当前位置:文档之家› 2014届高考创新方案一轮复习教案(新课标版)(数学理)第三篇__导数及其应用_第2讲_导数的应用(一)

2014届高考创新方案一轮复习教案(新课标版)(数学理)第三篇__导数及其应用_第2讲_导数的应用(一)

2014届高考创新方案一轮复习教案(新课标版)(数学理)第三篇__导数及其应用_第2讲_导数的应用(一)
2014届高考创新方案一轮复习教案(新课标版)(数学理)第三篇__导数及其应用_第2讲_导数的应用(一)

第2讲导数的应用(一)

【2013年高考会这样考】

1.利用导数研究函数的单调性,会求函数的单调区间.

2.由函数单调性和导数的关系,求参数的范围.

基础梳理

1.导数的几何意义

函数y=f(x)在x=x0处的导数f′(x0)是曲线y=f(x)在点(x0,f(x0))处切线l的斜率,切线l的方程是y-f(x0)=f′(x0)(x-x0).

2.导数的物理意义

若物体位移随时间变化的关系为s=f(t),则f′(t0)是物体运动在t=t0时刻的瞬时速度.3.函数的单调性

在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.

f′(x)≥0?函数f(x)在(a,b)上单调递增;

f′(x)≤0?函数f(x)在(a,b)上单调递减.

易误警示

直线与曲线有且只有一个公共点,直线不一定是曲线的切线;反之直线是曲线的切线,但直线不一定与曲线有且只有一个公共点.

两个条件

(1)f′(x)>0在(a,b)上成立是f(x)在(a,b)上单调递增的充分条件.

(2)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.

三个步骤

求函数单调区间的步骤:

(1)确定函数f(x)的定义域;

(2)求导数f′(x);

(3)由f′(x)>0(f′(x)<0)解出相应的x的范围.

当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0时,f(x)在相应的区间上是减函数,还可以列表,写出函数的单调区间.

双基自测

1.(2011·山东)曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是().A.-9 B.-3

C.9 D.15

解析由已知y′=3x2,则y′|x

=1

=3

切线方程为y-12=3(x-1),

即y=3x+9.

答案 C

2.(2012·烟台模拟)函数f(x)=x2-2ln x的递减区间是().

A.(0,1] B.[1,+∞)

C.(-∞,-1),(0,1) D.[-1,0),(0,1]

解析函数的定义域为(0,+∞),

又f′(x)=2x-2

x=2

(x+1)(x-1)

x

由f′(x)≤0,解得0<x≤1.

答案 A

3.(2012·长沙一中月考)若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2的最小值为().

A.1 B. 2

C.

2

2 D. 3

解析由已知y′=2x-1

x,令2x-

1

x=1,解得x=1.曲线y=x

2-ln x在x=1处的切线方程

为y-1=x-1,即x-y=0.两直线x-y=0,x-y-2=0之间的距离为d=2

2

= 2.

答案 B

4.(人教A版教材习题改编)在高台跳水运动中,t s时运动员相对水面的高度(单位:m)是t1(t)=-4.9t2+6.5t+10,高台跳水运动员在t=1 s时的瞬时速度为________.

答案-3.3 m/s

5.函数f(x)=x3-3x2+1的递增区间是________.

解析f′(x)=3x2-6x=3x(x-2),

由f′(x)>0解得x<0,或x>2.

答案(-∞,0),(2,+∞)

考向一求曲线切线的方程

【例1】?已知函数f(x)=x3-4x2+5x-4.

(1)求曲线f(x)在x=2处的切线方程;

(2)求经过点A(2,-2)的曲线f(x)的切线方程.

[审题视点] 由导数几何意义先求斜率,再求方程,注意点是否在曲线上,是否为切点.

解(1)f′(x)=3x2-8x+5

f′(2)=1,又f(2)=-2

∴曲线f(x)在x=2处的切线方程为

y-(-2)=x-2,即x-y-4=0.

(2)设切点坐标为(x0,x30-4x20+5x0-4)

f′(x0)=3x20-8x0+5

则切线方程为

y-(-2)=(3x20-8x0+5)(x-2),

又切线过(x0,x30-4x20+5x0-4)点,

则x30-4x20+5x0-2=(3x20-8x0+5)(x0-2),

整理得(x0-2)2(x0-1)=0,

解得x0=2,或x0=1,

因此经过A(2,-2)的曲线f(x)的切线方程为x-y-4=0,或y+2=0.

首先要分清是求曲线y=f(x)在某处的切线还是求过某点曲线的切线.(1)求曲线y =f(x)在x=x0处的切线方程可先求f′(x0),利用点斜式写出所求切线方程;

(2)求过某点的曲线的切线方程要先设切点坐标,求出切点坐标后再写切线方程.

【训练1】若直线y=kx与曲线y=x3-3x2+2x相切,试求k的值.

解设y=kx与y=x3-3x2+2x相切于P(x0,y0)则

y0=kx0,①

y0=x30-3x20+2x0,②

又y′=3x2-6x+2,∴k=y′|x=x0=3x20-6x0+2,③

由①②③得:(3x 20-6x 0+2)x 0=x 30-3x 2

0+2x 0,

即(2x 0-3)x 20=0.

∴x 0=0或x 0=32,∴k =2或k =-14

.

考向二 函数的单调性与导数

【例2】?已知函数f (x )=x 3-ax 2-3x .

(1)若f (x )在[1,+∞)上是增函数,求实数a 的取值范围; (2)若x =3是f (x )的极值点,求f (x )的单调区间.

[审题视点] 函数单调的充要条件是f ′(x )≥0或f ′(x )≤0且不恒等于0. 解 (1)对f (x )求导,得f ′(x )=3x 2-2ax -3. 由f ′(x )≥0,得a ≤32? ??

??

x -1x .

记t (x )=32? ????

x -1x ,当x ≥1时,t (x )是增函数,

∴t (x )min =3

2(1-1)=0.

∴a ≤0.

(2)由题意,得f ′(3)=0,即27-6a -3=0, ∴a =4.∴f (x )=x 3-4x 2-3x ,f ′(x )=3x 2-8x -3. 令f ′(x )=0,得x 1=-1

3

,x 2=3.

当x 变化时,f ′(x )、f (x )的变化情况如下表:

∴当x ∈? ???-∞,-13,[3,+∞)时,f (x )单调递增,当x ∈???

?-13,3时,f (x )单调递减.

函数在指定区间上单调递增(减),函数在这个区间上的导数大于或等于0(小于或等

于0),只要不在一段连续区间上恒等于0即可,求函数的单调区间解f ′(x )>0(或f ′(x )<0)即可.

【训练2】 已知函数f (x )=e x -ax -1. (1)求f (x )的单调增区间;

(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,说明理由.

解f′(x)=e x-a,

(1)若a≤0,则f′(x)=e x-a≥0,

即f(x)在R上递增,

若a>0,e x-a≥0,∴e x≥a,x≥ln a.

因此f(x)的递增区间是[ln a,+∞).

(2)由f′(x)=e x-a≤0在(-2,3)上恒成立.

∴a≥e x在x∈(-2,3)上恒成立.

又∵-2

当a=e3时f′(x)=e x-e3在x∈(-2,3)上,f′(x)<0,

即f(x)在(-2,3)上为减函数,

∴a≥e3.

故存在实数a≥e3,使f(x)在(-2,3)上单调递减.

考向三利用导数解决不等式问题

【例3】?设a为实数,函数f(x)=e x-2x+2a,x∈R.

(1)求f(x)的单调区间与极值;

(2)求证:当a>ln 2-1且x>0时,e x>x2-2ax+1.

[审题视点] 第(2)问构造函数h(x)=e x-x2+2ax-1,利用函数的单调性解决.

(1)解由f(x)=e x-2x+2a,x∈R知f′(x)=e x-2,x∈R.

令f′(x)=0,得x=ln 2,于是当x变化时,f′(x),f(x)的变化情况如下表.

故f(x)

f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=e ln 2-2ln 2+2a=2(1-ln 2+a).

(2)证明设g(x)=e x-x2+2ax-1,x∈R,

于是g′(x)=e x-2x+2a,x∈R.

由(1)知当a>ln 2-1时,g′(x)的最小值为

g′(ln 2)=2(1-ln 2+a)>0.

于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.

于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).

而g(0)=0,从而对任意x∈(0,+∞),g(x)>0.

即e x-x2+2ax-1>0,故e x>x2-2ax+1.

利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对?x∈[a,b]都有f(x)≥g(x),可设h(x)=f(x)-g(x)只要利用导数说明h(x)在[a,b]上的最小值为0即可.

【训练3】已知m∈R,函数f(x)=(x2+mx+m)e x

(1)若函数没有零点,求实数m的取值范围;

(2)当m=0时,求证f(x)≥x2+x3.

(1)解由已知条件f(x)=0无解,

即x2+mx+m=0无实根,

则Δ=m2-4m<0,解得0

(2)证明当m=0时,f(x)=x2e x

设g(x)=e x-x-1,∴g′(x)=e x-1,

g(x),g′(x)随x变化情况如下:

由此可知对于x∈R,

即e x-x-1≥0,因此x2(e x-x-1)≥0,整理得

x2e x≥x3+x2,即f(x)≥x3+x2.

阅卷报告2——书写不规范失分

【问题诊断】利用导数求解函数的单调区间是高考的热点内容,这类问题求解并不难,即只需由f′(x)>0或f′(x)<0,求其解即得.但在求解时会因书写不规范而导致失分.

【防范措施】对于含有两个或两个以上的单调增区间(或单调减区间),中间用“,”或“和”连接,而不能用符号“∪”连接.

【示例】?设函数f(x)=x(e x-1)-1

2x

2,求函数f(x)的单调增区间.

错因结论书写不正确,也就是说不能用符号“∪”连接,应为(-∞,-1)和(0,+∞)实录f′(x)=e x-1+x e x-x=(e x-1)·(x+1),令f′(x)>0得,x<-1或x>0.

所以函数f(x)的单调增区间为(-∞,-1)∪(0,+∞).

正解因为f(x)=x(e x-1)-1

2x 2,

所以f′(x)=e x-1+x e x-x=(e x-1)·(x+1).

令f′(x)>0,即(e x-1)(x+1)>0,得x<-1或x>0.

所以函数f(x)的单调增区间为(-∞,-1)和(0,+∞).

【试一试】设函数f(x)=ax3-3x2,(a∈R),且x=2是y=f(x)的极值点,求函数g(x)=e x·f(x)的单调区间.

[尝试解答]f′(x)=3ax2-6x=3x(ax-2).

因为x=2是函数y=f(x)的极值点.

所以f′(2)=0,即6(2a-2)=0,因此a=1,

经验证,当a=1时,x=2是函数f(x)的极值点,

所以g(x)=e x(x3-3x2),g′(x)=e x(x3-3x2+3x2-6x) =e x(x3-6x)=x(x+6)(x-6)e x.

因为e x>0,所以y=g(x)的单调增区间是(-6,0)和(6,+∞);单调减区间是(-∞,-6)和(0,6).

高三数学专题复习:导数及其应用

【考情解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 一是导数的基本公式和运算法则,以及导数的几何意义; 二是导数的应用,特别是利用导数来解决函数的单调性与最值问题、证明不等式以及讨论方程的根等,已成为高考热点问题; 三是应用导数解决实际问题. 【知识梳理】 1.导数的几何意义 函数y=f(x)在点x=x0处的导数值就是曲线y=f(x)在点处的切线的,其切线方程是. 注意:函数在点P0处的切线与函数过点P0的切线的区别:. 2.导数与函数单调性的关系 (1)() '>0是f(x)为增函数的条件. f x 如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0. (2)() '≥0是f(x)为增函数的条件. f x 当函数在某个区间内恒有() '=0时,则f(x)为常数,函数不具有单调 f x 性. 注意:导数值为0的点是函数在该点取得极值的条件.

3. 函数的极值与最值 (1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题. (2)函数在其定义区间的最大值、最小值最多有 个,而函数的极值可能不止一个,也可能没有. (3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的 . 4. 几个易误导数公式及两个常用的运算法则 (1)(sin x )′= ; (2)(cos x )′= ; (3)(e x )′= ; (4)(a x )′= (a >0,且a ≠1); (5)(x a )′= ; (6)(log e x )′= ; (7)(log a x )′= (a >0,且a ≠1); (8)′= ; (9)??????? ? f (x ) g (x )′= (g (x )≠0) .

k52006年高考第一轮复习数学:14.1 导数的概念与运算

知识就是力量
本文为自本人珍藏
版权所有 仅供参考
※第十四章
●网络体系总览
导 概 数 念 的 导 数
导数
的 性 导 求 函 单 数 法 数 调 的 的 导 应 函 极 数 用 数 值 的 函 最 数 大 的 值 小 与 值 最
●考点目标位定位 要求: (1)了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率 等) ,掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念. (2)熟记基本求导公式〔C,xm(m 为有理数) ,sinx,cosx,ex,ax,lnx,logax 的导数〕 ,掌握 两个函数和、差、积、商的求导法则.了解复合函数的求导法则,会求某些简单函数的导数. (3)了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条 件和充分条件(导数在极值点两侧异号) ,会求一些实际问题(一般指单峰函数)的最大值 和最小值. ●复习方略指南 深入理解和正确运用极限的概念、法则是本章学习的基础,能对简单的初等函数进行求 导是本章学习的重点,能把实际问题转化为求解最大(小)值的数学模型,应用导数知识去解 决它是提高分析问题、解决问题能力,学好数学的关键. 1.熟练记忆基本求导公式和函数的求导法则,是正确进行导数运算的基础. 2.掌握导数运算在判断函数的单调性、求函数的极大(小)值中的应用,尤其要重视导数 运算在解决实际问题中的最值问题时所起的作用.
14.1
●知识梳理
导数的概念与运算
1.导数的概念: (1)如果当Δ x→0 时,
?y 有极限,我们就说函数 y=f(x)在点 x0 处可 ?x
导 , 并 把 这 个 极 限 叫 做 f ( x ) 在 点 x0 处 的 导 数 , 记 作 f ′ ( x0 ) 即 f ′ ( x0 ) = ,
?x ?0
lim
f ( x0 ? ?x) ? f ( x0 ) ?y = lim . ?x ?x?0 ?x
(2)如果函数 f(x)在开区间(a,b)内每一点都可导,就说 f(x)在开区间(a,b)内 可导.这时对于开区间(a,b)内每一个确定的值 x0,都对应着一个确定的导数 f′(x0),这样 就在开区间(a,b)内构成一个新的函数,这一新函数叫做 f(x)在开区间(a,b)内的导函 数,记作 f′(x),即 f′(x)= lim
?x ?0
f ( x ? ?x) ? f ( x) ,导函数也简称导数. ?x
2.导数的几何意义:函数 y=f(x)在点 x0 处的导数的几何意义,就是曲线 y=f(x)在点 P(x0,f(x0) )处的切线的斜率. 3.几种常见的导数: - C′=0(C 为常数);(xn)′=nxn 1;(sinx)′=cosx;(cosx)′=-sinx;(ex)′=ex;

高三数学(理科)测试题(函数、导数、三角函数、解三角形)

高三数学《函数与导数、三角函数与解三角形》测试题(理科) 一、选择题 1.设2 :f x x →是集合A 到集合B 的映射,若{}1,2B =,则A B 为 ( ) A .? B .{1} C .?或{2} D .?或{1} 2.函数x x x f ln )(+=的零点所在的区间为( ) A .(-1,0) B .(0,1) C .(1,2) D .(1,e ) 3.若函数2 ()log (3)a f x x ax =-+在区间(,]2 a -∞上为减函数,则a 的取值范围是 ( ) A .(0,1) B .(1,+∞) C .(1,23) D .(0,1)∪(1,23) 4.若0()ln 0 x e x g x x x ?≤=? >?,则1 (())2g g = ( ) A .1 2 B .1 C .1 2e D .ln 2- — 5.已知3 2 ()f x ax bx cx d =+++的图象如图所示,则有 ( ) A .0b < B .01b << C .12b << D .2b > ] 6. 已知函数()f x 定义域为R ,则下列命题: ①若()y f x =为偶函数,则(2)y f x =+的图象关于y 轴对称. ②若(2)y f x =+为偶函数,则()y f x =关于直线2x =对称. ③若函数(21)y f x =+是偶函数,则(2)y f x =的图象关于直线1 2 x 对称. ④若(2)(2)f x f x -=-,则则()y f x =关于直线2x =对称. ⑤函数(2)y f x =-和(2)y f x =-的图象关于2x =对称. 其中正确的命题序号是 ( ) A.①②④ B.①③④ C.②③⑤ D.②③④ =(sin x +cos x )2-1是( ) A .最小正周期为2π的偶函数 B .最小正周期为2π的奇函数 ` C .最小正周期为π的偶函数 D .最小正周期为π的奇函数 x

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高三数学一轮复习导数导学案

课题: 导数、导数的计算及其应用 2课时 一、考点梳理: 1.导数、导数的计算 (1).导数的概念:一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx =__________,称其为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0|x x y '=. (2).导函数: 记为f ′(x )或y ′. (3).导数的几何意义: 函数y =f (x )在x =x 0处的导数f ′(x 0)的几 何意义是曲线y =f (x )在x =x 0处的切线的斜率.相应地,切线方程为______________. ! (4).基本初等函数的导数公式 (5).导数的运算法则 (1)[f (x )±g (x )]′=__________;(2)[f (x )·g (x )]′=__________;(3)??? ?f x g x ′ =__________(g (x )≠0). (6).复合函数的导数: 2.导数与函数的单调性及极值、最值 (1)导数和函数单调性的关系: (1)对于函数y =f (x ),如果在某区间上f ′(x )>0,那么f (x )为该区间上的________;如果在某区间上f ′(x )<0,那么f (x )为该区间上的________. (2)若在(a ,b )的任意子区间内f ′(x )都不恒等于0,f ′(x )≥0?f (x )在(a ,b )上为____函数,若在(a ,b )上,f ′(x )≤0,?f (x )在(a ,b )上为____函数. [ (2)函数的极值与导数 (1)判断f (x 0)是极值的方法: 一般地,当函数f (x )在点x 0处连续时, ①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 : ①____________ ;②________________ ;③_________________________. (3)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: (1)求函数y =f (x )在(a ,b )上的________; (2)将函数y =f (x )的各极值与______________比较,其中最大的一个是最大值,最小的一个是最小值. ` 二、基础自测: 1.若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( ). A .4 B .4x C .4+2Δx D .4+2Δx 2 原函数 导函数 f (x )=c (c 为常数) f ′(x )=0 f (x )=x n (n ∈Q *) ; f ′(x )=________ f (x )=sin x f ′(x )=________ f (x )=cos x f ′(x )=________ f (x )=a x f ′(x )=________ f (x )=e x > f ′(x )=________ f (x )=lo g a x f ′(x )=________ f (x )=ln x f ′(x )=________

高中导数及其应用教案

教育教师备课手册 教师 姓名 学生姓名填写时间2012.2.1 学科数学年级高三上课时间 10:00-12:00 课时 计划 2小时 教学目标 教学内容中考复习三角形 个性化学习问题解决基础知识回顾,典型例题分析 教学重点、难点 教学过程 导数及其运用 知识网络 第1讲导数的概念及运算 ★知识梳理★ 1.用定义求函数的导数的步骤. (1)求函数的改变量Δy;(2)求平均变化率 x y ? ? .(3)取极限,得导数f'(x0)= lim → ?x x y ? ? . 2.导数的几何意义和物理意义 几何意义:曲线f(x)在某一点(x0,y0)处的导数是过点(x0,y0)的切线的 物理意义:若物体运动方程是s=s(t),在点P(i0,s(t0))处导数的意义是t=t0处 的 解析:斜率.;瞬时速度. 导数的概念 基本初等函数的导数公式 导数 函数的单调性研究 函数的极值与最值研究 导数的定义 导数的物理及几何意义 导数的运算 导数的四则运算法则及复合函数的导数 导数的应用 最优化问题 计算定积分 定积分与微积分 的基本定理 定积分的应用

3. 几种常见函数的导数 'c =0(c 为常数);()n x '=1 n nx -(R n ∈); '(sin )x = ;'(cos )x = ; (ln )x '= 1x ; (log )a x '=1 log a e x ; '()x e =x e ;'()x a =ln x a a . 解析:cos ;sin ;x x - 4.运算法则 ①求导数的四则运算法则: ' ()u v ±=' ' u v ±;' ()uv = ;' u v ?? = ??? (0)v ≠. 解析:' ' u v uv +; '' 2 u v uv v - ②复合函数的求导法则:'(())x f x ?=''()()f u x ?或x u x u y y '''?= ★ 重 难 点 突 破 ★ 1.重点:理解导数的概念与运算法则,熟练掌握常见函数的计算和曲线的切线方程的求法 2.难点:切线方程的求法及复合函数求导 3.重难点:借助于计算公式先算平均增长率,再利用函数的性质解决有关的问题. (1)平均变化率的实际含义是改变量与自变量的改变量的比。 问题1.比较函数()2x f x =与()3x g x =,当[1,2]x ∈时,平均增长率的大小. 点拨:解题规律技巧妙法总结: 计算函数的平均增长率的基本步骤是 (1)计算自变量的改变量21x x x ?=- (2)计算对应函数值的改变量22()()y f x f x ?=- (3)计算平均增长率: 2121 ()()f x f x y x x x -?=?- 对于()2x f x =,2111223,21y x ?-==?-又对于()3x g x =,212 233821 y x ?-==?- 故当[1,2]x ∈时, ()g x 的平均增长率大于()f x 的平均增长率. (2)求复合函数的导数要坚持“将求导进行到底”的原则, 问题2. 已知2 )2cos 1(x y +=,则='y . 点拨:复合函数求导数计算不熟练,其x 2与x 系数不一样也是一个复合的过程,有的同学忽视了,导致

2020届高考数学导数的11个专题

目录 导数专题一、单调性问题 (2) 导数专题二、极值问题 (38) 导数专题三、最值问题 (53) 导数专题四、零点问题 (77) 导数专题五、恒成立问题和存在性问题 (118) 导数专题六、渐近线和间断点问题 (170) 导数专题七、特殊值法判定超越函数的零点问题 (190) 导数专题八、避免分类讨论的参变分离和变换主元 (201) 导数专题九、公切线解决导数中零点问题 (214) 导数专题十、极值点偏移问题 (219) 导数专题十一、构造函数解决导数问题 (227)

导数专题一、单调性问题 【知识结构】 【知识点】 一、导函数代数意义:利用导函数的正负来判断原函数单调性; 二、分类讨论求函数单调性:含参函数的单调性问题的求解,难点是如何对参数进行分类讨论, 讨论的关键在于导函数的零点和定义域的位置关系. 三、分类讨论的思路步骤: 第一步、求函数的定义域、求导,并求导函数零点; 第二步、以导函数的零点存在性进行讨论;当导函数存在多个零点的时,讨论他们的大小关系及与 区间的位置关系(分类讨论); 第三步、画出导函数的同号函数的草图,从而判断其导函数的符号(画导图、标正负、截定义域);第四步、(列表)根据第五步的草图列出f '(x),f (x)随x 变化的情况表,并写出函数的单调区间; 第五步、综合上述讨论的情形,完整地写出函数的单调区间,写出极值点,极值与区间端点函数 值比较得到函数的最值. 四、分类讨论主要讨论参数的不同取值求出单调性,主要讨论点: 1.最高次项系数是否为0; 2.导函数是否有极值点; 3.两根的大小关系; 4.根与定义域端点讨论等。 五、求解函数单调性问题的思路: (1)已知函数在区间上单调递增或单调递减,转化为f '(x) ≥ 0 或f '(x) ≤ 0 恒成立; (2)已知区间上不单调,转化为导函数在区间上存在变号零点,通常利用分离变量法求解参 变量的范围; (3)已知函数在区间上存在单调递增或单调递减区间,转化为导函数在区间上大于零或小于 零有解. 六、原函数单调性转化为导函数给区间正负问题的处理方法 (1)参变分离; (2)导函数的根与区间端点直接比较;

高考数学第一轮复习导数概念和几何意义

第1讲 变化率与导数、导数的运算 【2014年高考会这样考】 1.利用导数的几何意义求曲线在某点处的切线方程. 2.考查导数的有关计算,尤其是简单的函数求导. 【复习指导】 本讲复习时,应充分利用具体实际情景,理解导数的意义及几何意义,应能灵活运用导数公式及导数运算法则进行某些函数求导. 基础梳理 1.函数y =f (x )从x 1到x 2的平均变化率 函数y =f (x )从x 1到x 2的平均变化率为f (x 2)-f (x 1)x 2-x 1 . 若Δx =x 2-x 1,Δy =f (x 2)-f (x 1),则平均变化率可表示为Δy Δx . 2.函数y =f (x )在x =x 0处的导数 (1)定义 称函数y =f (x )在x =x 0处的瞬时变化率li m Δx →0Δy Δx = li m Δx →0f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=li m Δx →0Δy Δx . (2)几何意义 函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点(x 0,f (x 0))处切线的斜率.相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.函数f (x )的导函数 称函数f ′(x )=li m Δx →0f (x +Δx )-f (x )Δx 为f (x )的导函数,导函数有时也记作y ′. 4.基本初等函数的导数公式 若f (x )=c ,则f ′(x )=0; 若f (x )=x α(α∈R ),则f ′(x )=αx α-1; 若f (x )=sin x ,则f ′(x )=cos x ;

导数的应用(习题课)优秀教学设计

§1.3 导数的应用(习题课)教学设计 【教材分析】 本节课是人教A版选修2-2第一章第三节内容,前面已经学习了利用导数求解函数的单调性、极值、最值、零点等问题,本节课是在前节内容的基础上,进一步学习如何利用导数研究不等式恒成立问题。这个问题属于高考压轴题的范畴,本节主要从“套路”和“模型”的角度出发,体现导数的工具性特征。 【学情分析】 学生已经学习了导数的基础知识,知道了一些解题的基本思路,但如何利用导数来解决一些较难的问题,完成对压轴题的“破冰”,学生还是无能为力,这是本节课的困难,需要进行不断的引导与强化。 【教学目标】 1、知识与技能: (1)能利用导数研究函数的单调性、极值、最值、零点等问题及不等式恒成立问题; (2)能够利用导数作图,反之可以利用图像来研究函数的性质; 2、过程与方法: 导数作为一种工具,是高中数学诸多知识的一个交汇点。通过教师思路上的引导,小组合作探究,能让学生从诸多条件中抽丝剥茧,发现解决方法,从而提高学生发现问题、解决问题的能力,深化对问题的认识,在过程中获得思维能力的提高。 3、情感与价值观: 培养学生主动学习,合作交流的意识,互相启发,相互促进,充分发挥各自的主观能动性,激发学生的学习兴趣,完善学习成果。 【教学重点】 利用“套路”和“模型”来研究导数研究不等式恒成立问题。 【教学难点】 (1)基本模型的熟悉与应用;(2)问题如何转化成“模型”来处理。 【课时设计】 两个课时,其中一个0.5个课时完成课堂练习,1.5个课时完成后面内容。 【教学策略】 采用练、评、讲的教学方法,利用几何画板、多媒体投影仪辅助教学。

【教学过程】 一、课堂练习(提前印发给学生) 问题 设计意图师生活动1、解决导数在函数中的应用问题的一般步骤:构造函数 求 求导 求 →→→ 求极值、最值 求问题的解 →→回顾定义,明确方法。 学生自主完成。 2、曲线在处的切线方程为 .x x y ln 2=e x =3、函数的单调递减区间为 . 1ln -=x x y 4、函数的极小值点为( ) x x e y x 2-=A. 1 B. C. D.2-e )2,1(-e ) ,1(e 5、函数的零点个数为( )x xe y =A. 0 B. 1 C. 2 D. 3 6、若不等式恒成立,则实数的取值范围为0ln >-x ax a ( ) A. B. C. D.??????+∞,1e [)+∞,e ??? ??+∞,1e ??? ? ? ∞-e 1,左边5个题均是导数应用中的基础题型, 练习的目的如下:1、巩固求解切线、单调区间、极值点、 零点的一般步骤;2、熟练掌握简单复合函数的求导,并能根据导函数画出原函数图像,深化对导数的理解。 学生自主完成,并 总结求解步骤,注意事项。 二、列表比较常考函数的图像与性质:(课堂完成) 教师:通过以上5个题目我们发现,含对数指数的复合函数出现的频率很高,事实上在高考中考查的也很频繁,下面我们对这几类函数进行单独研究,后期就会有意想不到收获。 学生:独立完成下表,小组内部讨论结论是否正确。 设计意图:针对高考的热点问题进行练习,先追根溯源,找到构成问题的“基本元素”,再由简到繁,引导学生体会解题思路,有意识去提炼总结,提高学生解题能力的同时增强自信心。原函数 x xe y =x e y x = x e x y = x x y ln =x x y ln = x x y ln = 定义域

最新高三数学全面练习题- 导数(含答案)

高三新数学第一轮复习单元测试(12)—导数 (理科加“积分、复数) 说明:本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分;答题时间150分钟。 第Ⅰ卷 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求 的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分). 1.(理)设a、b、c、d∈R,则复数(a+b i)(c+d i)为实数的充要条件是() A.ad-bc=0 B.ac-bd=0 C.ac+bd=0 D.ad+bc=0 (文)曲线3 =-在点(-1,-3)处的切线方程是 y x x 4 () A.74 y x=-D.2 y x=- =+ C.4 y x =+B.72 y x

2.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a = ( ) A .2 B .3 C .4 D .5 3.(理)复数z 在复平面内对应的点为A, 将点A 绕坐标原点, 按逆 时针方向旋转2 π , 再向左平移一个单位, 向下平移一个单位, 得到B 点, 此时点B 与点A 恰好关于坐标原点对称, 则复数z 为 ( ) A .-1 B .1 C .i D .- i (文)如果函数()y f x =的图像与函数32y x '=-的图像关于坐标原点 对称,则()y f x = 的表达式为 ( ) A .23y x =- B . 23y x =+ C .23y x =-+ D .23y x =-- 4. 等于 ( ) A .i B .i - C i D i (文)函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )

高考数学真题导数专题及答案

2017年高考真题导数专题 一.解答题(共12小题) 1.已知函数f(x)2(a﹣2)﹣x. (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 2.已知函数f(x)2﹣﹣,且f(x)≥0. (1)求a; (2)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 3.已知函数f(x)﹣1﹣. (1)若f(x)≥0,求a的值; (2)设m为整数,且对于任意正整数n,(1+)(1+)…(1+)<m,求m的最小值. 4.已知函数f(x)321(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (1)求b关于a的函数关系式,并写出定义域; (2)证明:b2>3a; (3)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围.5.设函数f(x)=(1﹣x2). (1)讨论f(x)的单调性; (2)当x≥0时,f(x)≤1,求a的取值范围. 6.已知函数f(x)=(x﹣)e﹣x(x≥). (1)求f(x)的导函数; (2)求f(x)在区间[,+∞)上的取值范围. 7.已知函数f(x)2+2,g(x)(﹣2x﹣2),其中e≈2.17828…是自然对数的底数.(Ⅰ)求曲线(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)(x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.

) 10.已知函数f(x)3﹣2,a∈R, (1)当2时,求曲线(x)在点(3,f(3))处的切线方程; (2)设函数g(x)(x)+(x﹣a)﹣,讨论g(x)的单调性并判断有无极值,有极值时求出极值. 11.设a,b∈R,≤1.已知函数f(x)3﹣6x2﹣3a(a﹣4),g(x)(x). (Ⅰ)求f(x)的单调区间; (Ⅱ)已知函数(x)和的图象在公共点(x0,y0)处有相同的切线, (i)求证:f(x)在0处的导数等于0; ()若关于x的不等式g(x)≤在区间[x0﹣1,x0+1]上恒成立,求b的取值范围. 12.已知函数f(x)(﹣a)﹣a2x. (1)讨论f(x)的单调性; (2)若f(x)≥0,求a的取值范围.

高三数学一轮复习 导数的综合应用

导数的综合应用 一、选择题 1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是( B ) (A)m>-2(B)m≥-2 (C)m<2 (D)m≤2 解析:函数定义域为(0,+∞), 又f'(x)=2x+m+. 依题意有f'(x)=2x+m+≥0在(0,+∞)上恒成立, ∴m≥-恒成立,设g(x)=-, 则g(x)=-≤-2, 当且仅当x=时等号成立. 故m≥-2, 故选B. 2.(2013洛阳统考)函数f(x)的定义域是R,f(0)=2,对任意x∈R,f(x)+f'(x)>1,则不等式 e x·f(x)>e x+1的解集为( A ) (A){x|x>0} (B){x|x<0} (C){x|x<-1或x>1} (D){x|x<-1或0e x-e x=0, 所以g(x)=e x·f(x)-e x为R上的增函数. 又因为g(0)=e0·f(0)-e0=1, 所以原不等式转化为g(x)>g(0), 解得x>0. 故选A. 3.如图所示,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S'(t)的图象大致为( A )

解析:由导数的定义知,S'(t0)表示面积函数S(t0)在t0时刻的瞬时变化率.如图所示,正五角星薄片中首先露出水面的是区域Ⅰ,此时其面积S(t)在逐渐增大,且增长速度越来越快,故其瞬时变化率S'(t)也应逐渐增大;当露出的是区域Ⅱ时,此时的S(t)应突然增大,然后增长速度减慢,但仍为增函数,故其瞬时变化率S'(t)也随之突然变大,再逐渐变小,但S'(t)>0(故可排除选项B);当五角星薄片全部露出水面后,S(t)的值不再变化,故其导数值S'(t)最终应等于0,符合上述特征的只有选项A. 4.已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f'(x)的图象如图所示.若两正 数a,b满足f(a+2b)<1,则的取值范围是( B ) (A)(B) (C)(-1,0) (D)(-∞,-1) 解析:因为f(x)是定义域为R的奇函数,f(-4)=-1,所以f(-4)=-f(4),所以f(4)=1,所以f(a+2b)

导数及其应用 复习课 教案

导数及其应用复习课教案 【教材分析】 导数及其应用内容分为三部分:一是导数的概念;二是导数的运算;三是导数的应用. 先让学生通过大量实例,经历有平均变化率到瞬时变化率刻画现实问题的过程,理解导数的概念及其几何意义,然后通过定义求几个简单函数的导数,从而得出导数公式及四则运算法则,最后利用导数的知识解决实际问题. 该部分共分三节,第三节则是“导数的应用”,内容包括利用导数求切线方程;判断函数的单调性;利用导数研究函数的最值、极值;导数的实际应用. 在“利用导数求切线方程”中介绍了利用导函数的几何意义求切线的斜率,进而求解切线方程;在“利用导数判断函数的单调性”中介绍了利用求导的方法来判断函数的单调性;在“利用导数研究函数的极值”中介绍了利用函数的导数求极值和最值的方法;在“导数的实际应用”中主要介绍了利用导数知识解决实际生活中的最优化问题. 【考纲解读】 导数的概念及其运算是导数应用的基础,这是高考重点考查的内容.考查方式以客观题为主,主要考查: 1.导数的几何意义,导数的四则运算及利用导数研究函数的单调性,求函数的极值、最值等. 2.与直线、圆锥曲线、分式、含参数的一元二次不等式等结合在一起考查,题型多样,属中高档题目. 【教学目标】 1.能熟练应用导数的几何意义求解切线方程 2.掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学重点】 理解并掌握利用导数知识研究函数的单调性及解决一些恒成立问题 【教学难点】 原函数和导函数的图像“互译”,解决一些恒成立问题 【学法】 本节课是在学习了导数的概念、运算、导数的应用的基础上来进行小结复习,学生已经了解了一些解题的基本思想和方法,应用导数的基本知识来解决实际问题对学生来说应该不会很陌生,所以对本节的学习应让学生能够多参与、多思考,培养他们的分析解决问题和解决问题的能力,提高应用所学知识的能力。 在课堂教学中,应该把以教师为中心转向以学生为中心,把学生自身的发展置于教育的中心位置,为学生创设宽容的课堂气氛,帮助学生确定适当的学习目标和达到目标的最佳途径,指导学生形成良好的学习习惯、掌握学习策略和发展原认知能力,激发学生的学习动机,培养学习兴趣,充分调动学生的学习积极性,倡导学生采用自主、合作、探究的方式学习。【教法】 数学是一门培养人的思维、发展人的思维的重要学科,本节课的内容是导数的应用的复习课,所以应让学生多参与,让其自主探究分析问题、解决问题,尝试归纳总结,然后由老

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高考数学导数专题复习(基础精心整理)学生版

导数专题复习(基础精心整理)学生版 【基础知识】 1.导数定义:在点处的导数记作k = 相应的切线方程是))((000x x x f y y -'=- 2.常见函数的导数公式: ①;②;③;④; ⑤;⑥;⑦;⑧ 。 3.导数的四则运算法则: (1) (2) (3) 4.导数的应用: (1)利用导数判断函数单调性: ①是增函数;②为减函数;③为常数; (2)利用导数求极值:①求导数;②求方程的根;③列表得极值(判断零点两边的导函数的正负)。 (3)利用导数求最值:比较端点值和极值 【基本题型】 一、求()y f x =在0x 处的导数的步骤:(1)求函数的改变量()()00y f x x f x ?=+?-;(2)求平均变化率 ()()00f x x f x y x x +?-?=?V ;(3)取极限,得导数()00lim x y f x x →?'=?V 。 例1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1)(0则的值是( ) A. 41- B. 2 C. 4 1 D. -2 变式1:()()()为则设h f h f f h 233lim ,430 --='→( ) A .-1 B.-2 C .-3 D .1 二、导数的几何意义 ()f x 0x x x f x x f x f x x y x ?-?+='=='→?) ()(lim )(|000 00'0C ='1()n n x nx -='(sin )cos x x ='(cos )sin x x =-'()ln x x a a a =x x e e =')('1(log )ln a x x a =x x 1 )(ln '= )()()()(])()(['+'='x g x f x g x f x g x f 2)()()()()()()(x g x g x f x g x f x g x f ' -'=' ??? ? ??' ?'='x u u f x u f ))(()(0)(x f x f ?>')(0)(x f x f ?<')(0)(x f x f ?≡')(x f '0)(='x f

届高三数学第一轮复习导数

导 数 第3章 导数及其运用 §3.1导数概念及其几何意义 重难点:了解导数概念的实际背景,理解导数的几何意义. 考纲要求:①了解导数概念的实际背景. ②理解导数的几何意义. 经典例题:利用导数的定义求函数y=|x|(x ≠0)的导数. 当堂练习: 1、在函数的平均变化率的定义中,自变量的的增量x ?满足( ) 2 3 ) 4 5A C 6A .7A .f ′(x0)>0 B .f ′(x0)<0 C .f ′(x0)=0 D .f ′(x0)不存在 8.已知命题p :函数y=f(x)的导函数是常数函数;命题q :函数y=f(x)是一次函数,则命题p 是命题q 的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.设函数f(x)在x0处可导,则0 lim →h h h x f h x ) ()(00--+等于 A .f ′(x0) B .0 C .2f ′(x0) D .-2f ′(x0) 10.设f(x)=x(1+|x|),则f ′(0)等于

A .0 B .1 C .-1 D .不存在 11.若曲线上每一点处的切线都平行于x 轴,则此曲线的函数必是___. 12.两曲线y=x2+1与y=3-x2在交点处的两切线的夹角为___________. 13.设f(x)在点x 处可导,a 、b 为常数,则0 lim →?x x x b x f x a x f ??--?+) ()(=_____. 14.一球沿一斜面自由滚下,其运动方程是s=s(t)=t2(位移单位:m ,时间单位:s),求小球在t=5时的 瞬时速度________. 15.已知质点M 按规律s=2t2+3做直线运动(位移单位:cm ,时间单位:s), (1)当t=2,Δt=0.01时,求t s ??. 法则3 2()()v x v x ???? 经典例题:求曲线y=2 1x x +在原点处切线的倾斜角. 当堂练习: 1.函数f (x )=a4+5a2x2-x6的导数为 ( ) A.4a3+10ax2-x6 B.4a3+10a2x -6x5 C.10a2x -6x5 D.以上都不对 2.函数y=3x (x2+2)的导数是( ) A.3x2+6 B.6x2 C.9x2+6 D.6x2+6

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

高三数学《导数与函数的零点问题》测试题含答案

《导数与函数的零点问题》测试题含答案 一.选择题:本大题共12小题,第1到11小题为单选题,在每小题给出的四个选项中,只有一个是符合题目要求的,第12题为多选题,全部选对为正确. 1. 函数()326x f x x =+-的零点所在的区间是( ) A .()1,0- B .()0,1 C .()1,2 D .()2,3 2. 已知函数()328f x x x =+-的零点用二分法计算,附近的函数值参考数据如下表所示: 则方程3 280x x +-=的近似解可取为(精确度为0.01)( ) A .1.50 B .1.66 C .1.70 D .1.75 3. 函数12 ()()2 x f x x =+ 的零点个数为( ) A.3 B.2 C.1 D.0 4. 已知函数()ln(1)2f x x x =++-,在下列区间中,函数()f x 一定有零点的是( ) A .[]0,1 B .[]1,2 C .[]2,3 D .[]3,4 5. 已知函数()x e f x a x =-.若()f x 没有零点,则实数a 的取值范围是( ) A .[0,)e B .(0,1) C .(0,)e D .(0,1) 6. 若方程lg ||sin ||0x x -=则其解的个数为( ) A .3 B .4 C .6 D .5 7. 设函数()2 2,0log ,0x x f x x x ?+≤? =? >??,若关于x 的方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且 1234x x x x <<<,则()312234 1 x x x x x ++ ?的取值范围是( ) A .()3,-+∞ B .(]3,3- C .[)3,3- D .(),3-∞ 8. 已知定义在R 上的奇函数()f x 满足(1)(1)f x f x -=+,当[0,1)x ∈时,21 ()21 x x f x -=+,则当函数 1 ()()3 g x f x kx =--在[0,7]上有三个零点时,实数k 的取值范围是( )

相关主题
文本预览
相关文档 最新文档