当前位置:文档之家› 图论及其应用1

图论及其应用1

图论及其应用1
图论及其应用1

第一章图和子图

§1.1 图和简单图

°图的概念:

一个图G是指一个有序三元组G=(V G,E G,ψG)。其中:V(G)是非空顶点集,E(G)是不与V(G)相交的边集,ψG:E(G)→V(G)×V(G)的函数,称为关联函数。

若e∈E(G)是一条边,而ψG e=u,v,则称e连接u和v; 顶点u 和v称为e的端点。

例1:G=(V G,E G,ψG),其中:

V G={v1,v2,v3,v4,v5}

E G={e1,e2,e3,e4,e5,e6,e7,e8}

而ψG定义为:

ψG e1=v1,v2ψG e2=(v2,v3)

ψG e3=v3,v3ψG e4=(v3,v4)

ψG e5=v2,v4ψG e6=(v4,v5)

ψG e7=v2,v5ψG e8=(v2,v5)

(见图1.1)

*我们现在讨论的是无向图,即边没有方向,顶点对u,v=(v,u)。我们还可以定义有向图。

例2:定义有向图D=(V D,E D,ψD),其中:

V D={a,b,c,d}

E D={e1,e2,e3,e4,e5,e6,e7}

ψD e1=ψD e2=

ψD e3=ψD e4=

ψD e5=ψD e6=

ψD e7=

*这里ψD e=,表示e是一条从u到v的弧。

°υ=V G,ε=|E G|分别表示图G的顶点数和边数,|V G|=n称为n阶图。

°若V G和|E G|均为有限数,则称G为有限图。

° E G=?时,则称G为零图,υ=1的零图称为平凡图。

° V G=?时,则称G为空图。

°邻接相邻:若e k=u,v∈E(G),称u和v邻接。

°关联:若e k=u,v∈E(G),则称e k与u和v关联。

°环:若e k=u,u∈E(G),则称e k为环。有向图的环e k=。°连杆:不是环的边称为连杆。

°边相邻:若边e i和e k有公共端点,则称e i与e k相邻。

°有向图中顶点的相邻:若e k=∈E(D),则称u与v相邻,u 称为e k的始点,v称为e k的终点。

°多重边平行边:若ψG e i=u,v=ψG e k且e i≠e k,则e i和e k称为平行边(多重边)。关联同一对顶点的多重边的条数称为多重边的重数。

(有向图的多重边):若ψD e i==ψD e k且e i≠e k,则e i与e k 称为多重边。如果ψD e i=而ψD e k=,则e i与e k不称为多重边。

°简单图:既不含平行边又不含环的图称为简单图。

在简单图里,我们不需要ψG函数,对任一条边e i∈E,若ψG e i= u,v,则我们直接用u,v (或uv)表示e i。

§1.2 图同构

1.图的同构:设G1=(V1,E1),G2=(V2,E2)为两个无向图,若存在

双射函数f: V1→V2,对任意v i,v j∈V1,(v i,v j)∈E1当且仅当

(f v i,f v j)∈E2,并且(v i,v j)与(f v i,f v j)的重数相同。则称G1与

G2是同构的。记作G1?G2。

例3:(见图1.2)

f: V1→V2,f v i=u i,i=1,2,?,10。

°不同构的例子:(见图1.3)

*两个图度序列相同,但不同构。

2. 几类特殊图类:

°完全图:每一对不同的顶点都有一条边相连的简单图称为完全图。*在同构意义下,n个顶点的完全图只有一个,记为K n。

°偶图(二部图):是指一个图它的顶点集可以分解为两个子集X和Y,

使得任何一条边都有一个端点在X中,另一个端点在Y中;这样一种分类(X,Y)称为偶图的一个二分类。

°完全偶图是一个具有二分类(X,Y)的简单偶图,其中X的每个顶点都与Y的每个顶点相连;若X=m而Y=n,则该完全偶图记为K m,n。例如:(见图1.4)

§1.3 子图

子图:称图H是图G的子图(记为H?G),如果V H?V G,和E(H)?E(G),并且ψH是ψG在E(H)上的限制。当H?G但H≠G时,则记为H?G,并称H是G的真子图。

若H是G的子图,则G称为H的母图。

生成子图:G的生成子图(或生成母图)是指满足V H=V G的子图(或母图)H。

基础简单图:从图G中删去所有的环,并使每一对相邻顶点只留下一条边,即可得到G的一个简单生成子图,称为G的基础简单图。

*举例:

°导出子图:设G=(V,E)为一个图。V1?V且V1≠?,以V1为顶点集,以G中两个端点都在V1中的边组成边集E1的图G1称为G的V1导出的子图,记作G1=G[V1]。

又设E1?E且E1≠?,以E1为边集,以E1中边关联的顶点为顶点集V1的图G1称为G的E1导出的子图,记作G1=G[E1]。

例子:(见图1.5)

设V′?V, 则G[V\V′]记为G?V′。若V′=v, 则把G?{v}简记为

G?v.

若E′?E, 边集为E\E′的G的生成子图简记为G?E′。类似地,在G 中添加边集E′的所有边得到的图记为G+E′。若E′={e},则用G?e和G+e来代替G?e和G+{e}。

设G1和G2是G的子图。若V G1∩V G2=?,则称G1和G2是不相交的,若E G1∩E G2=?,则称它们是边不重的。G1和G2的并图G1∪G2=(V G1∪V G2,E G1∪E G2)。如果G1和G2是不相交的,则G1∪G2有时记为G1+G2。

§1.4 顶点的度

°顶点的度:设G=(V,E)为无向图,?v∈V G, 称v作为边的端点的次数为v的度数。简称为度,记作d G(v)(或d(v))。

设D=(V,E)为有向图,?v∈V,称v作为边的始点的次数为v的出度,记作d D+(v) (或d+(v)),称v作为边的终点的次数为v的入度,记作d D?(v)(或d?(v))。

d v=d+v+d?(v)称为v的度数。

?G=max d v v∈V(G)}

δG=min d v v∈V(G)}

°度数为偶数(奇数)的点称为偶点(奇点)。

定理1.1(握手定理):设G=(V,E)为无向图,V=v1,v2,?,vυ,E=

ε,则 d(v i )υi=1=2ε。

证明:因为G 中每条边(包括环)均有两个端点,所以在计算G 中各顶点度数之和时,每条边均提供2度,当然,ε条边,共提供2ε度。?

推论1.1:任何图中奇度数顶点的个数是偶数。

证:设G =(V,E)为任一图。令

V 1={v | v ∈V ∧d v 为奇数}

V 2={v | v ∈V ∧d v 为偶数}

则V 1∪V 2=V ,V 1∩V 2=?,由定理1.1可知

2ε= d v = d v + d(v)v ∈V 2

v ∈V 1v ∈V

由于2ε, d(v)v ∈V 2均为偶数。所以 d(v)v ∈V 1为偶数,但因V 1中顶点度数为奇数,只有偶数个奇数的和才为偶数,所以|V 1|必为偶数。? °度序列:设G =(V,E)为一个υ阶无向图,V = v 1,v 2,?,v υ ,称d v 1 , d(v 2), ?,d(v υ)为G 的度序列。

°度序列可图化:对于给定的非负整数列d =(d 1,d 2,?,d υ),若存在以V ={v 1,v 2,?,v υ}为顶点集的υ阶无向图G ,使得d v i =d i ,则称d 是可图化的。特别地,若所得的图是简单图,则称d 是可简单图化的。

定理1.2:设非负整数列d = d 1,d 2,?,d υ ,则d 是可图化的,当且 仅当 d i υi=1≡0 (mod 2)。

证明:由定理1.1可知,必要性显然。下面证充分性。由已知条件可

知,d中有2k(0≤k≤υ

2

)个奇数。不妨设它们为d1,d2,?,d k,d k+1,?,d2k。可用多种方法做出υ阶无向图G=(V,E),V=v1,v2,?,vυ,比如边集如下产生:在顶点v r和v r+k之间连边,r=1,2,?,k。若d i为偶数,令d i′=d i,若d i为奇数,令d i′=d i?1,得d′=d1′,d2′,?,dυ′,则d i′均为偶数。再在v i处做出d i′/2条环,i=1,2,?,υ,将所得各边集合在一起组成E, 则G的度数列为d。其实,d i为偶数时,d v i=

2?d i′

2=2?d i

2

=d i,当d i为奇数时,d v i=1+2?d i′

2

=1+d i′=1+

d i?1=d i。这就证明了d是可图化的。?

例3:判断下列各非负整数列哪些是可图化的,哪些是可简单图化的?

(1)(5,5,4,4,2,1)

(2)(5,4,3,2,2)

(3)(3,3,3,1)

(4)(4,4,3,3,2,2)

解:(1)不可图化,因为奇度点有奇数个。

(2) 可图化,但不可简单图化,因为?=5=υ=|V G|。

(3) 可图化。但不可简单图化。因为d1=d2=d3=3,v1,v2,v3分别与G中4个顶点中的其它3个点相邻,此时,d4=d v4=3≠1,矛盾。

(4) 可简单图化。见图1.3。

§1.5 关联矩阵与邻接矩阵

*图可以用集合表示,更多地是用图形来表示。此外,还可以用矩阵

来表示。

°关联矩阵:设无向图G = V,E ,V = v 1,v 2,?,v υ ,E = e 1,e 2,?,e ε 关联矩阵

M G =(m ij )υ×ε ,m ij 为顶点v i 与e j 关联的次数。

例子:(见图1.6)

M G = 2

0111100

000010001011

°关联矩阵的性质:

1. m ij υi=1=2 j =1,2,?,ε ,即每条边关联两个顶点。

2. m ij εj=1=d v i i =1,2,?,υ ,即M G 的第i 行元素之和为v i 的 度数。

3. d(v i )υi=1= m ij εj=1υi=1= m ij υi=1εj=1= 2=2ε,εj=1这个结果正是握手定理的内容,即各顶点的度数之和等于边数的两倍。 °有向图的关联矩阵:设有向图D =(V,E)中无环,V ={v 1,v 2,?,v υ}, E ={e 1,e 2,?,e ε}, 令

m ij = 1,v i 为e j 的始点

0,v i 与e j 不关联?1,v i 为e j 的终点

则M D =(m ij )υ×ε为D 的关联矩阵。

例子:(见图1.7)

M D = ?1 10 1?110 00 0 0 0 00 0?1 11?1?1

°邻接矩阵:设有向图D = V,E ,V ={v 1,v 2,?,v υ}, E ={e 1,e 2,?, e ε},令a ij 1 为顶点v i 邻接到顶点v j 边的条数,则A D =(a ij (1)

)υ×υ为D 的邻接矩阵。

例子:(见图1.8)

A D = 0

2001010000

00111

°无向图的邻接矩阵:设G =(V,E)为无向图,V ={v 1,v 2,?,v υ},令

a ij = k ,若v i 到v j 有k 条边0 ,否则

则 A G =(a ij )υ×υ称为G 的邻接矩阵。

例子:(见图1.9)

A G = 0

1110210012

00110

*注意无向图的邻接矩阵是对称的。

作业:

1.设无向图G有10条边,3度和4度顶点各2个,其余顶点的度数

小于3,问G中至少有几个顶点?在最少顶点的情况下,写出G 的度序列,?G和δ(G)。

2.证明:若G是简单图,则ε≤υ

2。其中υ=V G,ε=E G,

υ

2

表示υ个中取2个的组合数。

3.设υ阶无向简单图为3-正则图(即所有点的度数均为3),且边数ε与

υ满足2υ?3=ε,问这样的无向图有几种非同构的情况?

答案(电子科大版)图论及其应用第一章

习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1) 不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 v v 1 3 图G

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

图论及其应用答案电子科大

图论及其应用答案电子科 大 Newly compiled on November 23, 2020

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两 个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通, 而在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从 u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。

图论及其应用第三章答案电子科大

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通,而在G 中u 与v 连 通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从u 与到v 的 路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环, 12,x v y v ∈∈,点u 在每一条(x,y)的路上,则与已知矛盾,G 是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v 是单图G 的割点,则G ?v 有两个连通分支。现任取x,y ∈V(G ?v), 如果x,y 不在G ?v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,x,与y 在G ?v 的补图中连通。若x,y 在G ?v 的同一分支中,则它们在G ?v 的补图中邻接。所以,若v 是G 的割点,则v 不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)} ()25G κ= 最小点割{6,7,8,9,10} 2()5G λ= 最小边割{(2,7)…(1,6)} ● 13.设H 是连通图G 的子图,举例说明:有可能k(H)> k(G). 解: 通常k (H )

图论及应用第一章完整作业

习 题 1 1. 证明在n 阶连通图中 (1) 至少有n -1条边。 (2) 如果边数大于n -1,则至少有一条闭通道。 (3) 如恰有n -1条边,则至少有一个奇度点。 证明 (1) 若对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,矛盾! 若G 中有1度顶点,对顶点数n 作数学归纳。 当n=2时,G 显然至少有一条边,结论成立。 设当n=k 时,结论成立, 当n=k+1时,设d(v)=1,则G-v 是k 阶连通图,因此至少有k-1条边,所以G 至少有k 条边。 (2) 考虑v 1→v 2→?→v n 的途径,若该途径是一条路,则长为n-1,但图G 的边数大于n-1,因此存在v i ,v j ,使得v i adgv j ,这样,v i →v i+1→?→v j 并上v i v j 构成一条闭通道;若该途径是一条非路,易知,图G 有闭通道。 (3) 若不然,对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,与已知矛盾! 2. 设G 是n 阶完全图,试问 (1) 有多少条闭通道? (2) 包含G 中某边e 的闭通道有多少? (3) 任意两点间有多少条路? 答 (1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n -2)…1. 3. 证明图1-27中的两图不同构: 证明 容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4. 证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 图 1-27 图1-28

图论及应用第一章完整作业

习题 1 1. 证明在n阶连通图中 (1)至少有n-1条边。 (2)如果边数大于n-1,则至少有一条闭通道。 (3)如恰有n-1条边,则至少有一个奇度点。 证明(1) 若对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,矛盾! 若G中有1度顶点,对顶点数n作数学归纳。 当n=2时,G显然至少有一条边,结论成立。 设当n=k时,结论成立, 当n=k+1时,设d(v)=1,则G-v是k阶连通图,因此至少有k-1条边,所以G至少有k条边。 (2) 考虑v 1v 2v n的途径,若该途径是一条路,则长为n-1,但图G的边数 大于n-1,因此存在v i,v j,使得v i adgv j,这样,v i v i+1v j并上v i v j构成一条闭通道; 若该途径是一条非路,易知,图G有闭通道。 (3) 若不然,对v V(G),有d(v)2,则:2m=d(v)2n m n n-1,与 已知矛盾! 2.设G是n阶完全图,试问 (1)有多少条闭通道? (2)包含G中某边e的闭通道有多少? (3)任意两点间有多少条路? 答(1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n-2)…1. 3.证明图1-27中的两图不同构: 图1-27 证明容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4.证明图1-28中的两图是同构的 图1-28 证明将图1-28的两图顶点标号为如下的(a)与(b)图

作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5. 证明:四个顶点的非同构简单图有11个。 证明 m=0 1 2 3 4 5 6 由于四个顶点的简单图至多6条边,因此上表已经穷举了所有情形,由上表知:四个顶点的非同构简单图有11个。 6. 设G 是具有m 条边的n 阶简单图。证明:m =??? ? ??2n 当且仅当G 是完全图。 证明 必要性 若G 为非完全图,则 v V(G),有d(v) n-1 d(v) n(n-1) 2m n(n-1) m n(n-1)/2=??? ? ??2n , 与已知矛盾! 充分性 若G 为完全图,则 2m= d(v) =n(n-1) m= ??? ? ??2n 。 7. 证明:(1)m (K l ,n ) = ln , (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

图论及其应用

图和子图 图 图 G = (V, E), 其中 V = {νv v v ,......,,21} V ---顶点集, ν---顶点数 E = {e e e 12,,......,ε} E ---边集, ε---边数 例。 左图中, V={a, b,......,f}, E={p,q, ae, af,......,ce, cf} 注意, 左图仅仅是图G 的几何实现(代表), 它们有无穷多个。真正的 图G 是上面所给出式子,它与顶点的位置、边的形状等无关。不过今后对两者将经常不加以区别。 称 边 ad 与顶点 a (及d) 相关联。也称 顶点 b(及 f) 与边 bf 相关联。 称顶点a 与e 相邻。称有公共端点的一些边彼此相邻,例如p 与af 。 环(loop ,selfloop ):如边 l 。 棱(link ):如边ae 。 重边:如边p 及边q 。 简单图:(simple graph )无环,无重边 平凡图:仅有一个顶点的图(可有多条环)。 一条边的端点:它的两个顶点。 记号:νε()(),()().G V G G E G ==。 习题 1.1.1 若G 为简单图,则 εν≤?? ?? ?2 。 1.1.2 n ( ≥ 4 )个人中,若每4人中一定有一人认识其他3人,则一定有一 人认识其他n-1人。 同构 在下图中, 图G 恒等于图H , 记为 G = H ? V (G)=V(H), E(G)=E(H)。 图G 同构于图F ? V(G)与V(F), E(G)与E(F)之间各存在一一对应关系,且这二对应关系保持关联关系。 记为 G ?F 。 注 往往将同构慨念引伸到非标号图中,以表达两个图在结构上是否相同。 d e f G = (V, E) y z w c G =(V , E ) w c y z H =(V ?, E ?) ?a ? c ? y ? e ?z ? F=(V ??, E ??)

图论及其应用(精)

图论及其应用 学时:40 学分:2 课程属性:专业选修课开课单位:理学院 先修课程:高等代数后续课程:无 一、课程的性质 《图论及其应用》是数学与应用数学专业的专业选修课程。 二、教学目的 通过教学,使学生掌握图论及其算法的基本理论和基本技巧,初步掌握图论及其算法的基本应用手段、基本算法设计及编程,并能用所学理论解决一些应用问题。 三、教学内容 1.图的基本概念 2.图的连通性 3.树的基本性质及其应用 4.Euler Graphs and Hamilton Graphs with Applications 5.平面图性质 6.匹配,求最大匹配算法及应用 7.图的染色及应用 8.极图理论 四、学时分配 章课程内容学时 1 图的基本概念 4 2 图的连通性 6 3 树的基本性质及其应用 6 4 Euler Graphs and Hamilton Graphs with Applications 4 5 平面图性质 6 6 匹配,求最大匹配算法及应用 6

7 图的染色及应用 4 8 极图理论 4 合计40 五、教学方式 本课程采用多媒体课堂讲授,结合实际范例深入浅出讲解讨论。 六、考核方式 本课程考核采用平时与期末考核相结合的办法,特别注重平时的考核,作业采用简单练习、论文等形式,期末考试采用简单考题或论文形式。 七、教材及教学参考书 参考教材: [1] J.A.Bondy and U.S.R.Murty. Graph Theory with Applications, The Macmillan Press LTD,1976. [2] 蒋长浩.图论与网络流.北京:中国林业出版社,2000. 参考书目: [1] Bela Bollobas.Modern Graph Theory(现代图论,影印版).北京:科学出版社,2001. [2] 殷剑宏、吴开亚.图论及其算法.合肥:中国科学技术大学出版社,2003. [3] 谢金星、邢文训.网络优化.北京:清华大学出版社.2000. [4] 程理民、吴江、张玉林.运筹学模型与方法教程.北京:清华大学出版社,2000. [5] 三味工作室.SPSS V10.0 for Windows 实用基础教程.北京:北京希望电子出版社2001. [6] 孙魁明、张海彤.Mathematica工具软件大全.北京:中国铁道出版社,1994. [7] 楼顺天、于卫、闫华梁.MATLAB程序设计语言.西安:西安电子科技大学出版社,1997.八、教学基本内容及要求 第一章图的基本概念 1.教学基本要求 掌握的图的基本概念、特殊图概念,了解最短路问题。 2.教学具体内容 图的基本概念,路和圈,最短路问题。

图论及其应用第一章答案(电子科大版)

习题一(yangchun): 4.证明下面两图同构。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈ E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=--- 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

图论及其应用 答案电子科大

习题三: ● 证明:是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意及, G 中的路必含. 证明:充分性: 是的割边,故至少含有两个连通分支,设是其中一个连通分支的顶点集,是其余分支的顶点集,对12,u V v V ?∈?∈,因为中的不连通,而在中与连通,所以在每一条路上,中的必含。 必要性:取12,u V v V ∈∈,由假设中所有路均含有边,从而在中不存在从与到的路,这表明不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 : 是块,任取的一点,一边,在边插入一点,使得成为两条边,由此得到新图,显然的是阶数大于3的块,由定理,中的u,v 位于同一个圈上,于是 中u 与边都位于同一个 圈上。 : 无环,且任意一点和任意一条边都位于同一个圈上,任取的点u ,边e ,若在上,则三个不同点位于同一个闭路,即位于同一条路,如不在上,由定理,的两点在同一个闭路上,在边插入一个点v ,由此得到新图,显然的是阶数大于3的块,则两条边的三个不同点在同一条路上。 : 连通,若不是块,则中存在着割点,划分为不同的子集块,,,无环,12,x v y v ∈∈,点在每一条的路上,则与已知矛盾,是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图的割点。 证明:是单图的割点,则有两个连通分支。现任取, 如果不在的

同一分支中,令是与 处于不同分支的点,那么,与在的补图中连通。若在的同一分支中,则它们在的补图中邻接。所以,若是的割点,则不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给 出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)} ()25G κ= 最小点割{6,7,8,9,10} 2()5G λ= 最小边割{(2,7)…(1,6)} ● 13.设H 是连通图G 的子图,举例说明:有可能k(H)> k(G). 解: 通常. 整个图为,割点左边的图为的的子图, ,则. e H

电子科技大学研究生试题图论及其应用参考答案

电子科技大学研究生试题 图论及其应用参考答案 Last revision date: 13 December 2020.

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于 3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图答__是___; 是否可1-因子分解答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k v v 1 3 图G

图论的发展及其在现实生活中的几个应用

图论的发展及其在生活中的应用 数学与应用数学张佳丽 指导教师刘秀丽 摘要主要介绍了图论的起源与发展及其生活中的若干应用,如:渡河问题、旅游推销员问题、最小生成树问题、四色问题、安排问题、中国邮递员问题。同时也涉及到了几种在图论中应用比较广泛的方法,如:最邻近法、求最小生成树的方法、求最优路线的方法等。 关键词图论生活问题应用 Graph Theory Development and the Application in Life Mathematics and applied mathematics Zhang Jiali Tutor Liu Xiuli Abstract This paper mainly introduces the origin and development of graph theory and its several applications in our life, such as: crossing river problem, traveling salesman problem, minimum spanning tree problem, four color problem,arrangement problem,Chinese postman problem.It also researches several methods that are more widely applied in graph theory, for example: the method of most neighboring, the method of solving the minimum spanning tree,the method of the best route,and so on. Key words graph theory life problem application 引言 图论是一门古老的学科,是数学中有广泛应用的一个分支,与其他的数学分支,如群论、矩阵论、概率论、拓扑学、数分析等有着密切的联系.图论中以图为研究对象,图形中我们用点表示对象,两点之间的连线表示对象之间的某种特定的关系.事实上,任何一个包含了二元关系的系统都可以用图论来模拟.而且,图论能把纷杂的信息变的有序、直观、清晰.由于我们感兴趣的是两对象之间是否有某种特定关系,所以图形中两点间连接与否尤为重要,而图形的位置、大小、形状及连接线的曲直长短则无关紧要.图论在自然科学、社会科学等各个领域都有广泛的应用.随着科学的发展,以及生产管理、军事、交通运输等方面提出了大量实际的需要,图论的理论及其应用研究得到飞速发展。从20世纪50年代以后,由于计算机的迅速发展,有力地推动了图论的发展,加速了图论向各个学科的渗透,尤其是网络理论的建立,图论与线性规划、动态规划等优化理论和方法互相渗透。同时,计算机的发展使图论成为数学领域中发展最快的分支

图论及其应用1-3章习题答案(电子科大)

习题一 1. (题14):证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )→u i (1≤ i ≤ 10) 容易证明,对?v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。 2. (题6)设G 是具有m 条边的n 阶简单图。证明:m =???? ??2n 当且仅当G 是 完全图。 证明 必要性 若G 为非完全图,则? v ∈V(G),有d(v)< n-1 ? ∑ d(v) < n(n-1) ? 2m

证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ? ∣V 1∣= ∣V 2 ∣。 4. (题12)证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ?v in v ik 构成一个圈 。 5. (题17)证明:若G 不连通,则G 连通。 证明 对)(,_G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 习题二 2、证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,令V 1 、V 2 为度为1的顶点,由于其他的顶点度数均为0或者2,且T 中无圈,则从V 1到V 2 有且只有一条连通路。所以,每棵恰有两个1度顶点的树均是路。得证。 5、证明:正整数序列),...,,(21n d d d 是一棵树的度序列当且仅当 )1(21 -=∑=n d n i i 。 证明:设正整数序列),...,,(21n d d d 是一棵树T 的度序列,则满足 E d n i i 21 =∑=,E 为T 的边数,又有边数和顶点的关系1+=E n ,所以)1(21 -=? ∑=n d n i i 14、证明:若e 是n K 的边,则3)2()(--=-n n n n e K τ。 若e 为Kn 的一条边,由Kn 中的边的对称性以及每棵生成树的边数为n-1,Kn 的所有生成树的总边数为:2 )1(--n n n ,所以,每条边所对应的生成树的棵数为: 32 2)1(2 1 )1(--=--n n n n n n n ,所以,K n - e 对应的生成树的棵数为: 332)2(2)(----=-=-n n n n n n n n e K τ 16、Kruskal 算法能否用来求: (1)赋权连通图中的最大权值的树? (2)赋权图中的最小权的最大森林?如果可以,怎样实现?

图论及其应用1-3章习题答案(电子科大) (1)

学号:201321010808 姓名:马涛 习题1 4.证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )→u i (1≤ i ≤ 10) 容易证明,对?v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。 6.设G 是具有m 条边的n 阶简单图。证明:m =???? ??2n 当且仅当G 是完全图。 证明 必要性 若G 为非完全图,则? v ∈V(G),有d(v)< n-1 ? ∑ d(v) < n(n-1) ? 2m

证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ? ∣V 1∣= ∣V 2 ∣。 12.证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ?v in v ik 构成一个圈 。 17.证明:若G 不连通,则G 连通。 证明 对)(,_G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 习题2 证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,令V 1 、V 2 为度为1的顶点,由于其他的顶点度数均为0或者2,且T 中无圈,则从V 1到V 2 有且只有一条连通路。所以,每棵恰有两个1度顶点的树均是路。得证。 证明:正整数序列),...,,(21n d d d 是一棵树的度序列当且仅当)1(21-=∑=n d n i i 。 证明:设正整数序列),...,,(21n d d d 是一棵树T 的度序列,则满足E d n i i 21 =∑=,E 为T 的边数,又有边数和顶点的关系1+=E n ,所以)1(21 -=?∑=n d n i i 证明:若e 是n K 的边,则3)2()(--=-n n n n e K τ。 若e 为Kn 的一条边,由Kn 中的边的对称性以及每棵生成树的边数为n-1,Kn 的所有生成树的总边数为:2)1(--n n n ,所以,每条边所对应的生成树的棵数 为: 32 2)1(2 1 )1(--=--n n n n n n n ,所以,K n - e 对应的生成树的棵数为: 332)2(2)(----=-=-n n n n n n n n e K τ Kruskal 算法能否用来求:

图论及其应用1-3章习题答案

1. (题14):证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 2. (题6)设G 是具有m 条边的n 阶简单图。证明:m =???? ??2n 当且仅当G 是 完全图。 证明 必要性 若G 为非完全图,则 v V(G),有d(v) n-1 d(v) n(n-1) 2m n(n-1) m n(n-1)/2=??? ? ??2n , 与已知矛盾! 充分性 若G 为完全图,则 2m= d(v) =n(n-1) m= ??? ? ??2n 。 3. (题9)证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。 证明 由于G 为k 正则偶图,所以,k V 1 =m = k V 2 V 1 = V 2 。 4. (题12)证明:若δ≥2,则G 包含圈。 图1-28 (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u u 8 u u 10 (b)

证明 只就连通图证明即可。设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。若v i1v i2…v in 是一条路,由于 2,因此,对v in ,存在点v ik 与之邻接,则v ik v in v ik 构成一个圈 。 5. (题17)证明:若G 不连通,则G 连通。 证明 对)(,_ G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 习题二 2、证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,令V 1 、V 2 为度为1的顶点,由于其他的顶点度数均为0或者2,且T 中无圈,则从V 1到V 2 有且只有一条连通路。所以,每棵恰有两个1度顶点的树均是路。得证。 5、证明:正整数序列),...,,(21n d d d 是一棵树的度序列当且仅当 )1(21 -=∑=n d n i i 。 证明:设正整数序列),...,,(21n d d d 是一棵树T 的度序列,则满足 E d n i i 21 =∑=,E 为T 的 边数,又有边数和顶点的关系1+=E n ,所以)1(21 -=? ∑=n d n i i 14、证明:若e 是n K 的边,则3 )2()(--=-n n n n e K τ。 若e 为Kn 的一条边,由Kn 中的边的对称性以及每棵生成树的边数为n-1,Kn 的所有生 成树的总边数为: 2 )1(--n n n ,所以,每条边所对应的生成树的棵数为: 32 2)1(2 1 )1(--=--n n n n n n n ,所以,K n - e 对应的生成树的棵数为: 332)2(2)(----=-=-n n n n n n n n e K τ 16、Kruskal 算法能否用来求: (1)赋权连通图中的最大权值的树? (2)赋权图中的最小权的最大森林?如果可以,怎样实现? 解:(1)不能,Kruskal 算法得到的任何生成树一定是最小生成树。 (2)可以,步骤如下:

图论及其应用1

第一章图和子图 §1.1 图和简单图 °图的概念: 一个图G是指一个有序三元组G=(V G,E G,ψG)。其中:V(G)是非空顶点集,E(G)是不与V(G)相交的边集,ψG:E(G)→V(G)×V(G)的函数,称为关联函数。 若e∈E(G)是一条边,而ψG e=u,v,则称e连接u和v; 顶点u 和v称为e的端点。 例1:G=(V G,E G,ψG),其中: V G={v1,v2,v3,v4,v5} E G={e1,e2,e3,e4,e5,e6,e7,e8} 而ψG定义为: ψG e1=v1,v2ψG e2=(v2,v3) ψG e3=v3,v3ψG e4=(v3,v4) ψG e5=v2,v4ψG e6=(v4,v5) ψG e7=v2,v5ψG e8=(v2,v5) (见图1.1) *我们现在讨论的是无向图,即边没有方向,顶点对u,v=(v,u)。我们还可以定义有向图。 例2:定义有向图D=(V D,E D,ψD),其中: V D={a,b,c,d}

E D={e1,e2,e3,e4,e5,e6,e7} ψD e1=ψD e2= ψD e3=ψD e4= ψD e5=ψD e6= ψD e7= *这里ψD e=,表示e是一条从u到v的弧。。 °υ=V G,ε=|E G|分别表示图G的顶点数和边数,|V G|=n称为n阶图。 °若V G和|E G|均为有限数,则称G为有限图。 ° E G=?时,则称G为零图,υ=1的零图称为平凡图。 ° V G=?时,则称G为空图。 °邻接相邻:若e k=u,v∈E(G),称u和v邻接。 °关联:若e k=u,v∈E(G),则称e k与u和v关联。 °环:若e k=u,u∈E(G),则称e k为环。有向图的环e k=。°连杆:不是环的边称为连杆。 °边相邻:若边e i和e k有公共端点,则称e i与e k相邻。 °有向图中顶点的相邻:若e k=∈E(D),则称u与v相邻,u 称为e k的始点,v称为e k的终点。 °多重边平行边:若ψG e i=u,v=ψG e k且e i≠e k,则e i和e k称为平行边(多重边)。关联同一对顶点的多重边的条数称为多重边的重数。

相关主题
文本预览
相关文档 最新文档