当前位置:文档之家› 卫星通信地球站设备1

卫星通信地球站设备1

卫星通信地球站设备1
卫星通信地球站设备1

卫星通信地球站设备

一、地球站的分类及组成

1.1地球站的各类

1.1.1卫星通信地球站

可以按安装方式、传输信号特征、天线口径尺寸、设备规模及用途来分类:

1、按安装方式:

●固定站

●可搬运站

●移动站

2、按传输信号特征:

●模拟站

●数字站

3、按业务性质:

●遥测、遥控、跟踪站

●通信业务站

4、按用途分:

●民用通信站:公用站

专用站

●军用通信站:战略通信站

战术通信站

●卫星广播业务

●气象卫星

●航空、航海、导航

●科学实验

另外还可以按工作频段、通信卫星类型、多址方式、天线口径等分类。

目前国际上,通常地球站天线口径尺寸及G/T值的大小将地球站分为A、B、C、D、E、F、G、Z等各种类型见下表1:

表1:各类地球站的天线尺寸及性能指标

●其中A、B、C型站称为标准站,用于国际通信;

E和F又分为E-1、E-2、E-3和F-1、F-2、F-3等类型,主要用于国内通信。

其中E-2、E-3和F-2、F-3又称为中型站。E-1、F-1称为小型站。

1.1.2VSAT地球站的分类

1、按安装方式――固定、可搬、车载、机载、船载、背负式、手提式等

站。

2、按网络结构――星状、网状、星状网状混合结构。

3、按收发方式――单收站、单发站、双向站。

4、按业务性质――固定业务和移动业务。

5、按支持的主要业务类型分――话音VSAT站、数据VSAT站、综合VSAT

站。

其它的还有按工作频段分(L波段、C波段、Ku波段等)、多址方式(FDMA、TDMA、CDMA、SDMA等)。

1.2地球站的组成

一般的卫星通信地球站,尽管对于不同的通信体制,地球站的组成不尽相同。但其基本组成一般包括:

天线分系统、发射分系统、接收分系统、信道终端设备、遥测跟踪、监控分系统、伺服跟踪分系统和电源分系统。

1.2.1VSAT地球站设备组成

VSAT卫星通信网由卫星转发器、主站(中心站)和远端小站三部分

组成。

1)主站的设备组成:

见图1:主站设备连接方框图。

●这是我们为中国机械进出口总公司海外VSAT卫星通信系统所做的技

术方案的主站设备构成。该系统的主站设在中石油通信公司(固安)、远端小站8座,设在刚果(布)。该系统工作在扩展C波段(即上行频率为6425~6725MHz,下行频率为3400~3700MHz),拟租用泛美8#通信卫星(68.5°E)。

●主站设备由三部分组成:天线、ODU、IDU(还有网管)。

OMT――双工器(正交模转换器、正交模耦合器、极化分离器)收发共用天线要使用双工器。

HPA――高功率放大器

Booster――HPA放大器的激励级

BUC(Block UPCoverter)――上变频器块

LNB(lew noise amplifier Dwon Coverter Block)――低噪声放大及下变频器。

●ODU和IDU使用了三个不同厂家的设备

ODU采用的万康公司提供的美国mitec公司的设备

IDU有德国诺达公司的IDU5000室内单元。以及Comtec公司的卫星调制解调器(570L)。

●主站设备组成的特点:

⑴上、下变频器采用一次变频。中频为L波段(发:950~1525MHz、

收:950~1700MHz)

⑵主站为多载波工作(将来是)

目前是单载波工作,由IDU5000发射一个大载波,接收也是同一个大载波满足刚果(布)项目的8个小站的通信。

⑶10 MHz参考信号和LNB的直流供电由不同的室内单元供给,诺达公司室内单元IDU5000分别对发信和收信支路提供10 MHz参考信号。

由570LMODEM对发信支路的BUC提供直流24V供电并对LNB提供直流24V供电。

功放则由室内的交流电源供电并在Booster内,经交直流变换后提供功放所需的直流电压。

⑷在室内单元分为两个系统

一个是IDU5000为TDMA体制的系统。此系统为网状网,有网管设备对该系统进行监视控制管理。

另一个系统则是由570L调制解调器构成。它是一个TDM/MCPC体制的系统,是个星形网,固定预分配的系统。(570L有其特点,即它采用了Turbo纠错编码)。

这两个系统共用室外单元ODU和天馈系统。

2、远端小站设备组成

见远端小站设备连接方框图图2

ODU由万康公司提供的澳大利亚的Coden公司的设备;

●IDU则由德国诺达公司SKYwanODU2500室内单元;

●小站设备由三部分组成:天馈系统、ODU、IDU;

●上、下变频均为一次变频,中频为L波段;

●小站发射一个载波(TDMA大载波),接收一个载波(与发射的TDMA

为同一个载波);

●IRD-电视接收机(接收泛美4号星的中央第4套、第9套节目);

●由IRD向LNB提供直流24V电源;

●IDU2500向收、发支路提供10MHz参考信号;

●BUC由室内交流电源提供供电。

注:将来在远端可以配置以570L调制解调器作为室内单元再配以扩展C 波段的天线和ODU,构成星形网的的远端小站。

二、地球站的天馈系统

2.1天线的功能与分类

2.1.1天线的功能

1)把发送设备产生的大功率微波信号以电磁波的形式向卫星辐射。

2)接收卫星转发器的微波信号,并把它送至接收设备的第一级低噪声放大器中。

3)要使天线始终对准卫星方向(采用伺服跟踪系统)。

2.1.2天线的分类

卫星通信一般采用面天线,所谓面天线,就是具有初级馈源并由反射面形成次级辐射场的天线。

面天线主要包括单反射面天线和双反射面天线两大类。其主要类型如下:

1)前馈式抛物面天线(单反射面)

由馈源喇叭和主反射抛物面组成如图2A。由位于焦点处馈源发出的球面波经抛物面反射后变换成平面波,形成沿抛物面轴向辐射最强的窄波束,这种天线早期用过,由于馈源的阻挡,效率较低,现已不用。

2)偏馈(偏置)抛物面天线(单反射面天线)

它实质上是切割抛物面部分曲面,在焦点处放置馈源喇叭,使其仅对偏置反射面照射。图如2b,由于馈源偏离视轴,不产生阻挡,故可提高效率,降低副瓣。是VSAT小型地球站理想的天线。比如,Ku波段1.2米天线和1.8米天线均采用此种天线。

3)卡塞格伦天线(双反射面天线)

利用后凸双曲面和抛物面而形成的双反射面天线。如图2c所示。

由馈源喇叭对副反射面(双曲面)照射,再由副反射面再对主反射面(抛物面)照射形成平面波束。这种天线口径利用系数高,从而提高了天线的效率。

这是大、中型卫星通信地面站,不论C波段还是Ku波段,均采用此类天线。(属后馈式天线)。

4)环焦天线(双反射面天线)

环焦天线又称偏焦轴天线。其特点是作为主反射面的焦点不是一个点而是副反射面前的一个焦环,如图2d所示,它克服了馈源喇叭直接照

射副反射面产生驻波的缺点。并减少了副反射面遮挡的影响,提高了效率,降低了副瓣电平。适用于VSAT小型地面站及电视单收站。

图2a:前馈抛物面天线

图2b:偏馈抛物面天线

图2c:卡塞格伦天线

图2d:环焦天线

2.2天线的构成

1)天线的组成

以卡塞格伦天线为例,它是由主反射面、副反射面、馈源喇叭(初级辐射器、或一次辐射器)、双工器、座架、驱动装置。(对于大型天线有同服跟踪系统)等组成。

一般6米以下天线不需要自动跟踪系统。6~7米天线可用可不用。8

米以上天线需要自动跟踪系统。

天线的驱动方式:人工、电动、自动三种方式。

2)双工器

(1)关于极化

在介绍双工器之前,先来介绍关于极化的基本概念。什么是极化、什么是线极化、什么是园极化?

●什么是极化――表征均匀平面波的电场矢量在空间指向的变化。它是

通过电场矢量末端的轨迹来具体说明。光学上称之为偏振。按电场矢量轨迹的特点极化分为线极化、园极化、椭园极化三种。

●什么是线极化、园极化、椭园极化?

当电场矢量末端的轨迹在垂直于电磁波传播方向的垂直平面上的投影是一条直线时,称为线极化波。

当投影是园时,为园极化波,投影为椭园时为椭园极化波。

级极化分为垂直极化和水平极化。

园极化分左旋园极化和右旋园极化,向传播方向看过去电场矢量顺时针旋转的称为右旋园极化。逆时针旋转的称为左旋园极化。

●线极化、园极化、椭园极化波之间的关系。

空间传播的电磁波常为椭园极化波。即瞬时电场的大小和方向随时间变化,其矢量轨迹为椭园形,椭园的长轴与短轴之比定义为轴比。当轴比为1时变为园极化波,当轴比为无限大时,椭园极化波变为线极化波。因此,线、园极化波是椭园极化波的特例。

任一椭园极化波都可以分解为两个极化方向互相垂直的直线极化波的叠加。

任一直线极化波也可以分解为两个振幅相等但旋转方向相反的园极化波的叠加。

任一园极化波可分解为两个振幅相等,相位差90°(或270°)的两个线极化波。

园极化和线极化波的相互转化

通过微波移相器可将园极化波转换为线极化波,也可将线极化波转换为园极化波。

(2)双工器:

对于区域或国内卫星通信通常采用线极化天线(对于国际卫星通信通常采用园极化天线)。而线极化天线所用的双工器又称为OMT (Oithomode tiansduser),OMT又叫做正交模转换器或正交模耦合器。

OMT的作用是用于收发共用天线来分离收发信号的。其结构见图2e 所示。

OMT有三个端口,若端口1输入垂直线极化波,端口2输入水平线极化波,则从端口3将输出两个互相垂直的线极化波。相互垂直的两个线极化波之间无能量耦合,传输互不影响。根据图中的结构,端口1、2是相互隔离的,故端口1的电磁波不会传到端口2云,反之亦然。按照互易原理,若端口3输入两个互相垂直的线极化波,它们将分别从端口1和端口2输出。

在端口1接发射机,端口2接入接收机,端口3接天线的馈源喇叭,这样就构成了卫星通信天线的双工器。发射信号(端口1)不会传至接收机(端口2),而是传送给天线(设发信信号为垂直极化波),而从天线接收来的水平极化波只能传送至端口2(接收机),而不能传送至端口1(发射机),起到了收发分离的作用。

通常为了增大收发信的隔离度,在OMT的收信支路还要安装一个发信带阻滤波器,以便进一步抑制发信号进入收信机(LNB)。一般该滤波器提供55dB的阻带,加上交叉极化隔离30dB,收发总的隔离度可达到85dB。

2.3天线的主要性指标

天线的主要电气性参数有:天线口径、工作频段、天线增益、方向性图、极化隔离度、天线的噪声温度、极化方式。

1)天线增益

定义――在输入功率相等的条件下,实际天线与各向均匀辐射的理想点源天线,在空间同一点处所产生的信号功率密度之比。

●增益的计算公式

G=η(πD/λ)2 =η(πD f/C)2

G ─天线增益

η─天线线效率(一般在50%-70%)

D─天线的直径

λ─工作波长(f-工作频率)

C ─光速

通常天线增益以分贝(dBi)表示

G=10lgη(πD/λ)2

2) 天线方向性图

●定义—以天线的焦点为原点在各个方向上辐射的强度。用以说明辐射

场在主轴方向上的集中程度,或非主轴方向的抑制程度。通常方向性图仅在某一平面内测量,得到平面方向图,如E面、H面方向图或水平面、垂直面方向图。

●主瓣和旁瓣(见图2F)

最大辐射方向的波瓣称为主瓣,其余称为旁瓣,有第一旁瓣、第二旁瓣……离主瓣180°的旁瓣称为后瓣。

主瓣越尖锐,则方向性越好。旁瓣会对卫星通信系统产生干扰,因此旁瓣的抑制是天线的重要指标。

●波束宽度(波瓣宽度)

波束宽度又称主瓣宽度,又称半功率波束宽度(指方向图主瓣最大功

率下降3dB处的夹角)

波束宽度:2θ°0.5=(58°- 80°) λ/D

例:4.5米天线:C波段2θ°=0.8°(发射)

Ku波段2θ°=0.32°(发射)

3米天线:C波段:1.1°(发射)

Ku波段:0.44°(发射)

●天线发射旁瓣方向图指标

第一旁瓣的功率必须比主瓣小14dB以上;

旁瓣峰值超过下式所确定的包络线的旁瓣数目不能多于总旁瓣数的10%。

G=29-25lgθ…… 10°≤θ≤20°

G ─旁瓣的增益

θ─主波束最大值(中心轴)与旁瓣的夹角,以度计

3)天线噪声温度

●进入天线的噪声主要有二种:银河系的宇宙噪声和来自大地、大气的

热噪声。

●C波段主要是大地、大气的热噪声

●同一天线尺寸,仰角越低,天线热噪声越大(因为信号穿过大气层的

厚度越大,大气噪声越强)。

一般天线的仰角要大于10°

●同一仰角时,天线越大,天线噪声温度越低

举例:

4) 极化隔离度

用交叉极化鉴别度XPD来衡量极化的纯度。

XPD=10lg(主极化分量的功率/交叉极化分量的功率)dB

2.4 调整天线对星

调整天线对星的三大参数是:方位角、仰角、极化角。

方位角和仰角的调整是通过调整天线来进行的,而极化角的调整则是旋转馈源的双工器来进行极化匹配的。

1、方位角

方位角是以真北为参考点,沿顺时针开始计算的角度(0°~180°)下面是以正南为基准进行方位角的计算。

方位角的计算

A=arctg【tg(φs-φg)/sinθ】

φs ─卫星(星下点)经度

φg ─地球站的经度

θ─地球站的纬度

●方位角的调整:

首先用指南针找到正南方,使天线方向正对南方,如果计算的方位角A是负值,则将天线向正南偏西转动A度。

2、仰角:

地球站主瓣的中心线与地面水平线形成的夹角(0°~90°)

●仰角的计算公式

H=arctg〔(cos(φs-φg).cosθ-0.5127/{1-【cos(φs-φg)cosθ】2}?〕

H ─仰角

φs ─卫星(星下点)经度

φg ─地球站的经度

θ─地球站的纬度

●仰角的调整:

最好用量角器加上一个垂针作成的仰角调整专用工具。

调整顺序:先调整好仰角,再调整方位角。

3、极化角:

国内和区域卫星通信一般均采用线极化,线极化分为水平极化和垂直极化。(水平极化以//符号表示,垂直极化用⊥表示)

●天线极化的定义

以地球站的地平面为基准,天线馈源的双工器的矩形波导管口窄边平行于地平面(电场矢量平行于地平面),则为水平极化。窄边垂直于地

平面,则为垂直极化,如下图

图:水平与垂直极化波

极化角的计算方式: P=arctg 【sin(φs -φg )/tg θ】 P ─极化角

φs ─卫星(星下点)经度 φg ─地球站的经度 θ ─地球站的纬度 极化角的调整

先计算出极化角的数值,其值有三种情况

P =0: 极化角为零(当卫星经度与地球站经度一致时),不需要再旋转双工器,是水平极化就调到水平极化(或垂直极化)。

P <0:

当卫星经度小于地球站经度时,极化角得负值(此时的方位

E 垂直

E

水平 E 水平

E 垂直

角是正南偏西),对于前馈天线,逆时针旋转双工器P角度。对于后馈天线则顺时针旋转双工器以P角度。

P>:当卫星经度大于地球站经度时,极化角P得正值。(天线的方位角应是正南偏东),对于前馈天线,将双工器顺时针旋转以P角度(站在天线前)对于后馈天线,将双工器逆时针旋转以P角度(站在天线后)。

●对星的实际调整:(可分两步)

粗调――按所计算的方位角、仰角来调整天线的指向,按计算的极化角旋转双工器旋转的角度。

细调――用频谱仪,或电视卫星接收机中的信号强度指示进行调整。

●方位角、仰角、极化角计算举例

以北京为例:(东径116.46°,北纬39.92°)

三、室外单元(上、下变频器)

上变频器-将中频信号变换成射频信号称为上变频器。

下变频器-将射频信号变换成中频信号称为下变频器。

1、变频器应具备的特性:

1)低交调失真

为适应多载波工作应有足够好的交调指标。

2)频率可变性

在卫星转发器所覆盖的500MHz带宽内,应能任意变换工作频率。3)高频率稳定度

4)低的相位噪声

对数字载波而言,必须有低的相位噪声。

2、变频器的工作原理

变频器由混频器和本地振荡器所组成。混频器是将两个输入信号频率进行加、减运算的电路。

工作原理:

混频器由非线性器件和带通滤波器组成。由于混频器是非线性器件,当输入二个频率时(中频信号和本振频率)其输出,除这两个基波信号外,还会产生新的频率分量:二个输入信号的各次谐波以及各种组合频率,组合频率中最主要的是二个输入频率的和频与差频。其中和频或差频是我们所需要,一般上变频取和频。因此用带通滤波器让和频的频率通过其余的的有频率分量被抑制。因此变频器起到了频谱搬移的作用。

3、变频方式:

上、下变器的变频方式有一次变频和二次变频

1)两次变频方式

我们以C波段为例

a)上变频器

b)下变频器

中国vsat卫星通信市场发展现状与趋势(三).doc

中国VSAT卫星通信市场发展现状与趋势(三) ——2003年中国VSAT卫星通信市场发展状况及经营状况分析 一、2003年中国VSAT小站用户发展状况 截至2003年底,全国35家VSAT经营企业共计拥有小站用户34540个,比2002年的37872个减少了3332个,降幅为8.8%。其中单向数据小站26285个,比2002年28711个减少了8.4%;双向数据小站8151个,比2002年8922减少了8.6%;语音小站仅有104个,比2002年减少了一半以上。 2003年VSAT小站用户数有所减少的主要原因有以下几方面: (1)VSAT经营企业数量比2002年减少了5个,导致小站用户总数的减少; (2)VSAT经营企业受“SARS”疫情严重影响,致使企业的业务发展计划不能如期完成; (3)无线寻呼市场进一步萎缩,一些原来主要为无线寻呼提供服务的VSAT经营企业市场规模缩小,此类小站数量明显减少; (4)由于地面光网络的快速发展,使用价格大幅度下降,在激烈的市场竞争中,VSAT败下阵来,只好退出部分市场,导致VSAT双向数据小站数量的减少; (5)另外,有一些较老的经营企业因系统设备已趋陈旧,传输带宽和传输速率已不能满足用户的通信需求,致使用户退租。 2003年,单向数据业务依然是VSAT卫星通信的应用亮点,双向数据小站所占比例与上一年基本持平,而语音小站减少一半以上,市场所占比例仅为O.3%。 近年来,VSAT单向数据小站所占比例逐年提高,2003年单向数据小站的比例已经达到76.1%,预计未来两年,单向数据小站比例还将进一步提高;双向数据小站也会有一定的发展,但所占比例不会增长语音小站比例只占O.3%,无论从规模上还是所占比例上都在逐年减少,未来两年仍将保持这样趋势。 截至2003年底,单向数据小站用户数量为26285个,占到小站用户总数的76.1%,也是目前VSAT用户小站增长的主要来源。单向数据业务(如信息广播和远程应用服务等)已经成为了VSAT卫星通信业务的

卫星通信地球站

卫星通信地球站 科技名词定义 中文名称:卫星通信地球站 英文名称:satellite communication earth station;earth station of satellite communications 其他名称:卫星通信地面站 定义1:设置在地球表面,对通信卫星发射信号的设备。 应用学科:航空科技(一级学科);航空电子与机载计算机系统(二级学科) 定义2:在地球的陆上、水上、空中设置的能通过通信卫星传输信息的微波站。 应用学科:通信科技(一级学科);卫星通信(二级学科) 以上内容由全国科学技术名词审定委员会审定公布 求助编辑百科名片 卫星通信地球站,satellite communications earth station,卫星通信系统中设置在地球上(包括大气层中)的通信终端站。用户通过卫星通信地球站接入卫星通信线,进行相互间的通信。主要业务为电话、电报、传真、电传、电视和数据传输。20世纪60年代中期,为使卫星通信进入实用阶段,主要使用地球同步轨道通信卫星。卫星通信使用微波频段。由于卫星距地球3万多千米,电波路径损失很大,地球站需要采用大口径天线、大功率发射机和高灵敏度低噪声的接收系统。 目录 类型

卫星通信地球站 卫星通信地球站按使用方式分为固定站、可搬运站和移动站(船载、车载、飞机载);按通信性能分为标准站和非标准站。在标准站中又分为A、B、C、D 4种类型。A、B、D3种站的天线口径分别为29~32米、11米和4.5~5米,用于6吉赫(上行)和4吉赫(下行)通信频段的系统;C型站天线口径为16~20米,用于14吉赫(上行)和11吉赫(下行)通信频段的系统。典型的卫星通信地球站的基本组成包括:天线系统、高功率发射系统、低噪声接收系统、信道终端系统、电源系统、监控系统。为实现用户间通信,还需有地面接口系统、信息传输系统和信息交换中心。随着对卫星通信需求的日益增长和通信卫星技术的迅速发展,卫星通信地球站的种类日益增多,数量巨大。近年来世界各国竞相发展便于移动、便于安装的小型卫星通信地球站,发展了一种非常小口径通信终端(VSAT)地球站,具有广阔的应用前景。 工作过程 卫星通信地球站的工作过程与微波接力通信终端站类似。发信时,每站的用户信号(电话、电报、图像、数据等)经基带处理、调制、上变频、功率放大,变换成适于卫星信道传输的形式,由天线对准卫星发送,卫星则将 卫星通信地球站 收到的信号经转发器变频、放大及其他处理后发回地面。各地球站天线接收到卫星转来的全部信号,经过与发射相应的反变换和处理,从中选出属于本站的信号分送给有关用户。为克服电波远程传播的巨大损耗、时延和噪声干扰的影响并有效地利用卫星

中国VSAT卫星通信市场发展现状与趋势

中国VSAT卫星通信市场发展现状与趋势 ——2003年中国VSAT卫星通信市场进展状况及经营状况分析 一、2003年中国VSAT小站用户进展状况 截至2003年底,全国35家VSAT经营企业共计拥有小站用户34540个,比2002年的37872个减少了3332个,降幅为8.8%。其中单向数据小站26285个,比2002年28711个减少了8.4%;双向数据小站8151个,比2002年8922减少了8.6%;语音小站仅有104个,比2002年减少了一半以上。 2003年VSAT小站用户数有所减少的要紧缘故有以下几方面: (1)VSAT经营企业数量比2002年减少了5个,导致小站用户总数的减少; (2)VSAT经营企业受“SARS”疫情严峻阻碍,致使企业的业务进展打算不能如期完成; (3)无线寻呼市场进一步萎缩,一些原先要紧为无线寻呼提供服务的VSAT经营企业市场规模缩小,此类小站数量明显减少; (4)由于地面光网络的快速进展,使用价格大幅度下降,在猛烈的市场竞争中,VSAT败下阵来,只好退出部分市场,导致VSAT双向数据小站数量的减少; (5)另外,有一些较老的经营企业因系统设备已趋陈旧,传输带宽和传输速率已不能满足用户的通信需求,致使用户退租。 2003年,单向数据业务依旧是VSAT卫星通信的应用亮点,双向数据小站所占比例与上一年差不多持平,而语音小站减少一半以上,市场所占比例仅为O.3%。 近年来,VSAT单向数据小站所占比例逐年提高,2003年单向数据小站的比例差不多达到76.1%,估量以后两年,单向数据小站比例还将进一步提高;双向数据小站也会有一定的进展,但所占比例可不能增长语音小站比例只占O.3%,不管从规模上依旧所占比例上都在逐年减少,以后两年仍将保持如此趋势。 截至2003年底,单向数据小站用户数量为26285个,占到小站用户总数的76.1%,也是目前VSAT用户小站增长的要紧来源。单向数据业务(如信息广播和远程应用服务等)差不多成为了VSAT卫星通信业务

中国卫星通信现状和展望

中国卫星通信现状和展望 闵士权 一、卫星通信基本情况 我国卫星通信21世纪初发展基本情况如下: (1)卫星固定通信:空间段建设大发展;相应的卫星公用通信网、卫星专用通信网和卫星广播电视传输网得到较好的发展。 (2)卫星移动通信:静止轨道的便携式用户终端的全球卫星移动通信系统运营良好;中低轨道的手持式用户终端的各种全球卫星移动通信系统运营不佳。 (3)卫星直接广播:国外卫星声音直播系统正在进入中国市场;国内卫星电视直播系统已纳入国家重点建设项目,前期建设准备工作已开始。 (4)卫星宽带通信:积极发展卫星宽带通信业务;密切跟踪新型卫星宽带通信系统动态。 二、卫星固定通信情况 1. 空间段 中国独资或中外合资经营卫星的公司有5家:中国通信广播卫星公司、亚 洲通信卫星有限公司、亚太通信卫星有限公司、鑫诺卫星通信有限公司和中国 东方通信卫星有限责任公司。5家公司现有9颗静止通信卫星在轨运行提供业务,这些卫星是中星-6(东三)、亚洲-1、亚洲-2、亚洲-3S、亚太-1、 亚太-1A、亚太-2R、中卫-1和鑫诺-1。以上卫星共有346个转发器单元, 其中C频段213个,Ku频段133个。它们共覆盖了中国本土及其周边国家以及亚、太、非等部分地区。此外还有待发射的中星-8卫星,其转发器单元C频 段38个,Ku频段22个。以上卫星主要为中国国内用户服务,也为覆盖区内其 它国家和地区的用户服务。 为了开展国际业务需要,有关单位还租用了国外多颗通信卫星的转发器。 这些卫星有国际通信卫星和泛美卫星,还有银河-3R和热鸟-3通信卫星。 2.地面段 (1)公用通信国内业务:主要由中国电信、联通、网通和吉通诸公司经营。其中中国电信为最早和最大经营者。中国电信公网共用中星-6和中卫-1卫星

卫星通信

我国卫星通信的现状及发展趋势 (2011-01-28 14:47:01) 转载▼ 标签: 分类:我国卫星通信 科技 中国 卫星通信 卫星应用 应急通信 it 我国独资和中外合资经营卫星的公司有4家,内地2家,香港2家。4家公司现有8颗通信卫星在轨运行提供业务,这些卫星是亚星-2、亚星-3S,亚星-4、亚太-v、亚太-1A、亚太-2R,中卫-1和鑫诺-1。以上卫星共有329个转发器 单元。其中C频段218个,Ku频段111个。上述卫星覆 盖了中国本土及其周边国家以及亚太等部分地区。据初步 统计8颗卫星的转发器出租率为40%左右。此外,为开展 国际业务需要,有关单位还租用了国外多颗通信卫星的转 发器,有国际通信卫星、泛美通信卫星、银河-3R及热鸟- 3通信卫星。 把卫星通信业务市场按应用领域分为公众通信应用领域、专用及增值业务应用领域、广播电视应用领域及应急

通信应用领域。 据不完全统计,截止到2003年底,全国批准建立的卫星通信网有179个,各类双向通信地球站1万多座,单收站4万多个。整个广播电视传输系统现有广播电视地球上行站34个,全国卫星电视接收站约有60多万个。40余家VSAT业务提供商的VSAT小站达3万多个。此外有数十辆具有C/Ku频段的应急通信车辆;国际移动卫星通信系统提供服务的全球星卫星电话2929套,Inmarsat移动台数百个。 近年来随着光纤技术的发展,各个运营公司投入大量的资金铺设陆地和海底光缆,其容量之大和价格之低廉,卫星通信面临巨大的挑战。卫星通信必须利用自身优势寻找新的发展机会。 1实现直接到户是卫星业务市场增长的最大推动力。 其中面向消费用户的视频直播业务、宽带移动无线接

便携式卫星通信系统全

便携式卫星通信系统

目录 1需求分析 (2) 1.1 技术需求 (2) 1.2 设计思路 (2) 1.3 设计依据 (3) 2系统总体技术方案 (4) 2.1 网络拓扑 (4) 2.2 系统组成 (4) 2.3 系统功能描述 (5) 2.4 系统设计方案 (6) 2.5 设备配置表 (19) 2.6 空间卫星资源 (19)

1需求分析 根据应急通信及现场新闻采访的需求,建设1套卫星机动通信系统以满足应急通信及现场新闻采访的需求,包括1套通信固定站和1套卫星通信便携站及现场图像采集传输系统,固定站和卫星通信便携站之间的通信采用现有卫星通信ku资源实现。卫星通信便携站将通过现场图像采集传输系统采集到的话音、数据及视频传送到卫星通信便携站,再经卫星通信便携站通过卫星传输到固定站和指挥中心的大屏幕上。 根据通信系统实际情况,卫星通信系统建设规模如下: (1)指挥中心建固定卫星通信地球站; (2)建设1套机动通信机动平台。 本建议书对用户需求分析要点如下: 1.1技术需求 根据通信系统需求,工程系统配置包括固定和机动两大系统: 1、位于指挥中心的固定站通信系统:包括 ●天线系统:Ku频段天线系统一套; ●主站室外单元设备:包括低噪声放大器系统一套,SSPA系统(置BUC)一 套,安装在天线基座架上; ●室单元设备:包括调制解调器系统一套;视频编码器和解码器一套;语音网 关一套;网管、监控设备一套; 2、应急通信机动平台:包括 ●卫星通信便携站一套; 自动卫星便携天伺馈系统、一体化卫星信道设备、BUC ●单兵图传设备一套; 1.2设计思路 我们的设计原则是建立在满足用户当前需求和今后的扩展要求之上,采用以下设计思路: ●系统设计采用成熟技术,尽量减少技术风险,采用模块化、通用化设计原

卫星通信

浅述卫星通信系统 当今世界已经进入了信息时代,信息技术改变着人们的生活和工作方式,作为信息传输基础的通信技术,越来越与人们的日常生活密切相关。21世纪通信的发展与多媒体、互联网络、个人通信等高科技产物融合在一起,成为信息产业中发展最为迅速,进步最快的行业。面对如此迅猛的发展,我们必须以新观念、新思路、新模式和新设计方法去适应未来信息化社会。 卫星通信指的是在两个以上的地球站之间利用人造地球卫星作为中继站转发或反射无线电波进行的通信,之前提到的地球站是设置在地球上(包括地面、水面和低层大气中)的无线电通信站。它将通信技术、计算机技术与航空航天技术相结合的一项重要成果,并且作为一种远距离通信方式从上世纪五十年代应用至今。 目前,卫星通信广泛应用于国际通信、国内通信、国防、移动通信和广播电视等诸多领域。较其他传统的通信方式而言,卫星通信具有极大优势,特别是在边远山区、人烟稀少地区、沙漠地区、江河湖泊地区以及海岛等通信不发达的地区,卫星通信具有其他通信手段不可替代的作用。鉴于卫星通信具有的上述优势,使得它自诞生之日起便迅速发展成为现如今通信领域中最为重要的一种通信方式。 一、卫星通信系统的起源于发展 1667年,著名物理学家牛顿在开普勒三定律的基础上,总结出了万有引力定律。万有引力定律的内容是:任何两个物体之间都存在着引力,其大小与两物体的质量乘积成正比,而与两物体之间的距离平方成反比。卫星和地球也服从万有引力定律,这就使得牛顿发现的万有引力定律成为卫星诞生的理论基础。 1945年10月,就在第二次世界大战刚刚结束不久,当时的英国空军雷达军官阿瑟〃克拉克(Arthur C.Clark)在《无线电世界》杂志上发表了关于“地球外的中继站”(Extra-Terrestrial Relays)学术性文章。在

卫星通信地球站设备1概述

卫星通信地球站设备 一、地球站的分类及组成 1.1地球站的各类 1.1.1卫星通信地球站 可以按安装方式、传输信号特征、天线口径尺寸、设备规模及用途来分类: 1、按安装方式: ●固定站 ●可搬运站 ●移动站 2、按传输信号特征: ●模拟站 ●数字站 3、按业务性质: ●遥测、遥控、跟踪站 ●通信业务站 4、按用途分: ●民用通信站:公用站 专用站 ●军用通信站:战略通信站 战术通信站

●卫星广播业务 ●气象卫星 ●航空、航海、导航 ●科学实验 另外还可以按工作频段、通信卫星类型、多址方式、天线口径等分类。 目前国际上,通常地球站天线口径尺寸及G/T值的大小将地球站分为A、B、C、D、E、F、G、Z等各种类型见下表1: 表1:各类地球站的天线尺寸及性能指标 ●其中A、B、C型站称为标准站,用于国际通信;

E和F又分为E-1、E-2、E-3和F-1、F-2、F-3等类型,主要用于国内通信。 其中E-2、E-3和F-2、F-3又称为中型站。E-1、F-1称为小型站。 1.1.2VSAT地球站的分类 1、按安装方式――固定、可搬、车载、机载、船载、背负式、手提式等 站。 2、按网络结构――星状、网状、星状网状混合结构。 3、按收发方式――单收站、单发站、双向站。 4、按业务性质――固定业务和移动业务。 5、按支持的主要业务类型分――话音VSAT站、数据VSAT站、综合VSAT 站。 其它的还有按工作频段分(L波段、C波段、Ku波段等)、多址方式(FDMA、TDMA、CDMA、SDMA等)。 1.2地球站的组成 一般的卫星通信地球站,尽管对于不同的通信体制,地球站的组成不尽相同。但其基本组成一般包括: 天线分系统、发射分系统、接收分系统、信道终端设备、遥测跟踪、监控分系统、伺服跟踪分系统和电源分系统。 1.2.1VSAT地球站设备组成 VSAT卫星通信网由卫星转发器、主站(中心站)和远端小站三部分

卫星通信基础知识

卫星通信基础知识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频 电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v 表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视或其他通讯。频率在3×1011Hz-4×1014Hz 之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,

国内卫星通信业务的发展概况与思考

国内卫星通信业务的进展与考虑 一、卫星通信业务及要紧运营商 目前,国内经营卫星移动通信业务的电信运营商要紧有中国卫星集团公司的子公司中宇卫星移动通信有限责任公司和交通部中国交通通信中心的下属公司北京船舶通信导航公司。近年来,国内要紧经营或正在试验的卫星移动通信业务包括:海事卫星(Inmarsat)、铱星(Iridium)、全球星(Globalstar)和亚洲蜂窝卫星(AceS)等卫星移动通信业务。 近年来开展卫星国际专线业务的电信运营公司要紧有中国卫星集团公司的子公司中国广播卫星通信公司等单位。由于历史的缘故,有的基础电信运营商也在依照电信业务开展的实际需要经营着此类电信业务,如中国电信上海卫星通信公司和南方卫星通信公司等。 目前,卫星转发器出租、出售业务要紧的国内经营者有:中国卫星集团公司下属子公司中国东方通信卫星有限责任公司和

中国航天科技集团公司的子公司鑫诺卫星通信有限公司。 国内VSAT通信业务是一种按照增值电信业务治理的基础电信业务。因此,从事此类电信业务的运营企业在数量上就比前几种卫星通信业务要多一些。2005年度持有此类电信业务经营许可证的企业有39家,其中开通业务的约有33-35家。2004年的统计数据显示,从事此类电信业务的民营企业数量已达到总数的50%以上,其总部和主站要紧设立在北京、上海、广州、深圳、南京、成都和昆明等都市。 二、国内卫星通信业务进展概况 由于地面通信技术的飞速进展,光纤网络和移动网络资源的日益丰富,成本降低,资费下降,近几年来,国内卫星通信业务的进展面临着来自地面通信业务强有力的竞争和挑战。 1.卫星转发器出租出售业务 目前我国民用通信卫星资源十分有限,国内商用通信卫星转发器资源,不管在规模、性能、容量上与境外商用通信卫星相比都有较大的差距。

浅谈卫星通信地球站的维护管理经验

浅谈卫星通信地球站的维护管理经验 【摘要】本文从卫星通信地球站各设备在安装调试、使用维护过程中应注意的事项及卫星通信地球站的几点维护管理经验等方面,全面阐述了在卫星通信地球站维护管理过程中应注意把握的环节,总结了在维护管理过程中几点体会,对卫星通信地球站系统的维护管理具有很好的参考价值。 【关键词】卫星通信地球站;操作维护;频谱;稳定性 1.引言 卫星通信作为一体化联合作战的主要通信手段,可确保在任何情况下,甚至在地面网络无法覆盖或遭到破坏的情况下,及时、快速、可靠、稳定地提供宽带多媒体通信服务,真正做到广域无缝隙覆盖。在汶川地震、日本海啸等重大灾害中,卫星通信以其独特的优势发挥了无可替代的作用。而卫星通信地球站设备运行的稳定与否,直接关系到卫星通信业务的可靠性,所以我们应重视对卫星通信地球站的操作维护工作,更好地保障卫星通信地球站各设备的稳定运行。 2.地球站系统组成 卫星地球站是卫星通信系统中的关键组成部分,随着通信技术的发展,卫星通信设备种类越来越多、复杂程度越来越高、地球站系统规模不断扩大、业务任务多样化趋势明显。在这种条件下,大型卫星地球站面临的主要问题是:天线、射频、变频设备、解调设备、终端设备等公共资源以及多样化的终端设备等资源复杂程度高,数量大,难以有效调度;支持的众多的任务如临时视频传输、应急通信保障、业务变更调整等,人工协调困难;系统配置变化应对不及时;多种应急任务对人员技术水平要求高;资源缺乏统一的调度管理,人工协调调度效率低下,无法充分发挥设备、资源的效益。 卫星地球站的组成:天线及伺服子系统,射频收发子系统,调制解调子系统,基带子系统,监控子系统,(接口子系统),电源子系统等。 天线及跟踪伺服子系统:卫星信号的收发,及天线驱动(自动、电动、手动/跟踪)。 上行:将HPA输出的射频信号通过天线放大并向卫星发射。 下行:接收来自卫星的射频信号。 跟踪伺服:控制天线对准卫星。 射频收发子系统:完成信号的变频、放大。

船载卫星通信地球站监控系统分析及软件设计

大学毕业设计论文 题目船载卫星通信地球站监控系统分析及软件设 计 专业通信工程 学生姓名XXX 班级学号XXXXX 指导教师XXX 指导单位XXXXXXXX

摘要 在突发灾难情况下,现有的地面通信网络,往往很容易遭到破坏,且难以快速恢复,此时建立先进的应急通信系统显得格外重要。快速反应,应急开通,是抢险救灾服务中争取时间、减少损失的关键,它甚至关系到救援行动的成败。然而目前的“动中通”虽然已经应用于应急通信,但是仍然有不尽如人意的地方,未来的“动中通”应具有良好的人机界面和高度的可靠性,以嵌入式处理芯片和嵌入式实时操作系统为标志。 本课题研究是的船载卫星站监控器,它是控制物体在运动状态下能够实现实时通信、精确定位的功能。与此同时会涉及到动载体卫星通信的工作原理的理解。所谓动载体卫星通信,其工作原理是:载体在移动过程中,由于其姿态和地理位置发生的变化,会引起原对准卫星天线偏离卫星,使通信中断,因此必须对载体的这些变化进行隔离,使得天线不受影响并始终对准卫星。这就是天线稳定系统要解决的主要问题,也是移动载体进行不间断卫星通信的前提。 对于本次课题研究的主要任务是实现船载卫星站系统的监控功能,并且利用KEIL集成开发平台软件辅助实现天线监控系统的各部分功能,包括电子罗盘数据采集和处理程序的编写、监控器面板键盘程序的编写以及监控器液晶显示器显示程序的编写等。 关键词:卫星移动通信,动中通,捷联技术,单脉冲自跟踪

ABSTRACT In case of sudden disasters, the existing terrestrial telecommunication networks are often easily damaged and difficult to be recovered, Seting up an advanced emergency communications system is particularly important at this time. The rapid response and emergency open is the key to gain time to reduce the loss in the emergency rescue. Though some types of "mobile communications services" have been used in emergency communications, there are some failures in these systems, such as higher costs, poor human-computer interface. The new type of "mobile communications"system should solve those problems and enhance the reliability, the embedded chips and embedded real-time operating system will be wildly applied. The vehicle "mobile communications" reaserched in this issue can be installed in a normal cross-country vehicles and has merit of miniaturization, light-duty, rapid response, high tracking precision which improve the mobility of vehicle, so that it can automatic track satellite and set up satellite communications link qucikly, and satisfy the needs of the emergency communications and control. This research is a satellite station on board to monitor, it is to control the state of an object in motion to achieve real-time communications, precision positioning capabilities. At the same time would involve moving the satellite communications carrier the understanding of the working principle. The so-called dynamic carrier satellite communications, and its working principle is: the process in the mobile carrier, because of their attitude and location changes, will cause deviation from the original aligned satellite satellite antenna, so that communication interruption, it is necessary to isolate these changes in carrier so that the satellite antenna is not affected and always aligned. This is the antenna stabilization system to solve the main problem is uninterrupted mobile satellite communications carrier the premise. For this research the main task is to achieve satellite station ship monitoring systems, and integrated software development platform using KEIL assisted to achieve the various parts of the antenna control system functions, including electronic compass data acquisition and processing procedures for the preparation, monitoring panel keyboard and monitor procedures for the preparation of procedures for the preparation of liquid crystal display and so on. Key word: Satellite Mobile Communication, mobile communication, Strap-down technology,monopulse tracking

卫星通信系统发展简史和未来展望

卫星通信系统发展简史和未来展望 作者:张关兵 班级:通信081 学号:200810404110

摘要: 本文主要介绍卫星通信系统的发展简史和未来发展方向。主要内容有:什么是卫星通信、卫星通信中的主要技术、卫星通信在国际上和我国的发展历程、卫星通信的发展趋势和我国卫星通信发展展望。 关键字: 卫星通信北斗导航发展简史未来展望 1、卫星通信概述 卫星通信是指利用人造地球卫星作为中继站转发无线电波,在两个或多个地球站之间进行的通信。它是微波通信和航天技术基础上发展起来的一门新兴的无线通信技术,所使用的无线电波频率为微波频段(300MHz~300GHz,即波段lm~ 1min)。这种利用人造地球卫星在地球站之间进行通信的通信系统,则称为卫星通信系统,而把用于现实通信目的的人造卫星称为通信卫星,其作用相当于离地面很高的中继站,因此,可以认为卫星通信是地面微波中继通信的继承和发展,是微波接力通向太空的延伸。卫星通信是空间通信的一种形式,它主要包括卫星固定通信、卫星移动通信和卫星直接广播三大领域。由于卫星通信具有覆盖面大、频带宽、容量大、适用于多种业务、性能稳定可靠、机动灵活、不受地理条件限制、成本与通信距离无关等优点。多年来,它在国际通信、国内通信、军事通信、移动通信和广播电视等领域得到了广泛应用。下面我们就从卫星通信的发展简史、现状、趋势等方面对卫星通信进行概括和综述。 2. 卫星通信中的主要技术 2.1 CDMA技术 CDMA(码分多址)系统通过采用话音激活技术、前向纠错(FEC)技术、功率控制技术、频率复用技术、扇区技术等技术手段,可使CDMA系统容量大幅扩大,同时,它还具有抗多径干扰能力、更好的话音质量和更低的功耗以及软区切换等优点。CDMA以其本身所具有的特点及优越性而广泛应用于数字卫星通信系统中。特别是近年来,小卫星技术的发展为实现全球移动通信和卫星通信提供了条件,利用分布在中、低轨道的许多小卫星实现全球个人通信,已在国际上逐渐形成完善的体系。 CDMA移动卫星通信系统根据导频信号的幅度实现功率控制, 减少用户对星 上功率的要求从而增加系统的容量,减少多址干扰;CDMA移动卫星通信系统可

卫星通信知识点

卫星通信 卫星通信:是指利用人造地球卫星作为终极辗转发或发射无线电信号,在两个或多个地球站之间进行的通信。(特点:它覆盖面积大、不受地理条件的限制、通信频带宽、容量大、机动灵活,因而在国际和国内通信领域中,成为不可缺少的通信手段) 卫星通信系统:由空间分系统、通信地球站、跟踪遥测及指令分系统、监控管理分系统四大功能部分组成。(①跟踪遥测及指令系统对卫星进行跟踪测量控制其准确进入静止轨道上的指定位置,并对在轨卫星的轨道位置及姿态进行监视和校正。②监控管理分系统对在轨卫星的通信性能及参数进行业务开通前的监测和业务开通后的例行监测和控制,以便保证通信卫星的正常运行和工作。③空间分系统指通信卫星) 卫星转发器:装在卫星上的收、发系统称为转发器,作用是接受由各地面站发来的信号,经变换频率和放大后,再发给各收端站。它主要是由天线、接收设备、发射设备和双工器组成。(主要的功能收到地面发来的信号(上行信号)后,进行低噪声发大,然后混频,混频后的信号再进行功率放大,然后发射回地面(下行信号)。上行信号和下行信号的频率是不同的,这是为了避免在卫星天线中产生同频率信号干扰) 卫星通信频率选择中考虑的损耗(电波传播的特点) 工作频段的选择主要考虑电离层的反射、吸收;对流层的吸收、散射损耗等因数与频率的关系。常用波段:L波段(1.6/1.5GHz)C波段(6.0/4.0GHz )Ku波段(14.0/12.0GHz 14.0/11.0GHz)Ka波段30/20GHz)一般工作频率选择在1-10GHz,最理想为4-6GHz。 考虑的传播损耗:1.自由空间的传播损耗。2.大气损耗(对流层的影响和电离层的影响) 3.移动卫星通信电波的衰落现象(多径传播和多径衰落) 4.多普勒频移(由于通信双方相对位置在移动时,由多普勒效应引起的附加频移) 同步卫星:如果卫星的轨道是圆形且在赤道轨道上,卫星离地面约35860km时,其飞行的方向与地球自转的方向相同,则从地面上任何一点看去,卫星都是相对静止的,这种对地静止的同步卫星简称为静止卫星。(利用静止卫星作为中继站的通信系统,称为静止卫星通信系统。) 信道:目前常用的多址方式有FDMA/TDMA/CDMA/SDMA在信道分配技术中,信道的含义,在FDMA中是指各地球站占用的频段;在TDMA中指各地球站占用的时隙;在CDMA中是指各地球站使用的码型。 信道利用率问题 编码方式选择的原则:①保证话音质量-数码率越高越好②有较高的信道利用率-数码率越低越好 两类编码技术:①波形编码(将时域信号直接编为数字代码如PCM、ADPCM等。)②参量编码(抽取频域特征参量或其它参量进行数字编码的方式,如线性预测声编码器 LPC 等。一般常用 ADPCM 方式) 卫星通信中的差错控制与扰码 差错控制 (1)前向纠错(FEC)码是一种无反馈的差错控制方式,依靠在编码过程中选用适当的纠错码,在接收端进行识别纠错。特点:不需要重发,适合于传输时延大的白噪声信道。 前向纠错码(FEC)分为分组码和卷积码两大类。①分组码主要采用:循环冗长校验(CRC)码和循环(BCH)码②卷积码主要采用:代数译码和概率译码两种方法。 (2)重传技术 是一种反馈差错控制方式,采用双向信道,当接收端收到信号被判有误时,反NAK信号要求重发,直到信号被确认,反馈ACK(acknowledge)信号时,再发送下一组信号。 特点:由于卫星信道时延太长(单边时延为0.27秒),重传方式适合于非实时的数据信息传输。重传技术(ARQ)分三种类型(停止与等待ARQ/连续ARQ/有选择的ARQ) 信道的分配方式:①预分配方式(PA)②按需分配方式(DAMA)③随机分配方式(RA) 多径传播和多径衰落:①高频电波在传播过程中,往往经过了反射、散射、绕射等途径,最后以合成波的形式到达接收天线,这种传输方式称为多径传播。 ②在多径传播的过程中,由于传播途径变化引起的衰落现象称为多径衰落。 信道的预分配方式(PA):每个地球站预先分配一个专用的上行和下行载波频率,其他地球站要接收某一地球站信号时,必须具备接收该站频率的条件。 优点:技术成熟、工作可靠等,适合用于站少而容量大的场合。 缺点:转发器同时放大多个载波,存在互调干扰。①采用最多的方式:模拟制—频分多路复用—调频—频分多址—预分配(FDM/FM/FDMA/PA)②当前发展最快的一种方式为:数字制—时分多路复用—数字调相—频分多址—预分配(TDM/PSK/FDMA/PA) 卫星通信体制:是指卫星通信系统的工作方式(即采用的信号传输方式,信号处理方式和信号交换方式等)指以下两方面内容:①卫星通信采用的信号传输方式-多路复用方式②信号处理和交换方式(调制方式/编码方式/多址连接方式) 卫星通信采用的多路复用和调制方式 广泛采用的多路复用方式为频分多路(FDM)和时分多路(TDM)两种。 调制方式:由于不同的数字调制方式具有不同的功率利用率和频带利用率,综合两方面考虑,现在主要采用二相移相键控和四相移相键控调制方式。随着转发器线性技术的发展,也有采用正交调幅QAM方式,以提高频率利用率。 互调干扰:由于放大器存在非线性,在放大过程中不可避免地要产生谐波,而FDMA方式卫星转发器要同时

卫星通信基础知识37499

卫星通信基础知识 第一节电磁波常识 一、电磁波 振动的电场和磁场在空间的传播叫做电磁波。 由收音机收到的无线电广播信号,由电视机收到的高频电视信号,医院里物理治疗用的红外线,消毒和杀菌用的紫外线,透视照相用的X射线,以及各种可见光,都属于电磁波。 二、电磁波的频率、波长 人们用频率、波长和波速来描述电磁波的性质。 频率是指在单位时间内电场强度矢量E(或磁场强度矢量H)进行完全振动的次数,通常用f表示。波长是指在波的传播方向上相邻两个振动完全相同点之间的距离,通常用λ表示。波速是指电磁波在单位时间内传播的距离,通常用v表示。频率f,波长λ,和波速v之间满足如下关系: v=λf 如果一电磁波在一秒内振动一次,该电磁波的频率就是 1Hz ,在国际单位制中,波速的单位是m/s(米/秒) ,波长的单位是m(米) ,频率的单位是Hz. 对于无线电信号,它属于电磁波,它的传播速度为光速,即每秒约前进30万公里。 例如:对于一个频率为98MHz的调频广播节目,其波长为300,000,000米除98,000,000Hz,等于3.06米。 不同的频率的(或不同波长)电磁波具有不同的性质用途。人们按照其频率或波长的不同把电磁波分为不同的种类,频率在300GHz(1GHz=109Hz)以下的波称为无线电波,主要用于广播,电视

或其他通讯。频率在3×1011Hz-4×1014Hz之间的波称为红外线,它的显著特点是给人以“热”的感觉,常用于医学上的物理治疗或红外线加热,探测等,频率在3.84×1014HZ-7.69×1014Hz之间的波为可见光,它能引起人们的视觉,频率在8×1014Hz-3×1017Hz之间的波称为紫外线,具有较强的杀菌能力,常用于杀菌,消毒,频率在3×1017 Hz-5×1019Hz之间的波称为X射线(或伦琴射线)它的穿透能力很强,常用于金属探测,人体透视等,在原子核物理中还有频率为1018Hz-1022Hz以上的射线,其穿透能力就更强了。 三、波段与频道 由于利用频率可以计算出波长,一个频率范围将对应一个波长范围,所以频段与波段具有同样的意思。两个叫法是对应的,也是通用的,在电视广播领域中,更多使用波段。 微波是指波长在微米级的无线电信号。 按照波长和用途不同,人们把无线电波又分成许多波段,如表1.1所示。 表1.1 无线电波波段的划分 频道是指传送一个信号源节目所使用的频率(或波长)范围。通常一个频段(或波段)能够再分成多个频道。 四、极化方式

卫星通信地基础知识

卫星通信概述 1.卫星通信的基本概念与特点 定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。卫星通信又是宇宙无线电通信形式之一,而宇宙 (1)宇宙站与地球站之间的通信;(直接通信) (2(直接通信) (3)通过宇宙站转发或反射而进行的地球站间的通信。(间接通信) 第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。 大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。静止卫星是指卫星的运行轨道在赤道平面内。轨道离地面高度约为 35800km(为简单起见,经常称36000km)。 静止卫星通信的特点 (1 a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传 输与距离无关) b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收) c 通信频带宽(带宽为500M d 信号传输质量高,通信线路稳定可靠 e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信) f 可自发自收进行监测 (2 a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。 b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两 c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断 ——(现今可通过处理缩短这种现象)

d 有较大的信号传输时延(发射和接受时间)和回波干扰。 2. 卫星通信系统的组成 (1 通常卫星通信系统是由地球站、通信卫星(前两个为主要组成,负责卫星收发)、跟踪遥测及指令系统和监控管理系统(后两个提供辅助功能,监测卫星、姿态调整等)4大部分组成的,如图所示。 (2 两个地球站通过通信卫星进行通信的卫星通信线路的组成如图所示,是由发端地球站,上、下行无线传输路径和收端地球站组成的。

卫星通信的基础知识

卫星通信的基础知识

卫星通信概述 1.卫星通信的基本概念与特点 定义:卫星通信是指利用人造地球卫星作为中继站,转发或反射无线电波,在两个或多个地球站之间进行的通信。卫星通信又是宇宙无线电通信形式之一,而宇宙通信是指以宇宙飞行体为对象的无线电通信,它有三种形式: (1)宇宙站与地球站之间的通信;(直接通信) (2)宇宙站之间的通信;(直接通信) (3)通过宇宙站转发或反射而进行的地球站间的通信。(间接通信) 第三种通信方式通常称为卫星通信,当卫星为静止卫星时称为静止卫星通信。 大多数通信卫星是地球同步卫星(静止卫星:轨道在一定高度时卫星与地球相对静止)。静止卫星是指卫星的运行轨道在赤道平面内。轨道离地面高度约为35800km (为简单起见,经常称36000km)。 静止卫星通信的特点 (1)静止卫星通信的优点 a 通信距离远,且费用与通信距离无关(只要在卫星波束范围内两站之间的传 输与距离无关) b 覆盖面积大(三颗卫星即可覆盖所有地方),可进行多址通信(一发多收) c 通信频带宽(带宽为500M),传输容量大 d 信号传输质量高,通信线路稳定可靠 e 建立通信电路灵活、机动性好(只要卫星覆盖到,均可建立地面站进行通信) f 可自发自收进行监测 (2)静止卫星通信的缺点 a 静止卫星的发射与控制技术比较复杂(所以国内做卫星发射的很少)。 b 地球的两极地区为通信盲区(轨道与赤道平行,切线方向下来无法到达两 极),而且地球的高纬度地区通信效果不好。 c 存在星蚀(卫星在地球和太阳之间)和日凌(地球在太阳和卫星之间)中断 现象。——(现今可通过处理缩短这种现象)

卫星通信系统的发展及其关键技术_罗文

卫星通信系统的发展及其关键技术 罗文 (中国民用航空中南地区空中交通管理局广西分局,广西南宁530048) 摘要:卫星通信技术中星上处理(OBP)和异步传输模式(ATM)被认为是未来通信的发展方向和核心技术,本文针对卫星通信技术目前的发展现状,通过分析其在当今通信行业中所处的地位、作用以及面临的挑战,总结其关键技术,给出未来通信的发展方向,这对以后的卫星通信研究具有重要意义。 关键词:星上处理;异步转移模式;宽带IP;卫星通信 中图分类号:TN927.2文献标识码:A文章编号:1673-1131(2013)01-0157-02 1卫星通信系统的发展现状及难点 1.1卫星通信发展现状 卫星通信技术发展十分迅速,20世纪60年代时,卫星通信只是在军事上得到了应用,到了70年代时,卫星通信的发展达到了顶峰,90年代时,光纤通信诞生了,这对卫星通信造成了一次冲击,但卫星有它自己独特的特点,如卫星具有多址连接方式、可以按需分配带宽等特点,这些是光纤通信所不能及的,所以卫星通信在偏远地区,越洋通信中被优先选用。星上交换作为卫星通信的核心部分,受到国内外学者的深度研究,星上技术结合ATM,使得卫星ATM技术成为卫星领域的一个研究热点。目前许多国家就卫星ATM已经展开了深入研究,期望在未来有一个质的飞跃。 1.2现今卫星通信遇到的难点 (1)卫星通信的成本因素。众所周知,在长距离通信中,最需要的技术就是卫星通信,因为卫星通信具有通信容量大、覆盖地域广、不受地理条件限制和通信方式机动灵活等优点。但是随着对通信资费的调整后,长途通信费用大幅下降,但卫星的转发器费用却并没有因此而改变,因此使得卫星通信成本还是很高。 (2)卫星通信中宽带IP问题。当前,宽带IP卫星通信中基本上都是采用ATM传输技术,因为ATM的性能可以满足欧美等地的性能指标要求。但当系统采用RS块编码、交织以及FEC技术时,虽然提高了卫星链路的传输质量,却也在无形中增加了卫星ATM实现的复杂度,这与现在运用的卫星通信技术是不相同的。 (3)卫星通信中数据速率问题。当前是信息时代,需要有更加快捷的方式来及时地传输信息,而传统的基于频分复用和码分复用技术已经无法满足卫星通信的需求,随之出现了分组交换技术;同时,长距离的传输也带来了延时问题,这就需要通过快而有效的方法来解决延时对实时数据的影响问题。2卫星通信系统中的关键技术 2.1数据压缩技术 随着科学技术的发展,数据压缩技术已经发展得很成熟,尤其是在数据处理相关领域。数据压缩可以给通信带来很大的方便,例如节约了时间、提高了频带利用率、节约了存储空间等。数据压缩标准有很多,但被人们广泛采用的标准主要是对静止图像压缩编码的ISO标准以及CCITT的H.26标准。而在卫星通信中主要采用的是MPEG62,该项技术主要是面向对象的,而且在多媒体同步方面发挥了很好的作用,同时它的实时交换、实施表现等方面也做得很完美。2.2智能天线系统 降雨以及大地对电磁波的吸收从很大程度上导致高频段的卫星ATM网络产生突发错误,而且卫星本身也存在各种限制和随机错误,这就需要通过智能天线的多波束来覆盖到更广的区域,例如,可以采用多波束快速跳变系统;同时在低轨道系统中采用蜂窝式天线来实现跟踪和同频复用功能;星上和同步轨道系统要想构成蜂窝式覆盖图就必须要采用相控阵列天线。 2.3多址接入技术 针对接入方式,ATM/TDMA多址接入方式比FDMA和CDMA更适合星上处理卫星对多址接入的要求,因为此种方式有较好的信息传输角度、网络应用灵活性好等特点。但是,TDMA方式对速率和发射功率要求很高,这在无形中就增加了解调器的实现难度,同时也增加了载波功率与噪声功率密度的比值的要求。为了克服上述问题,该领域专家提出了一种新的方式,采用多频质的TDMA,即MF-TDMA(Multiple Frequency-TDMA)多址接入技术,它是将FDMA于TDMA相结合,这样可以降低每个TDMA链路的接入速率和调制解调器的工作速率,同时对上行链路的值C/N0(C/N0=E/N0*Rb)的要求也减弱了。 2.4卫星激光通信技术 卫星通信要求速率很高,这就需要采用激光进行通信。卫星通信采用激光可以提升卫星的通信量和保密性,减轻了卫星的重量和大小;在大气层外,没有大气的干扰,通信更加准确,同时也降低了误码率;运用激光可以提升数据的传输速率以及系统的可靠性;同时卫星通信也互不干扰,最主要的是,采用激光通信可以大幅度地降低延时,使信息能够得到及时传输,激光的这些优点都被发挥得淋漓尽致。有专家预测,激光技术运用到卫星通信中将是很有前途的,对通信行业的发展起到不可替代的作用。 2.5信道纠错编码技术 众所周知,在卫星通信中难免会产生错误,尤其是在卫星通信的过程中。ATM信元在面对突发错误时会产生很大的错误。在ATM信元中,位于ATM信头的最后一个字节是信头差错控制(HEC),它主要是通过检测和纠正单比特错误以及检测是否有多比特来保护ATM信头。所以,在出现丢失信元或者信元误插现象时,主要是由于HEC在多比特发生错误时没有发生作用。因此提出了采用交织技术来降低信元丢失率和检测不出错误的概率来保护ATM信头、改善信息的传输质量。 采用MF-TDMA的多址接入方式的星上ATM系统可为不同的地球站提供不同的QoS服务,而不同的QoS需要不同 2013年第1期(总第123期) 2013 (Sum.No123)信息通信 INFORMATION&COMMUNICATIONS 157

相关主题
文本预览
相关文档 最新文档