当前位置:文档之家› 第三章沉降与过滤

第三章沉降与过滤

第三章沉降与过滤

第三章沉降与过滤

化工原理--沉降与过滤习题及答案

沉降与过滤一章习题及答案 一、选择题 1、 一密度为7800 kg/m 3 的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20℃水中沉降速度的1/4000,则此溶液的粘度为 (设沉降区为层流20℃水密度998.2 kg/m 3粘度为100.5×10-5 Pa ·s )。A ?A 4000 mPa ·s ; ?B 40 mPa ·s ; ?C 33.82 Pa ·s ; ?D 3382 mPa ·s 2、含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30μm 的粒子,现气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径为 。D A .m μ302?; B 。m μ32/1?; C 。m μ30; D 。m μ302? 3、降尘室的生产能力取决于 。 B A .沉降面积和降尘室高度; B .沉降面积和能100%除去的最小颗粒的沉降速度; C .降尘室长度和能100%除去的最小颗粒的沉降速度; D .降尘室的宽度和高度。 4、降尘室的特点是 。D A . 结构简单,流体阻力小,分离效率高,但体积庞大; B . 结构简单,分离效率高,但流体阻力大,体积庞大; C . 结构简单,分离效率高,体积小,但流体阻力大; D . 结构简单,流体阻力小,但体积庞大,分离效率低 5、在降尘室中,尘粒的沉降速度与下列因素 无关。C A .颗粒的几何尺寸 B .颗粒与流体的密度 C .流体的水平流速; D .颗粒的形状 6、在讨论旋风分离器分离性能时,临界粒径这一术语是指 。C A .旋风分离器效率最高时的旋风分离器的直径; B. 旋风分离器允许的最小直径; C. 旋风分离器能够全部分离出来的最小颗粒的直径; D. 能保持滞流流型时的最大颗粒直径 7、旋风分离器的总的分离效率是指 。D A. 颗粒群中具有平均直径的粒子的分离效率; B. 颗粒群中最小粒子的分离效率; C. 不同粒级(直径范围)粒子分离效率之和; D. 全部颗粒中被分离下来的部分所占的质量分率 8、对标准旋风分离器系列,下述说法哪一个是正确的 。C A .尺寸大,则处理量大,但压降也大; B .尺寸大,则分离效率高,且压降小; C .尺寸小,则处理量小,分离效率高; D .尺寸小,则分离效率差,且压降大。 9、恒压过滤时, 如滤饼不可压缩,介质阻力可忽略,当操作压差增加1倍,则过滤速率为原来的 。 B A. 1 倍; B. 2 倍; C.2倍; D.1/2倍 10、助滤剂应具有以下性质 。B A. 颗粒均匀、柔软、可压缩; B. 颗粒均匀、坚硬、不可压缩; C. 粒度分布广、坚硬、不可压缩; D. 颗粒均匀、可压缩、易变形 11、助滤剂的作用是 。B A . 降低滤液粘度,减少流动阻力; B . 形成疏松饼层,使滤液得以畅流; C . 帮助介质拦截固体颗粒; D . 使得滤饼密实并具有一定的刚性 12、下面哪一个是转筒真空过滤机的特点 。B A .面积大,处理量大; B .面积小,处理量大; C .压差小,处理量小; D .压差大,面积小 13、以下说法是正确的 。B A. 过滤速率与A(过滤面积)成正比; B. 过滤速率与A 2成正比; C. 过滤速率与滤液体积成正比; D. 过滤速率与滤布阻力成反比 14、恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量 。

化工专业化工原理实验---过滤

实验二 过滤实验 1 实验目的 (1)了解过滤设备的构造和操作方法。 (2)掌握过滤问题的简化工程处理方法。 (3)测定在恒压操作时的过滤常数K ,q e ,τe ,并以实验所得结果验证过滤方程式,增进对过滤理论的理解。 (4)改变压强差重复上述操作,测定压缩指数s 和物料特性常数k (选做)。 2 基本原理 过滤过程是将悬浮液送至过滤介质及滤饼一侧,在其上维持另一侧较高的压力,液体则通过介质而成滤液,而固体粒子则被截留逐渐形成滤饼。过滤速度由过滤介质两端的压力差及过滤介质的阻力决定。过滤介质阻力由二部分组成,一为过滤介质,一为滤饼(先沉积下来的滤饼成为后来的过滤介质)。因为滤饼厚度(亦即滤饼阻力)随着时间而增加, 所以恒压过滤速度随着时间而降低。对于不可压缩性滤饼,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示: 2e e ()(+) q q K θθ+= (2.1) (2.1)式中:q —单位过滤面积获得的滤液体积,m 3/m 2;q e —单位过滤面积的虚拟滤液体积,m 3/m 2;θ—实际过滤时间,s ;θe —虚拟过滤时间,s ;K —过滤常数,m 2/s 。 将(2.1)式微分,可以得到: e 22 d q q dq K K θ=+ (2.2) 当各数据点的时间间隔不大时,d θ/ d q 可以用增量之比△θ/△q 来代替,即: e 22 q q q K K θ?=+? (2.3) 式(2.3)为一直线方程。试验时,在恒压下过滤要测定的悬浮液,测出过滤时间θ及滤液累积量q 的数据,在直角坐标纸上标绘△θ/△q 对q 的关系,所得直线斜率为2/K ,截距为2q e /K ,从而可以分别得到K 和q e 。 式(2.1)中的θe 可由下式获得:

第三章 沉降与过滤

第三章沉降与过滤 本章学习目的 通过本章的学习,要重点掌握沉降和过滤这两种机械分离操作的原理、过程计算、典型设备的结构与特性,能够根据生产工艺要求,合理选择设备类型和尺寸。 本章应掌握的内容 a沉降分离(包括重力沉降和离心沉降)的原理、过程计算、旋风分离器的选型。 b过滤操作的原理、过滤基本方程式推导的思路,恒压过滤的计算、过滤常数的测定。 3.1 概述 混合物:均相混合物(物系):物系内部各处物料性质均匀,无相界面。例:混合气体、溶液。 非均相混合物(物系):物系内部有隔开的相界面存在,而在相界面两侧的物料性质截然不同的物系。例:含尘气体、悬浮液、乳浊液、泡沫液。 许多化工生产过程中,要求分离非均相物系。含尘和含雾的气体,属于气态非均相物系。悬浮液、乳浊液及泡沫液等属于液态非均相物系。 非均相物系 分散相(分散物质):处于分散状态的物质。气体中尘粒、悬浮液中的颗粒、乳浊液中的液滴。 连续相(分散介质):包围着分散相,处于连续状态的物质。含尘气体中的气体、悬浮液中的液体。 均相混合物:吸收、蒸馏。 非均相混合物:分散相、连续相物理性质不同(ρ不同)→机械方法:沉降、过滤。 非均相物系分离的目的:(1)回收分散物质(2)净制分散介质 本章将简要地介绍重力沉降、离心沉降及过滤等分离法的操作原理及设备。 3.2 重力沉降 沉降(settling):在某种力(重力、离心力)作用下,利用连续相与分散相的密度差异,使之发生相对运动而分离的操作。 重力沉降:由地球引力(重力)作用而发生的沉降过程。 3.2.1 颗粒与流体相对运动时所受的阻力 球形颗粒的自由沉降 自由沉降:单个颗粒在流体中沉降,或者颗粒群在流体中充分地分散颗粒之间互不接触互不碰撞的条件下的沉降。 将表面光滑、刚性的球形颗粒置于静止的流体中。 颗粒:ρ P 、d P 、m 流体:ρ、μ、ρ P >ρ 颗粒与流体的的相对运动速度(相对于流体的降落速度):u

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

化工原理第三章沉降与过滤课后习题及答案(1)

第三章 沉降与过滤 沉 降 【3-1】 密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。 解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=?? 颗粒密度/31030p kg m ρ=,直径4410p d m -=? 假设为过渡区,沉降速度为 ()(.)()./..11 2 2 223 34 5449811030410179225225241100835p t p g u d m s ρρμρ --??-???==??=? ???????????? 验算 .Re ..45 4101790.835 =24824110 p t d u ρμ--???==? 为过渡区 【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。 " 解 在斯托克斯区,沉降速度计算式为 ()/2 18t p p u d g ρρμ=- 由此式得(下标w 表示水,a 表示空气) ()()22 18= p w pw p a pa t w a d d u g ρρρρμμ--= pw pa d d = 查得20℃时水与空气的密度及黏度分别为 ./,.339982 100410w w kg m Pa s ρμ-==?? ./,.35120518110a a kg m Pa s ρμ-==?? 已知玻璃球的密度为/32500p kg m ρ=,代入上式得 .961pw pa d d = = ·

【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -??,颗粒密度为4000kg/m 3。试求:(1)最小颗粒的沉降速度;(2)若需要最小颗粒沉降,气体的最大流速不能超过多少m/s (3)此降尘室每小时能处理多少m 3的气体 解 已知,/./.6336101040001121810pc p d m kg m kg m Pa s ρρμ--=?===??,, (1) 沉降速度计算 假设为层流区 () .()(.) ./.2626 9811010400011001181821810pc p t gd u m s ρρμ ---??-= ==?? 验算..Re .66 101000111000505221810pc t d u ρ μ --???= ==

化工原理第三章沉降与过滤课后习题及答案

第三章 沉降与过滤 沉 降 【3-1】 密度为1030kg/m 3 、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。 解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=?? 颗粒密度/31030p kg m ρ=,直径4410p d m -=? 假设为过渡区,沉降速度为 ()(.)()./..11 2 2 223 34 5449811030410179225225241100835p t p g u d m s ρρμρ --??-???==??=? ???????????? 验算 .Re ..45 4101790.835 =24824110 p t d u ρμ--???==? 为过渡区 【3-2】密度为2500kg/m 3 的玻璃球在20℃的水中和空气中以相同的速度沉降。试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。 解 在斯托克斯区,沉降速度计算式为 ()/2 18t p p u d g ρρμ=- 由此式得(下标w 表示水,a 表示空气) ()()22 18= p w pw p a pa t w a d d u g ρρρρμμ--= pw pa d d = 查得20℃时水与空气的密度及黏度分别为 ./,.339982 100410w w kg m Pa s ρμ-==?? ./,.35120518110a a kg m Pa s ρμ-==?? 已知玻璃球的密度为/32500p kg m ρ=,代入上式得 .961pw pa d d = = 【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -??,颗

(完整版)化工原理-第五章-颗粒的沉降和流态化

化工原理-第五章-颗粒的沉降和流态化 一、选择题 1、 一密度为7800 kg/m 3 的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20℃水中沉降速度的1/4000,则此溶液的粘度为 D (设沉降区为层流)。 ?A 4000 mPa·s ; ?B 40 mPa·s ; ?C 33.82 Pa·s ; ?D 3382 mPa·s 2、含尘气体在降尘室内按斯托克斯定律进行沉降。理论上能完全除去30μm 的粒子,现气体处理量增大1倍,则该降尘室理论上能完全除去的最小粒径为 D 。 A .m μ302?; B 。m μ32/1?; C 。m μ30; D 。m μ302? 3、降尘室的生产能力取决于 B 。 A .沉降面积和降尘室高度; B .沉降面积和能100%除去的最小颗粒的沉降速度; C .降尘室长度和能100%除去的最小颗粒的沉降速度; D .降尘室的宽度和高度。 4、降尘室的特点是 。D A . 结构简单,流体阻力小,分离效率高,但体积庞大; B . 结构简单,分离效率高,但流体阻力大,体积庞大; C . 结构简单,分离效率高,体积小,但流体阻力大; D . 结构简单,流体阻力小,但体积庞大,分离效率低 5、在降尘室中,尘粒的沉降速度与下列因素 C 无关。 A .颗粒的几何尺寸 B .颗粒与流体的密度 C .流体的水平流速; D .颗粒的形状 6、在讨论旋风分离器分离性能时,临界粒径这一术语是指 C 。 A. 旋风分离器效率最高时的旋风分离器的直径; B. 旋风分离器允许的最小直径; C. 旋风分离器能够全部分离出来的最小颗粒的直径; D. 能保持滞流流型时的最大颗粒直径

化工原理实验习题答案

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封?液封高度如何计算? 答:保证塔内液面,防止气体漏出,保持塔内压力.0.1 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)X10.2/Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)X10.2/Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量

为宜。 (2)测定填料塔的流体力学性能有什么工程意义? 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义? 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一 (4)为什么二氧化碳吸收过程属于液膜控制? 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制(5)当气体温度和液体温度不同时,应用什么温度计算亨利系数? 答:液体温度。因为是液膜控制,液体影响比较大。 2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升

【2019年整理】第三章沉降与过滤

沉降 【3-1】 密度为1030kg/m 3、直径为400Mm 的球形颗粒在 150 C 的热空气中降落,求其 沉降速度。 解 150 C 时,空气密度 p=0.835kg/m 3,黏度 p =2.41x1萨Pa .s 颗粒密度 R =1030kg/m 3,直径 dp=4x10Wm 假设为过渡区,沉降速度为 验算 Re=d p U tP =4x1 敞.1 罕350=24 8. 」 2.41 10- 为过渡区 【3-2】密度为 2500kg/m 3的玻璃球在 20 C 的水中和空气中以相同的速度沉降。试求在 这两种介 质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。 解 在斯托克斯区,沉降速度计算式为 2 U t =d p I p k )g/18」 由此式得(下标 w 表示水,a 表示空气) r r 2 2 18u t I. 、 p -,w d pw (i p - ”a )d pa d pw _ (『p -」a )」w 焉一 ' E p p 查得20 C 时水与空气的密度及黏度分别为 :a =1.205kg/m 3,七二1.81 10 点 Pa s 已知玻璃球的密度为 P p =2500kg/m 3,代入上式得 d pw _ (2500 -1.205) 1.004 10「 5 — 9.61 d pa 丫 (2500 —998.2)X1.81X10玉 【3-3】降尘室的长度为 10m ,宽为5m,其中用隔板分为 20层,间距为100mm,气体 中悬浮的最小颗粒直径为 10Hm,气体密度为1.1kg/m 3,黏度为21.8心0径Pa ,s ,颗粒密度为 4000kg/m 3。试求:(1)最小颗粒的沉降速度; (2)若需要最小颗粒沉降,气体的最大流速不能 第三章 沉降与过滤 U t 」4g "_pn =| 225 PP 1 d p 1 4 (9 81)2(1030)2 3 4 ------- )— 4 10*=1.79m/s 225 2 41 10 - 0 835 -九)」a 、=998.2 kg /m 3,人 =1.004 10 应 Pa s

化工原理实验课课后习题答案

流体流动阻力的测定 1.如何检验系统内的空气已经被排除干净答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。 行压差计的零位应如何校正答:先打开平衡阀,关闭二个截止阀,即可U行压差计进行零点校验 3.进行测试系统的排气工作时,是否应关闭系统的出口阀门为什么答:在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。 4.待测截止阀接近出水管口,即使在最大流量下,其引压管内的气体也不能完全排出。试分析原因,应该采取何种措施答:待截止阀接近进水口,截止阀对水有一个阻力,若流量越大,突然缩小直至流回截止阀,阻力就会最大,致使引压管内气体很难排出。改进措施是让截止阀与引压阀管之间的距离稍微大些。 5.测压孔的大小和位置,测压导管的粗细和长短对实验有无影响为什么答:由公式2p可知,在一定u下,突然扩大ξ,Δp增大,则压差计读数变大;2u反之,突然缩小ξ,例如:使ξ=,Δp 减小,则压差计读数变小。 6.试解释突然扩大、突然缩小的压差计读数在实验过程中有什么不同现象答:hf与很多值有关,Re是其中之一,而λ是为了研究hf而引入的一个常数,所以它也和很多量有关,不能单单取决于Re,而在Re在一定范围内的时候,其他的变量对于λ处于一个相对较差的位置,可以认为λ与Re关系统一。 7.不同管径、不同水温下测定的~Re曲线数据能否关联到同一曲线答:hf与很多值有关,Re是其中之一,而λ是为了研究hf而引入的一个常数,所以它也和很多量有关,不能单单取决于Re,而在Re在一定范围内的时候,其他的变量对于λ处于一个相对较差的位置,可以认为λ与Re关系统一。正如Re在3×103~105 范围内,λ与Re的关系遵循Blasius关系式,即λ= 8.在~Re曲线中,本实验装置所测Re在一定范围内变化,如何增大或减小Re的变化范围答:Redu,d为直管内径,m;u为流体平均速度,m/s;为流体的平均密度,kg/m3;s。为流体的平均黏度,Pa· 8.本实验以水作为介质,作出~Re曲线,对其他流体是否适用为什么答:可以使用,因为在湍流区内λ=f(Re,)。说明在影响λ的因素中并不包含流体d本身的特性,即说明用什么流体与-Re 无关,所以只要是牛顿型流体,在相同管路中以同样的速度流动,就满足同一个-Re关系。 9.影响值测量准确度的因素有哪些答:2dp,d为直管内径,m;为流体的平均密度,kg/m3;u为流体平均速2u度,m/s;p为两测压点之间的压强差,Pa。△p=p1-p2,p1为上游测压截面的压强,Pa;p2为下游测压截面的压强,Pa 离心泵特性曲线的测定 1.为什么启动离心泵前要先灌泵如果灌水排气后泵仍启动不起来,你认为可能是什么原因 答:离心泵若在启动前未充满液体,则泵壳内存在空气。由于空气密度很小,所产生的离心力也很小。此时,在吸入口处所形成的真空不足以将液体吸入泵内。虽启动离心泵,但不能输送液体。泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 2.为什么启动离心泵时要关出口调节阀和功率表开关启动离心泵后若出口阀不开,出口处压力表的读数是否会一直上升,为什么答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 3.什么情况下会出现气蚀现象答:金属表面受到压力大、频率高的冲击而剥蚀以及气泡内夹带的少量氧气等活泼气体对金属表面的电化学腐蚀等,使叶轮表面呈现海绵状、鱼鳞状破坏。 4.为什么泵的流量改变可通过出口阀的调节来达到是否还有其他方法来调节流量答:用出口阀门调节流量而不用泵前阀门调节流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好用的。 5.正常工作的离心泵,在其进口管线上设阀门是否合理为什么答:合理,主要就是检修,否则可以不用阀门。 6.为什么在离心泵吸入管路上安装底阀 答:为便于使泵内充满液体,在吸入管底部安装带吸滤网的底阀,底阀为止逆阀,滤网是为了防止固体物质进入泵内而损坏叶轮的叶片或妨碍泵的正常操作。 7.测定离心泵的特性曲线为什么要保持转速的恒定答:离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量Q、扬程H及功率P也相应改变。对同一型号泵、同一种液体,在效率η不变的条件下,Q、H、P随n的变化关系如下式所示见课本81页当泵的转速变化小于20%时,效率基本不变。 8.为什么流量越大,入口真空表读数越大而出口压力表读数越小答:据离心泵的特征曲线,出口阀门开大后,泵的流速增加,扬程降低,故出口压力降低;进口管道的流速增加,进口管的阻力降增加,故真空度增加,真空计读数增加。 过滤实验 1.为什么过滤开始时,滤液常有些混浊,经过一段时间后滤液才转清答:因为刚开始的时候滤布没有固体附着,所以空隙较大,浑浊液会通过滤布,从而滤液是浑浊的。当一段时间后,待过滤

第三章沉降与过滤习题及答案

第三章沉降与过滤习题及答案 一、选择题 1、一密度为7800 kg∕m3的小钢球在相对密度为1.2的某液体中的自由沉降速度为在20C水中沉降速度的1/4000,则此溶液的粘度为_________ (设沉降区为层流)D A. 4000 mPa? s; B. 40 mPa? s; C. 33.82 Pa ? s; D. 3382 mPa? S 3、降尘室的生产能力取决于________ 。 B A. 沉降面积和降尘室高度; B.沉降面积和能100%?去的最小颗粒的沉降 速度; C降尘室长度和能100%?去的最小颗粒的沉降速度;D.降尘室的宽度和高 度。 4、降尘室的特点是________ 。 D A. 结构简单,流体阻力小,分离效率高,但体积庞大; B. 结构简单,分离效率高,但流体阻力大,体积庞大; C. 结构简单,分离效率高,体积小,但流体阻力大; D. 结构简单,流体阻力小,但体积庞大,分离效率低 5、在降尘室中,尘粒的沉降速度与下列因素_______ 无关。C A .颗粒的几何尺寸 B .颗粒与流体的密度 C .流体的水平流速; D.颗粒的形状 6在讨论旋风分离器分离性能时,临界粒径这一术语是指 _________ 。C A.旋风分离器效率最高时的旋风分离器的直径; B.旋风分离器允许的最小直径; C. 旋风分离器能够全部分离出来的最小颗粒的直径;D.能保持滞流流型时的最大颗粒直径 7、旋风分离器的总的分离效率是指_______ 。D A.颗粒群中具有平均直径的粒子的分离效率; B.颗粒群中最小粒子的分离效率; C. 不同粒级(直径范围)粒子分离效率之和; D.全部颗粒中被分离下来的部分所占的质量分率 8、对标准旋风分离器系列,下述说法哪一个是正确的___________ 。C A.尺寸大,则处理量大,但压降也大; B .尺寸大,则分离效率高,且压 降小; C.尺寸小,则处理量小,分离效率高; D .尺寸小,则分离效率差,且压降 大。 9、恒压过滤时,如滤饼不可压缩,介质阻力可忽略,当操作压差增加1倍,则过滤速率为原来的。B A. 1 倍; B. 2 倍; C. 倍; D.1/2 倍 10、助滤剂应具有以下性质_____ 。B A.颗粒均匀、柔软、可压缩; B.颗粒均匀、坚硬、不可压缩; C.粒度分布广、坚硬、不可压缩; D.颗粒均匀、可压缩、易变形

化工原理—沉降与过滤

一、判断题 1.物料在离心机内进行分离时,其离心加速度与重力加速度的比值,称为离心分离因数。(√) 2.旋风分离器是利用惯性离心力作用来净制气体的设备。 (√) 3.恒压过滤时过滤速度随过程的进行不断下降。 (√) 4.降尘室的生产能力与其沉降面积和粒子的沉降速度,以及降尘室的高度有关。 (×) 5.非均相物系分离按操作原理主要有沉降、过滤、压榨、离心分离、吸收和萃取。 (×) 6.用旋风分离器来分离含尘气体中的尘粒,若进口气速增加则分离效率提高,其压降上升。 (√) 二、填空题 1.除去液体中混杂的固体颗粒一般可采用()、()、()。 重力沉降;过滤;离心分离等 2. 混合物内部均匀且没有相界面者称为(),若混合物内部存在一个以上的相,且向界面两侧的物料性质有差别者为()。 均相混合物(均相物系);非均相混合物(非均相物系)

3.按照固体颗粒在介质中的沉降速度不同,把固体颗粒分成大小不同的几部分的分离方法称为()。 分级沉降法 4.含尘气体通过沉降室所经历的时间()尘粒从室顶沉降到室底所需时间,尘粒便可分离出来。 大于或等于 5、()是指能被旋风分离器完全分离的最小颗粒直径。 临界直径 6、过滤是以某种多孔物质为(),在外力的作用下使()流体通过介质的孔道,而()颗粒被截留,从而实现分离的操作。 介质;连续相;分散相 7、过滤可分为( )和()两大类。 饼层过滤;深层过滤 8、分离因数是指离心机所产生的()与()之比。 离心力;重力 三、选择题 1. 助滤剂应具有以下性质()。 A.颗粒均匀、柔软、可压缩 B.颗粒均匀、坚硬、不可压缩 C.粒度分布广、坚硬、不可压缩 D.颗粒均匀、可压缩、易变形 B

化工原理实验 恒压过滤

浙江科技学院 实验报告 课程名称:化工原理 实验名称:恒压过滤常数测定实验学院:生物与化学工程学院专业班:化学工程与工艺111 姓名:王建福 学号:5110420006 同组人员:杨眯眯张涛 实验时间: 2013 年11月14日 指导教师:诸爱士

一、实验课程名称:化工原理 二、实验项目名称:恒压过滤常数测定实验 三、实验目的和要求: 1.熟悉板框压滤机的构造和操作方法; 2.通过实验,验证过滤基本原理; 3.学会测定过滤常数K 、q e 、τe 及压缩性指数S 的方法; 4.了解操作压力对过滤速率的影响。 四、实验内容和原理 实验内容:测定时间与滤液量的变化关系,绘制相关图表,求出过滤常数K 及压缩性指数S 。 实验原理:过滤是以某种多孔物质作为介质来处理悬浮液的操作。在外力作用下,悬浮液中的液体通过介质的孔道而固体颗粒被截留下来,从而实现固液分离。过滤操作中,随着过滤过程的进行,固体颗粒层的厚度不断增加,故在恒压过滤操作中,过滤速率不断降低。 影响过滤速率的主要因素除压强差、滤饼厚度外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等,在低雷诺数范围内,过滤速率计算式为: L p a K u μεε?-=22 3')1(1 (1) u :过滤速度,m/s K ’:康采尼常数,层流时,K ’=5.0 ε:床层空隙率,m 3/m 3 μ:滤液粘度,Pas a :颗粒的比表面积,m 2/m 3 △p :过滤的压强差,Pa L :床层厚度,m 恒压过滤时,令k=1/μr ’v ,K=2k △p 1-s ,q=V/A ,q e =Ve/A ,对(2)式积分得: (q+q e )2=K(τ+τe ) (3) K 、q 、q e 三者总称为过滤常数,由实验测定。 对(3)式微分得: 2(q+q e )dq=Kdτ e q K q K dq d 22+=τ (4) 用△τ/△q 代替dτ/dq ,在恒压条件下,用秒表和量筒分别测定一系列时间间隔△τi ,和对应的滤液体积△ V i ,可计算出一系列△τi 、△q i 、q i ,在直角坐标系中绘制△τ/△q ~q 的函数关系,得一直线,斜率为2/K ,截距为2q e /K ,可求得K 和q e ,再根据τe =q e 2/K ,可得τe 。 改变过滤压差△p ,可测得不同的K 值,由K 的定义式两边取对数得: lgK=(1-S)lg(△p)+lg(2k) (5) 在实验压差范围内,若k 为常数,则lgK ~lg(△p)的关系在直角坐标上应是一条直线,斜率为(1-S),可得滤饼压缩性指数S ,进而确定物料特性常数k 。

沉降与过滤

沉降与过滤 第三章沉降与过滤 第一节沉降 教学目标: 了解颗粒和颗粒群的特性及有关参数的计算方法. 理解重力沉降和离心沉降的意义,掌握颗粒在层流和团粒状态下自由沉降速度的计算公式. 掌握重力沉降设备的结构和工作原理. 掌握碟片式离心机,高速管式离心机,旋风分离器,旋液分离器等离心分设被的结构,工作原理及使用方法. 教学重点: 碟片式离心机,高速管式离心机,旋风分离器等离心分设被的结构,工作原理及使用方法. 教学难点: 自由沉降速度的计算公式的应用. 教学内容: 一,颗粒的基本性质 非均相体系的不连续相常常是固体颗粒.由于不同的条件和过程将形成不同性质的固体颗粒,且组成颗粒的成分不同则其理化性质也不同,所以在分离操作过程中就要采用不同的工艺,因而有必要认识颗粒的性质. 1.颗粒的特性 按照颗粒的机械性质可分为刚性颗粒和非刚性颗粒.如泥砂石子,无机物颗粒属于刚性颗粒.刚性颗粒变形系数很小,而细胞则是非刚性颗粒,其形状容易随外部空间条件的改变而改变.常将含有大量细胞的液体归属于非牛顿型流体.因这两类物质力学性质不同,所以在生产实际中应采用不同的分离方法. 如果按颗粒形状划分,则可分为球形颗粒和非球形颗粒.球形颗粒的体积为3——1 其表面积为 3——2 颗粒的表面积与其体积之比叫比表面积,用符号表示,单位.其计算式为: 将非球形颗粒直径折算成球形颗粒的直径,这个直径叫当量直径.在进行有关计算时,将代入相应的球形颗粒计算公式中即可.根据折算方法不同,当量直径的具体数值也不同.常见当量直径有: 体积当量直径de de= 3——3 表面积当量直径des des = 3——4 球形度形状系数φs= 3——5 2.颗粒群的特性 由大小不同的颗粒组成的集合称为颗粒群.在非均相体系中颗粒群包含了一系列直径和质量都不相同的颗粒,呈现出一个连续系列的分布,可以用标准筛进行筛分得到不同等级的颗粒. 1颗粒群的平均粒径 为便于对颗粒群的运动状态进行分析,根据统计学原理,计算颗粒平均粒径的公

化工原理王志魁第五版习题解答:第三章 沉降与过滤

第三章 沉降与过滤 沉 降 【3-1】密度为1030kg/m 3、直径为400m μ的球形颗粒在150℃的热空气中降落,求其沉降速度。 解 150℃时,空气密度./30835kg m ρ=,黏度.524110Pa s μ-=??颗粒密度/31030p kg m ρ=,直径4410p d m -=?假设为过渡区,沉降速度为 ()(.)()./..1 12 2 2 2 3 3 4 5 449811030410179225225241100835p t p g u d m s ρρμρ--??-???==??=????????????? 验算 .Re ..45 4101790.835=248 24110p t d u ρμ--???==?为过渡区 【3-2】密度为2500kg/m 3的玻璃球在20℃的水中和空气中以相同的速度沉降。试求在这两种介质中沉降的颗粒直径的比值,假设沉降处于斯托克斯定律区。 解 在斯托克斯区,沉降速度计算式为 ()/2 18t p p u d g ρρμ =-由此式得(下标w 表示水,a 表示空气) ()()22 18= p w pw p a pa t w a d d u g ρρρρμμ-- =pw pa d d = 查得20℃时水与空气的密度及黏度分别为 ./,.339982 100410w w kg m Pa s ρμ-==??./,.35120518110a a kg m Pa s ρμ-==??已知玻璃球的密度为/32500p kg m ρ= ,代入上式得 .961 pw pa d d = 【3-3】降尘室的长度为10m ,宽为5m ,其中用隔板分为20层,间距为100mm ,气体中悬浮的最小颗粒直径为10m μ,气体密度为./311kg m ,黏度为.621810Pa s -??,颗粒密度为

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

沉降与过滤 习题

沉降与过滤习题

非均相分离 一、单选题 1.颗粒的沉降速度不是指()。B (A)等速运动段的颗粒降落的速度 (B)加速运动段任一时刻颗粒的降落速度 (C)加速运动段结束时颗粒的降落速度 (D)净重力(重力减去浮力)与流体阻力平衡时颗粒的降落速度2.自由沉降的意思是()。D (A)颗粒在沉降过程中受到的流体阻力可忽略不计 (B)颗粒开始的降落速度为零,没有附加一个初始速度 (C)颗粒在降落的方向上只受重力作用,没有离心力等的作用 (D)颗粒间不发生碰撞或接触的情况下的沉降过程 3.在滞流区颗粒的沉降速度正比于()。D -ρ)的1/2次方 (B)μ的零次方 (A)(ρ s (C)粒子直径的0.5次方 (D)粒子直径的平方 4.对于恒压过滤()。D (A)滤液体积增大一倍则过滤时间增大为原来的倍 (B)滤液体积增大一倍则过滤时间增大至原来的2倍

(C)滤液体积增大一倍则过滤时间增大至原来的4倍 (D)当介质阻力不计时,滤液体积增大一倍,则过滤时间增大至原来的倍 5.回转真空过滤机洗涤速率与最终过滤速率之比为()。A (A) l (B)1/2 (C) 1/4 (D)1/3 6.以下说法是正确的()。B (A)过滤速率与S(过滤面积)成正比 (B)过滤速率与S2成正比 (C)过滤速率与滤液体积成正比 (D)过滤速率与滤布阻力成反比 7.叶滤机洗涤速率与最终过滤速率的比值为()。D (A) 1/2 (B)1/4 (C) 1/3 (D) l 8.过滤介质阻力忽略不计,滤饼不可压缩进行恒速过滤,如滤液量增大一倍,则()。C (A)操作压差增大至原来的倍 (B)操作压差增大至原来的4倍 (C)操作压差增大至原来的2倍 (D)操作压差保持不变 9.恒压过滤,如介质阻力不计,过滤压差增大一倍时,同一过滤时刻所得滤液量()。C (A)增大至原来的2倍 (B)增大至原来的4倍 (C)增大至原来的倍 (D)增大至原来的1.5倍

沉降与过滤习题及答案

沉降与过滤习题及答 案 Revised on November 25, 2020

第三章沉降与过滤习题及答案 一、选择题 1、一密度为7800 kg/m3的小钢球在相对密度为的某液体中的自由沉降速度为 在20℃水中沉降速度的1/4000,则此溶液的粘度为(设沉降区为层流)。D mPa·s;mPa·s;Pa·s;mPa·s 3、降尘室的生产能力取决于。 B A.沉降面积和降尘室高度;B.沉降面积和能100%除去的最小颗粒的沉降速度; C.降尘室长度和能100%除去的最小颗粒的沉降速度;D.降尘室的宽 度和高度。 4、降尘室的特点是。D A.结构简单,流体阻力小,分离效率高,但体积庞大; B.结构简单,分离效率高,但流体阻力大,体积庞大; C.结构简单,分离效率高,体积小,但流体阻力大; D.结构简单,流体阻力小,但体积庞大,分离效率低 5、在降尘室中,尘粒的沉降速度与下列因素无关。C A.颗粒的几何尺寸 B.颗粒与流体的密度 C.流体的水平流速; D.颗粒的形状 6、在讨论旋风分离器分离性能时,临界粒径这一术语是指。C A.旋风分离器效率最高时的旋风分离器的直径; B.旋风分离器允许的最小直径; C.旋风分离器能够全部分离出来的最小颗粒的直径; D.能保持滞流流型时的 最大颗粒直径 7、旋风分离器的总的分离效率是指。D A.颗粒群中具有平均直径的粒子的分离效率; B.颗粒群中最小粒子的分离效率; C.不同粒级(直径范围)粒子分离效率之和; D.全部颗粒中被分离下来的部分所 占的质量分率 8、对标准旋风分离器系列,下述说法哪一个是正确的。C A.尺寸大,则处理量大,但压降也大; B.尺寸大,则分离效率高,且压 降小; C.尺寸小,则处理量小,分离效率高; D.尺寸小,则分离效率差,且压 降大。 9、恒压过滤时,如滤饼不可压缩,介质阻力可忽略,当操作压差增加1倍,则过滤速率为原来的。 B A. 1倍; B. 2倍; C.倍; 2倍 10、助滤剂应具有以下性质。B A.颗粒均匀、柔软、可压缩; B.颗粒均匀、坚硬、不可压缩; C.粒度分布广、 坚硬、不可压缩; D.颗粒均匀、可压缩、易变形 11、助滤剂的作用是。B A.降低滤液粘度,减少流动阻力; B.形成疏松饼层,使滤液得以畅流;

相关主题
文本预览
相关文档 最新文档