当前位置:文档之家› K-Means聚类算法及实现代码

K-Means聚类算法及实现代码

K-Means聚类算法及实现代码
K-Means聚类算法及实现代码

K-Means算法

k-means 算法接受参数k ;然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。

假设要把样本集分为c个类别,算法描述如下:

(1)适当选择c个类的初始中心;

(2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类;

(3)利用均值等方法更新该类的中心值;

(4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。

#include

#include

#include

#define _NUM 3 //预定义划分簇的数目

using namespace std;

/**

特征对象,表示一个元组,一个元组有两个数值属性

**/

struct Tuple

{

int attr1;

int attr2;

};

/**

获取两个特征对象之间的距离,在此以欧基米德距离作为距离度量标准

**/

double getDistXY(Tuple t1, Tuple t2)

{

return sqrt((t1.attr1 - t2.attr1) * (t1.attr1 - t2.attr1) + (t1.attr2 - t2.attr2) * (t1.attr2 - t2.attr2));

}

/**

计算簇的中心点,在此以簇中所有对象的平均距离来计算中心点

**/

Tuple getMeansC(vector c)

{

int num = c.size();

double meansX = 0, meansY = 0;

Tuple t;

for (int i = 0; i < num; i++)

{

meansX += c[i].attr1;

meansY += c[i].attr2;

}

t.attr1 = meansX / num;

t.attr2 = meansY / num;

return t;

}

/**

获取算法的准则函数值,当准则函数收敛时算法停止

**/

double getE(vector classes[], Tuple means[])

{

double sum = 0;

for (int i = 0; i < _NUM; i++)

{

vector v = classes[i];

for (int j = 0; j< v.size(); j++)

{

sum += (v[j].attr1 - means[i].attr1) * (v[j].attr1 - means[i].attr1) + (v[j].attr2 - means[i].attr2) *(v[j].attr2 - means[i].attr2);

}

}

cout<<"sum:"<

return sum;

}

/**

对当前的特征对象,查找与其最临近的簇,最临近即到簇中心点的距离最短**/

int searchMinC(Tuple t, Tuple means[_NUM])

{

int c = 0;

int d = (t.attr1 - means[0].attr1) * (t.attr1 - means[0].attr1) + (t.attr2 - means[0].attr2) * (t.attr2 - means[0].attr2);

for (int i = 1; i < _NUM; i++)

{

int temp = (t.attr1 - means[i].attr1) * (t.attr1 - means[i].attr1) + (t.attr2 - means[i].attr2) * (t.attr2 - means[i].attr2);

if (temp < d)

{

c = i;

d = temp;

}

}

return c;

}

/**

k-Means算法

**/

void kMeans(vector init)

{

vector classes[_NUM]; //定义簇数组,共需划分_NUM个簇

int c;

Tuple means[_NUM]; //定义中心点数组,每个簇对应一个中心点

double newE, oldE = -1; //定义准则函数值

for (int i = 0; i < _NUM; i++) //对每个簇初始赋予一个特征对象

{

cin >> c;

classes[i].push_back(init[c - 1]);

means[i] = getMeansC(classes[i]); //计算当前每个簇的中心点

cout<<"means["<

}

newE = getE(classes, means); //计算当前准则函数值

cout<<"newE:"<

for (i = 0; i < _NUM; i++) //清空每个簇

{

classes[i].clear();

}

while(abs(newE - oldE) >= 1) //当新旧函数值相差不到1即准则函数值不发生明显变化时,算法终止

{

for (int j = 0; j < init.size(); j++) //遍历所有特征对象,将其加入到离它最近的簇

{

int toC = searchMinC(init[j], means);

classes[toC].push_back(init[j]);

}

cout<<"--------------------"<

for (i = 0; i < _NUM; i++) //打印出当前每个簇的特征对象

{

vector temp = classes[i];

cout<<"类"<

for (j = 0; j < temp.size(); j++)

{

cout<

}

}

cout<<"--------------------"<

for (i = 0; i < _NUM; i++) //更新每个簇的中心点

{

means[i] = getMeansC(classes[i]);

cout<<"means["<

"<

}

oldE = newE;

newE = getE(classes, means); //计算新的准则函数值

for (i = 0; i < _NUM; i++) //清空每个簇

{

classes[i].clear();

}

}

}

/**

程序入口

**/

void main(int args, char * arg[])

{

int n1, n2;

vector init; //保存所有输入的特征对象

while ((cin >> n1 >> n2) && n1 != -1 && n2 != -1) //输入特征对象{

Tuple p;

p.attr1 = n1;

p.attr2 = n2;

init.push_back(p);

}

kMeans(init); //调用k-Means算法进行聚类分析

}

伪代码

伪代码 伪码(Pseudocode)是一种算法描述语言。使用伪码的目的是使被描述的算法可以容易地以任何一种编程语言(Pascal,C,Java等)实现。因此,伪代码必须结构清晰、代码简单、可读性好,并且类似自然语言。介于自然语言与编程语言之间。以编程语言的书写形式指明算法职能。使用伪代码,不用拘泥于具体实现。相比程序语言(例如Java, C++,C, Dephi 等等)它更类似自然语言。它是半角式化、不标准的语言。可以将整个算法运行过程的结构用接近自然语言的形式(可以使用任何一种你熟悉的文字,关键是把程序的意思表达出来)描述出来。 1.简介 定义 人们在用不同的编程语言实现同一个算法时意识到,他们的实现(注意:这里是实现,不是功能)很不同。尤其是对于那些熟练于不同编程语言的程序员要理解一个(用其他编程语言编写的程序的)功能时可能很难,因为程序语言的形式限制了程序员对程序关键部分的理解。这样伪代码就应运而生了。伪代码提供了更多的设计信息,每一个模块的描述都必须与设计结构图一起出现。伪代码是一种非正式的,类似于英语结构的,用于描述模块结构图的语言。 应用领域 当考虑算法功能(而不是其语言实现)时,伪码常常得到应用。伪码中常被用于技术文档和科学出版物中来表示算法,也被用于在软件开发的实际编码过程之前表达程序的逻辑。伪代码不是用户和分析师的工具,而是设计师和程序员的工具。计算机科学在教学中通常使用虚拟码,以使得所有的程序员都能理解。综上,简单地说,让人便于理解的代码。不依赖于语言的,用来表示程序执行过程,而不一定能编译运行的代码。在数据结构讲算法的时候用的很多。伪代码用来表达程序员开始编码前的想法。 2.语法规则 例如,类Pascal语言的伪码的语法规则是:在伪码中,每一条指令占一行(else if,例外)。指令后不跟任何符号(Pascal和C中语句要以分号结尾)。书写上的“缩进”表示程序中的分支程序结构。这种缩进风格也适用于if-then-else语句。用缩进取代传统Pascal中的begin和end语句来表示程序

K-means算法简介

K-means聚类算法 K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设 宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。 在聚类问题中,给我们的训练样本是,每个,没有了y。 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、随机选取k个聚类质心点(cluster centroids)为。 2、重复下面过程直到收敛 { 对于每一个样例i,计算其应该属于的类 对于每一个类j,重新计算该类的质心 } K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值 是1到k中的一个。质心代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取 距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于

每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 下图展示了对n个样本点进行K-means聚类的效果,这里k取2。 K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下: J函数表示每个样本点到其质心的距离平方和。K-means是要将J调整到最小。假设当 前J没有达到最小值,那么首先可以固定每个类的质心,调整每个样例的所属的类别来让J函数减少,同样,固定,调整每个类的质心也可以使J减小。这两个过程就是内循环中使J单调递减的过程。当J递减到最小时,和c也同时收敛。(在理论上,可以有多组不同的和c值能够使得J取得最小值,但这种现象实际上很少见)。

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

k-means聚类算法的研究全解

k-means聚类算法的研究 1.k-means算法简介 1.1 k-means算法描述 给定n个对象的数据集D和要生成的簇数目k,划分算法将对象组织划分为k个簇(k<=n),这些簇的形成旨在优化一个目标准则。例如,基于距离的差异性函数,使得根据数据集的属性,在同一个簇中的对象是“相似的”,而不同簇中的对象是“相异的”。划分聚类算法需要预先指定簇数目或簇中心,通过反复迭代运算,逐步降低目标函数的误差值,当目标函数收敛时,得到最终聚类结果。这类方法分为基于质心的(Centroid-based)划分方法和基于中心的(Medoid-based)划分方法,而基于质心的划分方法是研究最多的算法,其中k-means算法是最具代表和知名的。 k-means算法是1967年由MacQueen首次提出的一种经典算法,经常用于数据挖掘和模式识别中,是一种无监督式的学习算法,其使用目的是对几何进行等价类的划分,即对一组具有相同数据结构的记录按某种分类准则进行分类,以获取若干个同类记录集。k-means聚类是近年来数据挖掘学科的一个研究热点和重点,这主要是因为它广泛应用于地球科学、信息技术、决策科学、医学、行为学和商业智能等领域。迄今为止,很多聚类任务都选择该算法。k-means算法是应用最为广泛的聚类算法。该算法以类中各样本的加权均值(成为质心)代表该类,只用于数字属性数据的聚类,算法有很清晰的几何和统计意义,但抗干扰性较差。通常以各种样本与其质心欧几里德距离总和作为目标函数,也可将目标函数修改为各类中任意两点间欧几里德距离总和,这样既考虑了类的分散度也考虑了类的紧致度。k-means算法是聚类分析中基于原型的划分聚类的应用算法。如果将目标函数看成分布归一化混合模型的似然率对数,k-means算法就可以看成概率模型算法的推广。 k-means算法基本思想: (1)随机的选K个点作为聚类中心; (2)划分剩余的点; (3)迭代过程需要一个收敛准则,此次采用平均误差准则。 (4)求质心(作为中心); (5)不断求质心,直到不再发生变化时,就得到最终的聚类结果。 k-means聚类算法是一种广泛应用的聚类算法,计算速度快,资源消耗少,但是k-means算法与初始选择有关系,初始聚类中心选择的随机性决定了算法的有效性和聚

4.29 算法伪代码练习讲义

4.29 算法练习讲义 1、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ 第4题图 2.右图是一个算法流程图,则输出的k 的值是 . 3.右图是一个算法的流程图,则输出的的值是. n

4.右图是一个算法流程图,则输出的n 的值是. 5.根据如图所示的伪代码,可知输出的结果S 为_____. 6 若输入变量N 的值为3,则输出的值为;若输出变量的S 的值为30,则变量N 的值为。 7.如果,当126,9,8.5x x P ===时3x =。

8、下图是一个算法的流程图,则输出的S的值是。 ,则判断框内可填写。 9.阅读流程图,若输出的S的值为7 10.运行如图所示的流程图,若输出的结果是62,则判断框中整数M的值是。 11.下图是某算法的流程图,则程序运行后所输出的S的值是。 12.上图是一个算法流程图,则输出的x的值是。

13.执行如图所示的流程图,输出的k的值为。 14、根据如图所示的伪代码,可知输出的结果S为________. 15、根据下图所示的伪代码,可知输出的结果S为 16.执行如图所示的程序框图,输出的x值为________.

(第16题图) 17.如图,运行伪代码所示的程序,则输出的结果是____. 18.右边程序输出的结果是____. 19.如右图是一个算法流程图,则输出S的值是.

20.根据如图所示的伪代码,最后中输出的a的值为. 21.某程序框图如右上图所示,则该程序运行后输出的S值是. 22.如图是一个算法流程图,则输出的s的值是____.

K-MEANS算法(K均值算法)

k-means 算法 一.算法简介 k -means 算法,也被称为k -平均或k -均值,是一种得到最广泛使用的聚类算法。 它是将各个聚类子集内的所有数据样本的均值作为该聚类的代表点,算法的主要思想是通过迭代过程把数据集划分为不同的类别,使得评价聚类性能的准则函数达到最优,从而使生成的每个聚类内紧凑,类间独立。这一算法不适合处理离散型属性,但是对于连续型具有较好的聚类效果。 二.划分聚类方法对数据集进行聚类时包括如下三个要点: (1)选定某种距离作为数据样本间的相似性度量 k-means 聚类算法不适合处理离散型属性,对连续型属性比较适合。因此在计算数据样本之间的距离时,可以根据实际需要选择欧式距离、曼哈顿距离或者明考斯距离中的一种来作为算法的相似性度量,其中最常用的是欧式距离。下面我给大家具体介绍一下欧式距离。 假设给定的数据集 ,X 中的样本用d 个描述属性A 1,A 2…A d 来表示,并且d 个描述属性都是连续型属性。数据样本x i =(x i1,x i2,…x id ), x j =(x j1,x j2,…x jd )其中,x i1,x i2,…x id 和x j1,x j2,…x jd 分别是样本x i 和x j 对应d 个描述属性A 1,A 2,…A d 的具体取值。样本xi 和xj 之间的相似度通常用它们之间的距离d(x i ,x j )来表示,距离越小,样本x i 和x j 越相似,差异度越小;距离越大,样本x i 和x j 越不相似,差异度越大。 欧式距离公式如下: (2)选择评价聚类性能的准则函数 k-means 聚类算法使用误差平方和准则函数来评价聚类性能。给定数据集X ,其中只包含描述属性,不包含类别属性。假设X 包含k 个聚类子集X 1,X 2,…X K ; {} |1,2,...,m X x m total ==() ,i j d x x =

《算法概论》-伪代码

目录 算法概论 (1) 序言 (1) 第一章 (2) 乘法 (2) 除法 (2) 两数的最大公因数 (2) 扩展 (2) RSA (3) 第二章:分治算法 (3) 整数相乘的分治算法 (3) 递推式 (3) 2.3合并排序 (3) 第三章图的分解 (4) 3.2.1寻找从给定顶点出发的所有可达顶点 (4) 3.2.2 深度优先搜索 (4) 第四章 (4) 4.2、广度优先搜索 (4) 4.4.1、dijkstra最短路径算法 (5) 4.6.1、含有负边 (5) Bellman-Ford算法 (6) 4.7、有向无环图的最短路径 (6) 第五章贪心算法 (6) 5.1 最小生成树 (6) 算法概论 序言 Fibonacci数列: 死板的算法: function Fib1(n) If n=0:return 0 If n=1:return 1 Return fib1(n-1)+fib1(n-2) (递归,很多计算是重复的,不必要)

合理的算法: functionFib2(n) If n=0:return 0 Create an array f[0…n] f[0]=0,f[1]=1 fori=2…n: f[i]=f[i-1] + f[i-2] return f[n] (随时存储中间计算结果,之后直接调用) 大O符号:若存在常数c>0,使得f(n)<=c*g(n)成立,则f=O(g)。f增长的速度慢于g。第一章 乘法: functionMultiply(x,y) If y=0:return 0 z=multiply(x,y/2)//向下取整 If y is even: //even---偶数 return 2z else: return x+2z 除法: functionDivide(x,y) If x=0: return (q,r)=(0,0) (q,r)=divide( x/2 ,y) //向下取整 q=2*q,r=2*r if x is odd:r=r+1 if r>=y :r=r-y,q=q+1 return (q,r) p22 两数的最大公因数: function Euclid(a,b) if b=0: return a return Euclid(b,a mod b) 扩展:

利用K-Means聚类进行航空公司客户价值分析

利用K-Means聚类进行航空公司客户价值分析 1.背景与挖掘目标 1.1背景航空公司业务竞争激烈,从 产品中心转化为客户中心。针对不同类型客户,进行精准营 销,实现利润最大化。建立客户价值评估模型,进行客户分 类,是解决问题的办法 1.2挖掘目标借助航空公司客户数据, 对客户进行分类。对不同的客户类别进行特征分析,比较不 同类客户的客户价值对不同价值的客户类别提供个性化服 务,制定相应的营销策略。详情数据见数据集内容中的 air_data.csv和客户信息属性说明 2.分析方法与过程 2.1分析方法首先,明确目标是客户价值识别。识别客户价值,应用 最广泛的模型是三个指标(消费时间间隔(Recency),消费频率(Frequency),消费金额(Monetary))以上指标简称RFM 模型,作用是识别高价值的客户消费金额,一般表示一段时 间内,消费的总额。但是,因为航空票价收到距离和舱位等 级的影响,同样金额对航空公司价值不同。因此,需要修改 指标。选定变量,舱位因素=舱位所对应的折扣系数的平均 值=C,距离因素=一定时间内积累的飞行里程=M。再考虑到,航空公司的会员系统,用户的入会时间长短能在一定程度上 影响客户价值,所以增加指标L=入会时间长度=客户关系长度总共确定了五个指标,消费时间间隔R,客户关系长度L,消费频率F,飞行里程M和折扣系数的平均值C以上指标,

作为航空公司识别客户价值指标,记为LRFMC模型如果采用传统的RFM模型,如下图。它是依据,各个属性的平均 值进行划分,但是,细分的客户群太多,精准营销的成本太 高。 综上,这次案例,采用聚类的办法进行识别客户价值,以LRFMC模型为基础本案例,总体流程如下图 2.2挖掘步骤从航空公司,选择性抽取与新增数据抽取,形 成历史数据和增量数据对步骤一的两个数据,进行数据探索 性分析和预处理,主要有缺失值与异常值的分析处理,属性 规约、清洗和变换利用步骤2中的已处理数据作为建模数据,基于旅客价值的LRFMC模型进行客户分群,对各个客户群 再进行特征分析,识别有价值客户。针对模型结果得到不同 价值的客户,采用不同的营销手段,指定定制化的营销服务,或者针对性的优惠与关怀。(重点维护老客户) 2.3数据抽取选取,2014-03-31为结束时间,选取宽度为两年的时间段, 作为观测窗口,抽取观测窗口内所有客户的详细数据,形成 历史数据对于后续新增的客户信息,采用目前的时间作为重 点,形成新增数据 2.4探索性分析本案例的探索分析,主要 对数据进行缺失值和异常值分析。发现,存在票价为控制, 折扣率为0,飞行公里数为0。票价为空值,可能是不存在 飞行记录,其他空值可能是,飞机票来自于积分兑换等渠道,查找每列属性观测值中空值的个数、最大值、最小值的代码

第9章rapidminer_k_means聚类.辨别分析v1

第9章K-Means 聚类、辨别分析 9.1理解聚类分析 餐饮企业经常会碰到这样的问题: 1)如何通过餐饮客户消费行为的测量,进一步评判餐饮客户的价值和对餐饮客户进行细分,找到有价值的客户群和需关注的客户群? 2)如何合理对菜品进行分析,以便区分哪些菜品畅销毛利又高,哪些菜品滞销毛利又低? 餐饮企业遇到的这些问题,可以通过聚类分析解决。 9.1.1常用聚类分析算法 与分类不同,聚类分析是在没有给定划分类别的情况下,根据数据相似度进行样本分组的一种方法。与分类模型需要使用有类标记样本构成的训练数据不同,聚类模型可以建立在无类标记的数据上,是一种非监督的学习算法。聚类的输入是一组未被标记的样本,聚类根据数据自身的距离或相似度将他们划分为若干组,划分的原则是组样本最小化而组间(外部)距离最大化,如图9-1所示。 图9-1 聚类分析建模原理 常用聚类方法见表9-1。 表9-1常用聚类方法 类别包括的主要算法

常用聚类算法见图9-2。 表9-2常用聚类分析算法 9.1.2K-Means聚类算法 K-Means算法是典型的基于距离的非层次聚类算法,在最小化误差函数的基础上将数据划分为预定的类数K,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 1.算法过程 1)从N个样本数据中随机选取K个对象作为初始的聚类中心; 2)分别计算每个样本到各个聚类中心的距离,将对象分配到距离最近的聚类中; 3)所有对象分配完成后,重新计算K个聚类的中心; 4)与前一次计算得到的K个聚类中心比较,如果聚类中心发生变化,转2),否则转 5); 5)当质心不发生变化时停止并输出聚类结果。 聚类的结果可能依赖于初始聚类中心的随机选择,可能使得结果严重偏离全局最优分类。实践中,为了得到较好的结果,通常以不同的初始聚类中心,多次运行K-Means算法。在所有对象分配完成后,重新计算K个聚类的中心时,对于连续数据,聚类中心取该簇的均值,但是当样本的某些属性是分类变量时,均值可能无定义,可以使用K-众数方

机器学习kmeans聚类算法与应用

机器学习算法day02_Kmeans聚类算法及应用课程大纲 Kmeans聚类算法原理Kmeans聚类算法概述 Kmeans聚类算法图示 Kmeans聚类算法要点 Kmeans聚类算法案例需求 用Numpy手动实现 用Scikili机器学习算法库实现 Kmeans聚类算法补充算法缺点 改良思路 课程目标: 1、理解Kmeans聚类算法的核心思想 2、理解Kmeans聚类算法的代码实现 3、掌握Kmeans聚类算法的应用步骤:数据处理、建模、运算和结果判定

1. Kmeans聚类算法原理 1.1 概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 1.2 算法图示 假设我们的n个样本点分布在图中所示的二维空间。 从数据点的大致形状可以看出它们大致聚为三个cluster,其中两个紧凑一些,剩下那个松散一些,如图所示: 我们的目的是为这些数据分组,以便能区分出属于不同的簇的数据,给它们标上不同的颜色,如图:

1.3 算法要点 1.3.1 核心思想 通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。 k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 k-means算法的基础是最小误差平方和准则, 其代价函数是: 式中,μc(i)表示第i个聚类的均值。 各类簇内的样本越相似,其与该类均值间的误差平方越小,对所有类所得到的误差平方求和,即可验证分为k类时,各聚类是否是最优的。 上式的代价函数无法用解析的方法最小化,只能有迭代的方法。 1.3.2 算法步骤图解 下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

利用K-Means聚类进行航空公司客户价值分析.doc

利用 K-Means 聚类进行航空公司客户价值分析 1.背景与挖掘目标 1.1 背景航空公司业务竞争激烈,从 产品中心转化为客户中心。针对不同类型客户,进行精准营 销,实现利润最大化。建立客户价值评估模型,进行客户分 类,是解决问题的办法 1.2 挖掘目标借助航空公司客户数据,对客户进行分类。对不同的客户类别进行特征分析,比较不 同类客户的客户价值对不同价值的客户类别提供个性化服 务,制定相应的营销策略。详情数据见数据集内容中的 air_data.csv 和客户信息属性说明 2.分析方法与过程 2.1 分析方法首先,明确目标是客户价值识别。识别客户价值,应用 最广泛的模型是三个指标(消费时间间隔(Recency) ,消费 频率( Frequency),消费金额( Monetary ))以上指标简称RFM 模型,作用是识别高价值的客户消费金额,一般表示一段时 间内,消费的总额。但是,因为航空票价收到距离和舱位等 级的影响,同样金额对航空公司价值不同。因此,需要修改 指标。选定变量,舱位因素=舱位所对应的折扣系数的平均 值=C,距离因素 =一定时间内积累的飞行里程 =M 。再考虑到,航空公司的会员系统,用户的入会时间长短能在一定程度上 影响客户价值,所以增加指标 L= 入会时间长度 =客户关系长度总共确定了五个指标,消费时间间隔 R,客户关系长度 L ,消费频率 F,飞行里程 M 和折扣系数的平均值 C 以上指标,

作为航空公司识别客户价值指标,记为LRFMC 模型如果采用传统的 RFM 模型,如下图。它是依据,各个属性的平均 值进行划分,但是,细分的客户群太多,精准营销的成本太 高。 综上,这次案例,采用聚类的办法进行识别客户价值,以LRFMC 模型为基础本案例,总体流程如下图 2.2 挖掘步骤从航空公司,选择性抽取与新增数据抽取,形 成历史数据和增量数据对步骤一的两个数据,进行数据探索 性分析和预处理,主要有缺失值与异常值的分析处理,属性 规约、清洗和变换利用步骤 2 中的已处理数据作为建模数据, 基于旅客价值的 LRFMC 模型进行客户分群,对各个客户群再 进行特征分析,识别有价值客户。针对模型结果得到不同 价值的客户,采用不同的营销手段,指定定制化的营销服务,或者针对性的优惠与关怀。(重点维护老客户) 2.3 数据抽取选取, 2014-03-31 为结束时间,选取宽度为两年的时间段,作为观测窗口,抽取观测窗口内所有客户的详细数据,形成 历史数据对于后续新增的客户信息,采用目前的时间作为重 点,形成新增数据 2.4 探索性分析本案例的探索分析,主要对 数据进行缺失值和异常值分析。发现,存在票价为控制,折扣 率为 0,飞行公里数为 0。票价为空值,可能是不存在飞行记录,其他空值可能是,飞机票来自于积分兑换等渠道,查找 每列属性观测值中空值的个数、最大值、最小值的代码

K-means文本聚类算法

最大距离法选取初始簇中心的K-means文本聚类算法的研究 的评论 背景 随着计算机技术和网络技术的飞速发展,人们的生活方式产生了极大的改变。计算机从一个有几个房子大小的巨无霸,已经变成了小巧的笔记本。网络设备也已经从PC端走向移动端。越来越丰富的网络设备,让人们能在网络里畅游,网络对于人们来说触手可及,同时也产生了巨大的数据流量。人们如何从海量的数据中找到有用的信息,成为了现在计算机学科的研究热点。聚类是数据挖掘中重要的一支。由于聚类具有无需先验知识的优势,可以根据数据自然分部而获取知识。聚类成为数据挖掘领域一个非常活跃的领域,而且得到了广泛的应用。聚类就是把一个数据集合分成几个簇,在同一个簇里,数据相关性最高,但是在2个不同的簇里,数据相关性最低。K-means聚类算法主要针对处理大数据集时,处理快速简单,并且算法具有高效性和可伸缩性。但是,K-means聚类算法随机的选择初始簇中心会导致以下缺点:(1)得到的聚类结果中容易出现局部最优,而不是全局最优;(2)聚类结果不具有稳定性,很大程度上依赖于初始簇中心;(3)聚类过程中的迭代次数增加使聚类过程中的总耗时增加。 传统的k-means聚类算法 传统的聚类算法思想:首先从N个数据对象集合中随机选择k个对象,然后计算剩余的N-k个对象与k个对象的距离(相似度),与k个对象中哪个对象的距离最小,就把分给那个对象;然后在计算每个簇中的簇中心,即是每个簇中对象的均值;不断重复这一过程步骤,直到标准测度函数E开始收敛为止。 K-means算法描述如下: 输入:迭代终止条件ε,最大的迭代次数为max,簇的总数目是k,样本集有N个数据对象。 输出:满足迭代终止条件的k个簇和迭代次数s。 随机初始化k个簇中心: 对每个数据对象,分别计算该对象与k个簇中心均值的距离,并选择距离最小的簇将该对象加个到该簇里; 重新计算k个簇的中心,利用函数E计算出此时的函数值; 如果带到最大迭代次数或满足:

数据挖掘报告-Kmeans算法

数据挖掘课程报告 班级 XXXXXX 学生姓名 XXXXXX 学号 2010100XXXXX 指导教师 XXXXXXX 日期 2013年10月15日

k-means 算法与猫群算法的聚类效果比较分析 摘要:本文在聚类个数k 值预先设定的前提下,分别应用了k-means 算法、猫群算法对储层含油性问题进行聚类分析,比较了这两种算法的聚类效果。实验结果显示:本文所采用的传统的k-means 算法常容易陷入局部最优。而猫群算法在样本数目较小时(如以表oilsk81为例时),是一种快速、高效的识别算法。当样本数目翻倍时,受实际算法代码设计的影响,识别的正确率将会下降,这也充分说明了猫群算法的运算效果受代码和样本大小的影响,有较大的不确定性。 关键词:k-means ;猫群算法;聚类分析; 1 引言 K-means 算法[1]是由J.B. Mac Queen 于1967 年提出的,该算法是一个经典的基于划分的聚类算法,因其算法效率较高,易于其它方法相结合,目前已成为数据挖掘、机器学习、模式识别和数量统计等领域应用最广的聚类算法之一。 近几年来提出了很多的群体智能算法,这些算法都是通过模仿生物界中某些动物的行为演化出来的智能算法[2]。猫群算法作为群体智能算法之一,具有良好的局部搜索和全局搜索能力[3],算法控制参数较少,通过两种模式的结合搜索,大大的提高了搜索优良解的可能性和搜索效率,较其他算法较容易实现,收敛速度快,具有较高的运算速度,易于其他算法结合。但也有出现“早熟”现象的弊端[4]。群体中个体的优化只是根据一些表层的信息,即只是通过适应度值来判断个体的好坏,缺乏深层次的理论分析和综合因素的考虑。由于猫群算法出现较晚,该算法目前主要应用于函数优化问题[5],故在聚类分析研究方面,很有必要对猫群算法进行深入研究。 传统的k-means 算法与新兴的聚类方法猫群算法相比较会有哪些异同点呢,接下来将具体阐述。 2 算法模型 2.1 K-means 算法模型 设对n 个m 维样本集进行聚类,n 个样本集表示为12{,,,}n X X X X = ,其中 12(,,,)i i i im X x x x = ,聚类成k 个分类表示为12{,,}k C C C C = ,其质心表示为1 ,1,2,....j j i x C j z X j k n ∈= =∑, j n 为 j C 中包含的数据点的个数,则聚类的目标是使k 个类满 足以下条件:

K-means-聚类算法研究综述

K-means聚类算法研究综述 摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。 关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵 Review of K-means clustering algorithm Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last. Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。 文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 1经典K-means聚类算法简介 1.1K-means聚类算法的目标函数 对于给定的一个包含n个d维数据点的数据集 12 {x,x,,x,,x} i n X=??????,其中d i x R ∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为 K个划分{c,i1,2,} k C K ==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和 距离判断准则,计算该类内各点到聚类中心 i μ的距离平方和 2 (c) i i k i k x C J xμ ∈ =- ∑(1) 聚类目标是使各类总的距离平方和 1 (C)(c) K k k J J = =∑最小。 22 1111 (C)(c) i i K K K n k i k ki i k k k x C k i J J x d x μμ ==∈== ==-=- ∑∑∑∑∑ (2)其中, 1 i i ki i i x c d x c ∈ ? =? ? ? 若 若 ,显然,根据最小二乘 法和拉格朗日原理,聚类中心 k μ应该取为类别 k c类各数据点的平均值。 K-means聚类算法从一个初始的K类别划分开始,然

伪代码的使用规范

伪代码的使用 伪代码(Pseudocode)是一种算法描述语言。使用为代码的目的是为了使被描述的算法可以容易地以任何一种编程语言(Pascal, C, Java, etc)实现。因此,伪代码必须结构清晰,代码简单,可读性好,并且类似自然语言。 下面介绍一种类Pascal语言的伪代码的语法规则。 伪代码的语法规则 1.在伪代码中,每一条指令占一行(else if例外,),指令后不跟任何符号 (Pascal和C中语句要以分号结尾); 2.书写上的“缩进”表示程序中的分支程序结构。这种缩进风格也适用于 if-then-else语句。用缩进取代传统Pascal中的begin和end语句来表示程序的块结构可以大大提高代码的清晰性;同一模块的语句有相同的缩进量,次一级模块的语句相对与其父级模块的语句缩进; 例如: line 1 line 2 sub line 1 sub line 2 sub sub line 1 sub sub line 2 sub line 3 line 3 而在Pascal中这种关系用begin和end的嵌套来表示, line 1 line 2 begin sub line 1 sub line 2 begin sub sub line 1 sub sub line 2 end; sub line 3 end; line 3

在C中这种关系用{ 和 } 的嵌套来表示, line 1 line 2 { sub line 1 sub line 2 { sub sub line 1 sub sub line 2 } sub line 3 } line 3 3.在伪代码中,通常用连续的数字或字母来标示同一即模块中的连续语句, 有时也可省略标号。 例如: 1. line 1 2. line 2 a. sub line 1 b. sub line 2 1. sub sub line 1 2. sub sub line 2 c. sub line 3 3. line 3 4.符号△后的内容表示注释; 5.在伪代码中,变量名和保留字不区分大小写,这一点和Pascal相同,与 C或C++不同; 6.在伪代码中,变量不需声明,但变量局部于特定过程,不能不加显示的说 明就使用全局变量; 7.赋值语句用符号←表示,x←exp表示将exp的值赋给x,其中x是一个变 量,exp是一个与x同类型的变量或表达式(该表达式的结果与x同类型); 多重赋值i←j←e是将表达式e的值赋给变量i和j,这种表示与j←e 和i←e等价。 例如: x←y x←20*(y+1) x←y←30

基于K―means聚类的客户细分案例分析

基于K―means聚类的客户细分案例分析 【摘要】当今流行的客户细分理论的视角主要关注在消费市场的细分上,现有的客户细分理论中根据客户购买的产品特征进行细分的分析和研究相对较少,因此本文的研究就是把某品牌鞋子的风格特征作为细分变量,基于某企业的销售数据来进行分析,选择K-means聚类分析方法结合企业的实际情况,划分出不同的客户群,企业可以根据不同客户群的需求和对企业的贡献制定不同的宣传营销策略,降低企业的销售成本,提高企业的竞争力。 【关键词】客户细分K-means聚类案例分析营销策略 一、案例介绍 某公司是一个以鞋类的研发制造及品牌管理为主的时 尚集团公司,业务遍及大中华区(中国大陆、香港、台湾)、亚洲、欧洲及北美洲,是中国最成功的国内品牌之一。该公司在中国经营的组织架构为:总公司――分公司――专卖店。其中,总公司负责拓展策略和公司年度工作计划的制定,以及成本控制和分公司事务管理。分公司负责执行总公司的战略,对专卖店、专卖店人员实施管理,工作内容包括:新开专卖店寻址、申请开店、签约、开店;对分公司人员管理、分公司销售指标达成、执行总公司促销活动等。

二、数据处理 (一)数据准备 原始数据包括两张表:客户交易记录表和鞋子具体属性表,其中客户交易记录表与鞋子属性表连接的变量是鞋子ID,交易记录数据的时间是过去一年2013年9月1日到2014年9月1日。 (二)数据清洗 该企业一年的交易记录有几千万条,所以原始的交易数据量非常大,这样就很容易出现噪声数据、空缺数据和不一致数据,所以必须要经过一系列的分析与处理,包括对缺失值的处理和异常值的处理,例如:去除客户属性为空的客户记录、剔除消费额和消费次数不在正常范围内的客户记录等。 (1)剔除异常的正负交易。从客户交易记录表中选出过去一年交易ID不为空的正常交易记录,交易记录表中的金额有正负之分,正表示购买记录,负表示退货记录,要剔除掉没有正交易与之对应的退货记录。 (2)剔除异常的购买数量和金额。由于有些客户不是会员,专卖店的销售员会帮客户刷自己的会员卡,这样就会出现一个会员ID在一段时间内交易数量和交易金额超出正常范围。本文用3δ准则剔除不在正常范围内异常客户。 (三)数据转换和整合

相关主题
文本预览
相关文档 最新文档