶形态由三个区域组成: 片层状三维有序区、非晶区、中间层(过渡层). 有关结晶聚合物中间层研究的进展, 笔者已有研究报道及综述. (喻龙宝, 张宏放, 莫志深. 功能高分子学报, 1997, 10(1): 90-101) 图9.3 结晶聚合物结晶-非结晶中间层示意图 综上所述, 无论经典樱状胶束还是折叠链模型, 都忽略中间层的存在, 把结晶聚合物视为晶相及非晶相“两相”组成. “两相模型”理论是测定聚合物结晶度的理论基础. §9.2 结晶度概念 结晶度是表征聚合物材料,结晶与非晶在质量分数或体积分数大小的直观数值. IUPAC(1988) 推荐用W c,α表示质量分数结晶度, c,α表示体积分数结晶度. 为区别不同方法测得的结晶度,

高分子纳米材料及其应用

高分子纳米材料(论文)题目:高分子纳米材料及其应用 化工学院学院高分子材料与工程专业 学号0502110202 学生姓名 指导教师 二〇〇一四年十一月

高分子纳米材料及其应用 摘要:高分子纳米材料是一门新兴并且发展迅速的一门科学。其具有很多独特 的性质,应用前景非常广阔。本文主要介绍了高分子材料的性质,同时介绍了高分子纳米复合材料常见的制备方法及其在各个领域的应用。 关键词:性质;纳米复合材料;制备方法;应用 Abstract: Polymer nano-materials is an emerging and rapidly developing research direction. It has many unique properties and broad application. This paper describes the properties of polymer materials, and also introduced preparation method of the polymer nano-composite materials .The paper also introduces its application in various fields. Key words:Properties; Nano-composite materials; Preparation method; Application 1 引言 纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独 特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学 反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所 以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”。[1, 2] 纳米作为一个材料的衡量尺度,其大小为1 nm (纳米) =10~9 m (米),即十亿分之一米, 大约是10个原子的尺度。最初定义的纳米材料仅仅是指1~100 nm 尺度范围的纳米颗粒及 由他们构成的纳米固体和薄膜。目前,在广义上定义的纳米材料是指三维空间尺度里至少有 一维是纳米尺寸或者由它们作为结构基本单元的材料;根据定义按照空间维度可以将纳米材 料分为三类:(1) 维度为零的纳米材料,是指纳米颗粒、原子团簇等三维空间尺度均在纳米 尺寸的材料;(2) 维度为一的纳米材料,是指纳米线、纳米管等三维空间尺度中有两维是纳 米尺度的材料;(3) 维度为二的纳米材料,是指纳米膜、超晶格等三维空间尺度中仅有一维 是纳米级的材料;[3] 2 纳米材料的性质[4, 5] 物质的尺寸一旦与原子尺寸在同一量级时,其表面电子结构和晶体结构就会发生变化, 导致纳米材料会具备一些表面效应、小尺寸效应等优异特性。 (1)量子尺寸效应。量子尺寸效应又称量子限域效应,当粒子尺寸下降到一定程度时,金属 费米能级附近的电子能级由准连续能级变为离散能级,以及能隙变宽现象均为量子尺寸 效应。材料或物质的物理性质在很多方面都是由材料的电子结构决定的,当材料尺寸小

谈谈高分子材料在现代生活中的应用

谈谈高分子材料在现代生活中的应用 高分子材料是以高分子化合物为基础的材料,由相对分子质量较高的化合物构成。高分子材料的高分子链通常是由103~105个结构单元组成,高分子链结构和许许多多高分子链聚在一起的聚集态结构形成了高分子材料的特殊结构。因而高分子材料除具有低分子化合物所具有的结构特征(如同分异构体、几何结构、旋转异构)外,还具有许多特殊的结构特征。高分子结构通常分为链结构和聚集态结构两个部分。链结构是指单个高分子化合物分子的结构和形态,所以链结构又可分为近程和远程结构。近程结构属于化学结构,也称一级结构,包括链中原子的种类和排列、取代基和端基的种类、结构单元的排列顺序、支链类型和长度等。远程结构是指分子的尺寸、形态,链的柔顺性以及分子在环境中的构象,也称二级结构。聚集态结构是指高聚物材料整体的部结构,包括晶体结构、非晶态结构、取向态结构、液晶态结构等有关高聚物材料中分子的堆积情况,统称为三级结构。 一高分子材料在生活中的应用简介 高分子按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础,我们接触的很多天然材料通常是高分子材料组成的,如天然橡胶、棉花、人体器官等。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成

织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料;高分子材料按用途又分为普通高分子材料和功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等 一般将高分子材料按特性分为五类,即橡胶、纤维、塑料、胶粘剂、涂料。 橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状,有天然橡胶和合成橡胶两种。天然橡胶的主要成分是聚异戊二烯;合成橡胶的主要品种有丁基橡胶、顺丁橡胶、氯丁橡胶、三元乙丙橡胶、丙烯酸酯橡胶、聚氨酯橡胶、硅橡胶、氟橡胶等等。天然橡胶因其具有很强的弹性和良好的绝缘性、可塑性、隔水隔气、抗拉和耐磨等特点,广泛地运用于工业、农业、国防、交通、运输、机械制造、医药卫生领域和日常生活等方面,如交通运输上用的各种轮胎;工业上用的运输带、传动带、各种密封圈;医用的手套、输血管;日常生活中所用的胶鞋、雨衣、

高分子材料

高分子材料在生活中的重要性 1定义 高分子材料:以高分子化合物为基础的材料。高分子材料是由相对分子质量较高的化合物构成的材料,包括橡胶、塑料、纤维、涂料、胶粘剂和高分子基复合材料,高分子是生命存在的形式。所有的生命体都可以看作是高分子的集合。 2来源 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1907年出现合成高分子酚醛树脂,标志着人类应用合成高分子材料的开始。现代,高分子材料已与金属材料、无机非金属材料相同,成为科学技术、经济建设中的重要材料。 3高分子材料的现状 4分类 高分子材料按来源分为天然、半合成(改性天然高分子材料)和合成高分子材料。 天然高分子是生命起源和进化的基础。人类社会一开始就利用天然高分子材料作为生活资料和生产资料,并掌握了其加工技术。如利用蚕丝、棉、毛织成织物,用木材、棉、麻造纸等。19世纪30年代末期,进入天然高分子化学改性阶段,出现半合成高分子材料。1870年,美国人Hyatt用硝化纤维素和樟脑制得的赛璐珞塑料,是有划时代意义的一种人造高分子材料。1907年出现合成高分子酚醛树脂,真正标志着人类应用化学合成方法有目的的合成高分子材料的开始。1953年,德国科学家Zieglar和意大利科学家Natta,发明了配位聚合催化剂,大幅度地扩大了合成高分子材料的原料来源,得到了一大批新的合成高分子材料,使聚乙烯和聚丙烯这类通用合成高分子材料走人了千家万户,确立了合成高分子材料作为当代人类社会文明发展阶段的标志。 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 ①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作

医用高分子材料的应用(精)

医用高分子材料的应用 1概述 医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的合成高分子材料,可以利用聚合的方法进行制备,是生物医用材料的重要组成之一。由于医用高分子材料可以通过组成和结构的控制而使材料具有不同的物理和化学性质,以满足不同的需求,耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们普遍关注,已成为生物材料中用途最广、用量最大的品种,近年来发展需求量增长十分迅速。目前全世界应用的有90多个品种,西方国家消耗的医用高分子材料每年以10%~20%的速度增长。随着人民生活水平的提高和对生命质量的追求,我国对医用高分子材料的需求也会不断增加。 2种类和应用 2.1与血液接触的高分子材料 与血液接触的高分子材料是指用来制造人工血管、人工心脏血囊、人工心瓣膜、人工肺等的生物医用材料,要求这种材料要有良好的抗凝血性、抗细菌粘附性,即在材料表面不产生血栓、不引起血小板变形,不发生以生物材料为中心的感染。此外,还要求它具有与人体血管相似的弹性和延展性以及良好的耐疲劳性等。人工血管用材料有尼龙、聚酯、聚四氟乙烯、聚丙烯及聚氨酯等。人工心脏材料多用聚醚氨酯和硅橡胶等。人工肺则多用聚四氟乙烯、硅橡胶、超薄聚(涂在多孔PP膜上)、超薄乙基纤维(涂在PE无纺布或多孔PP膜上)等材料。人工肾用材料除要求具备良好的血液相容性外,还要求材料具有足够的湿态强度、有适宜的超滤渗透性等,可充当这一使命的材料有乙酸纤维素、铜氨再生纤维素、尼龙、聚砜及聚醚砜等。 2.2组织工程用高分子材料 组织工程学是近十年来新兴的一门交叉学科,它是应用工程学和生命科学的原理和方法来了解正常和病理的哺乳类组织的结构-功能关系,以及研制生物代用品以恢复、维持或改善其功能的一门科学。细胞大规模培养技术的日臻成熟和生物相容性材料的开发与研究,使得创造由活细胞和生物相容性材料组成的人造生物组织或器官成为可能。生物相容性材料的开发是组织工程核心技术之一。组

高分子材料在现代工程建筑中的应用

高分子材料在现代工程建筑中的应用 论文 研究员:赵启超,曾子悦。 研究时间:2013年4月30日 指导教师:王丽

简介 有机高分子材料是以有机高分子化合物为主要组分的材料。有机高分子材料分为天然高分子材料和合成高分子材料两大类,木材、天然橡胶、棉织品、沥青等都是天然高分子材料;而现代生活中广泛使用的塑料、橡胶、化学纤维以及某些涂料、胶粘剂等,都是以高分子化合物为基础材料制成的,这些高分子化合物大多数又是人工合成的,故称为合成高分子材料。 高分子材料是现代工程中不可缺少的一类材料,由于有机高分子合成材料的原料(石油、煤等)来源广泛,化学结合效率高,产品具有多种建筑功能且质轻、强韧、耐化学腐蚀、多功能、易加工成型等优点,因此在建筑工程中应用日益广泛,不仅可用作保温、装饰、吸声材料,还可用作结构材料代替钢材、木材。

目录 1.高分子化合物的基本知识 2.高分子建筑材料和制品(1)高分子建筑塑料 (2)高分子建筑涂料 (3)高分子建筑胶粘剂 3.高分子建筑材料现状

1.高分子化合物的基本知识 一、高分子化合物的定义及反应类型: 定义:是由千万个原子彼此以共价键连接的大分子化合物,常称聚合物或高聚物。其分子量一般>104。高分子化合物有天然的,也有人工合成的。工业用高分子材料主要是人工合成的。 高分子化合物的定义及反应类型: (1)加聚反应:加聚反应是由许多种相同或不同的低分子化合物,在加热或催化剂的作用下,相互加合成高聚物而不析出低分子副产物的反应。其生成物称为加聚物(或加聚树脂),加聚物具有与单体类似的组成结构。如: 其中n代表单体的数目,称为聚合度。N值越大,聚合物的分子量越大。 工程中常见的加聚物有:聚乙烯、聚氯乙烯、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚四氟乙烯等。

高分子建筑材料习题与解答 Microsoft Word 文档

名词解释 1.合成高分子材料 2.线型结构聚合物3. 体型结构聚合物 4. 聚合反应(加聚反应) 5.缩合反应(缩聚反应) 6. 塑料 7.热塑性塑料8. 热固性塑料 9. 增塑剂 10.固化剂 11. 稳定剂 1 2. 着色剂 13.填料 14. 玻璃钢(GRP) 15.胶粘剂 16. 粘弹性 17.聚合物老化 填空题 1.塑料是以为基本成分,再加入适量的、、及等,在一定和下,塑制成型的成材或制品的总称。 2.按照树脂受热时所发生的变化不同,树脂可分为树脂和树脂两类,其中树脂受热时,冷却时,受热时不起化学反应,经多次冷热作用,仍能保持性能不变。 3.热塑性树脂的分子结构是、,热固性树脂的分子结构是。 4. 影响粘结剂强度的因素主要有、、和等。 5.塑料窗的主要质量指标项目有、、和等。 6.塑料常用着色剂分料和料两种。 7.用于胶接结构受力部位的胶粘剂以热性树脂为主;用于胶接非受力部位的胶粘剂以热__性树脂为主;变形较大部位的胶粘剂以采用为主。 8.线型聚合物的力学三态是、和等。 9.PVC是指。 10.聚氯乙稀成为建筑上应用最多的塑料,是因为具有低廉的价格、较高的机械性能、优越的耐蚀性以及性。 选择题 1.填充料是塑料的重要组成,起着作用。 A. 胶结 B.防老化 C. 增强 D.加工塑性 2.聚氯乙烯塑料属于___,具有。 A.加聚物 B. 缩聚物 C. 热塑性 D.热固性 3.与无机材料相比,聚合物材料的耐腐蚀性。 A. 很好 B. 较好 C. 一般 D. 较差 4.与无机材料相比,聚合物材料的耐热性___。 A. 很好 B.较好 C. 一般 D.较差 5.分子量在___以上的化合物称作高分子化合物。 A. 500 B.1000 C. 5000 D.10000 E.50OO0 是非题(正确的写“T”,错误的写“F”) 1.环氧树脂常用胺类作为硬化剂。() 2.塑料的强度不是很高,但其比强度高。远远超过传统建筑材料。() 3.粘结剂的性质包括黏度、分子量、极性、空间结构和体积收缩等。() 4.有机玻璃实际上就是玻璃钢。() 5.聚氨酯是可以制成优质泡沫塑料,用于建筑的绝热。() 简答题 1.有机高分子材料的特点是什么? 2.塑料的主要组成有哪些?其作用如何?常用的建筑塑料有哪些? 3.胶粘剂的主要组成有哪些?其作用如何? 4.试述影响粘结剂的粘结强度的主要因素。 5.简述高分子材料的建筑特性。

智能高分子材料的应用与进展 论文

智能高分子材料的应用与进展 (华北科技学院化工B082班卫星红 200801034207) 摘要智能材料已成为当今借界高度关注的热点和焦点 ,它有着广阔的应用前景 ,取得了丰富的研究成果。从合成、加工、新产品开发及其应用诸方面综述了智能高分子材料,如智能高分子凝胶、形状记忆高分子材料、智能织物、智能高分子膜和智能高分子复合材料等的研究进展,并展望了其发展前景。 关键词高分子材料智能高分子材料响应速率进展 0 引言 20世纪80年代中期,人们提出了智能材料的概念,智能材料要求材料体系集感知、驱动和信息处理于一体,形成类似生物材料那样的具有智能属性的材料[ l ]。智能材料在目前文献中的提法大都为机敏材料( Smart Material )、机敏结构( Smarts Structure)、自适应结构 (A daptive Strueture)、智能材料( Intelligent Material )、智能结构( Intelligent Strueture),这些概念国内外至今尚无统一的定论。关于“机敏”(Smart)和“智能”( Intelligent)的讨论,不少文献资料进行了说明[2~5]。 智能材料的基础是功能材料功能材料通常可分为 2 大类一类被称为驱动材料,它可以根据温度、电场或磁场的变化来改变自身的形状、尺寸、位置、刚性、阻尼、内耗或结构等 ,因而对环境具有自适应功能,可用来制成各种执行器;另一类被称为感知材料,它是指材料对于来自外界或内部的刺激强度及变化(如应力、应变、热、光、电、磁、化学和辐射等)具有感知,可以用来做成各种传感器.同时具有敏感材料与驱动材料特征的材料,被称为机敏材料。智能材料通常不是一种单一的材料,而是一个由多种材料系统组元通过有机的紧密或严格的科学组装而构成的一体化系统 ,是敏感材料、驱动材料和控制材料(系统)的有机合成。智能材料是材料科学不断向前发展的必然结果,是信息技术溶入材料科学的自然产物,它的问世,标志和宣告第 5 代新材料的诞生,也预示着在 2 1 世纪将轰生一次划时代的材料革命。近年来,智能材料的研究在世界范围内已成为材料科学与工程领域的热点之一 ,甚至有人把21世纪称之为智能材料世纪。智能材料可用1作出描述。迄今为止, 人们已开发出很多种智能高分子材料。 图1 智能 材料示意图

高分子材料与建筑材料

高分子材料与建筑材料 摘要 高分子材料作为高新技术的产物,在我们的建筑中的重要性越来越凸显,甚至已经成为现代建筑的重要材料之一。环顾周围,越来越多的传统材料正在被性能更加优越的高分子材料代替,高分子材料的应用将人类的生活带入到一个全新的阶段,对人类社会的发展起到了十分重要的推动作用。本文将从高分子材料的定义、分类、在建筑中的应用出发,阐述高分子材料在建筑材料中的重要作用。 关键词:高分子材料建筑材料 高分子建材是新型建材的主导品种,现已成为除水泥、玻璃、陶瓷之外的第四大类建材。高分子建材生产能耗低、自重轻、施工方便、保护环境,并能提高建筑功能与质量,改善居住条件,也使人类的物质生活得以改善,是“节约型”建材,因此世界各个国家都把它放在优先发展的位置。 18世纪之前,建筑材料一直以天然材料和手工业生产为主体,没有大的突破,传统建筑材料受到尺寸、强度等限制,难以在宽阔的水面上建设大跨度的桥梁,难以建造大空间的房屋,缺少高效保温隔热的防水材料,房屋的热环境质量差,屋顶、地面及开口缝隙等部位漏雨渗水现象普遍存在;缺少美观的装修材料,室内缺乏美感和舒适性;道路没有进行路面铺装,雨天或雪天行走困难。自然界的障碍给人类生活带来诸多不便。随着科技的发展,高分子材料的出现,建筑材料

在质和量上有了极大的提高,使生活、生产、交通、国防等基础设施的建设步伐大大加快,极大地改善了人类的生存环境。例如使用高强度钢材、高性能混凝土等结构材料,人类能够建造跨度超过1000m的桥梁、高度超过500m的高层建筑;防水材料的使用,使房屋漏雨、漏水现象大大减少;玻璃作为透明材料的使用,使房屋的采光效果大大改善;在墙体及顶棚中采用保温材料,既改善了居住性,又节约了能源;各种装修材料的开发和利用使建筑具有美观性、健康性和舒适性;路面采用水泥混凝土、沥青混凝土材料,大大改善了交通条件,方便了人们旅行;通讯设施的建设,使社会进入了信息化时代。 合成高分子材料是以人工合成的高分子化合物(聚合物)为基础材料,添加各种辅助材料制成的有机高分子材料。现有三大合成材料:塑料、橡胶、纤维。高分子材料在建筑上应用于非结构材料的有装饰板材;各种管材和异型材、水管、门窗框等;建筑防水材料,屋顶膜;建筑涂料;建筑保温、隔热、隔声材料。应用于结构材料的有桥梁,如行人天桥等;轻结构建筑物,玻璃钢、聚合物混凝土等;混凝土的增强筋等。 高分子建筑涂料行业正面临着难得的发展机遇。首先各国的城市发展,给建筑涂料带来了巨大的市场空间;其次随着住宅建筑的飞速发展,人们对舒适环境的追求极大地刺激了各类建筑涂料的推广应用。高分子建筑涂料主要包括:防水涂料、内墙涂料和保温涂料等。 我国使用最多的防水涂料是煤焦油聚氨酯和纯聚氨酯两种防水涂料。由于环保因素,环保型的纯聚氨酯防水涂料将逐步取代焦油基

相关主题
文本预览
相关文档 最新文档