当前位置:文档之家› 初中数学分式方程(组)的特殊解法

初中数学分式方程(组)的特殊解法

初中数学分式方程(组)的特殊解法
初中数学分式方程(组)的特殊解法

分式方程(组)的特殊解法

吴行民 王爱灵

同学们已经知道,把分式方程的两边同乘以各分母的最简公分母,化为整式方程,是解分式方程的基本思路。而对于一些特殊的分式方程(组),我们还可以根据它的特征,采取灵活多变的方法求解。下面以课本习题、中考题和竞赛题为例,介绍解分式方程(组)的若干特殊方法与技巧。

一、观察法

例1、解关于x 的方程:)b a (b

1x b x a a 1≠+=+ 精讲与解:由限制条件和方程两边a ,b 及x 的“对称”关系不难看出,当x=ab 时等式成立。而该方程是一个可化为一元一次方程的分式方程,最多只有一个解,故原方程的解是x=ab 。

二、拆项法

例2、解方程:8x

717x 8x =----。 精讲与解:先注意1)7x (8x --=-,将左边第一个分式“一分为二”,就可以避开“去分母”而另辟新路。 原方程可化为87

x 17x 11=-+--

,即1=8,这是不可能的,故原方程无解。 试一试:解方程:=-++1x 31x 21

x 62-。 提示:将1x 62-拆成1x 31x 3+--。

三、添项法

例3、解方程:9

x 8x 8x 7x 6x 5x 5x 4x -----=-----。 精讲与解:原方程可化为

??

? ??----??? ??---=??? ??----??? ??---19x 8x 18x 7x 16x 5x 15x 4x 。 即9

x 18x 16x 15x 1---=---。 ∴72x 17x 30x 11x 72

x 17x 130x 11x 12222+-=+-?+--=+--。 解之,得x=7。

经检验,x=7是原方程的解。

试一试:用拆项法来解此题。

四、消去常数法

例4、解方程组:???????=-++=-++②①3y

x 25y x 283y x 20y x 35

精讲与解:两个方程左边的分母都是x+y 和y x -,右边的常数都是3,因此,消去常数就能得到x 、y 之间更为明显的数量关系。

②①-,得0y

x 5y x 7=--+。 去分母、整理,得x=6y 。代入②,解之得3y =。故x=18。

经检验,???==3

y 18x 是原方程组的解。

五、整体消元法

例5、解方程组:???????=+???? ?

?+=???? ??+②

①1x 6y 1x 141y 1x 16 精讲与解:常规方法是通过换元n y

1,m x 1==化为二元一次方程组求解。如果把“y

1x 1+”看成一个整体,代入消元,则更加简捷。 将①代入②,得1x

6614=+?

,解之,得x=18。 把x=18代入①,得y=9。

经检验,???==9y 18x 是原方程组的解。

六、倒数法

例6、解方程组:?????????=+=+=+③②①

,2

1x z zx ,3

1z y yz ,41y x xy 精讲与解:对每一个方程进行取倒数处理,原方程组可化为

?????????=+=+=+⑥⑤④

.2x

1z 13z

1y 1,4y 1x 1

④+⑤+⑥,整理,得2

9z 1y 1x 1=++ ⑦

⑦分别减去④、⑤、⑥,可得????

?????===.2z 52y ,32x 经检验,它们是原方程组的解。

该题应用两个数相等(0除外),这两个数的倒数也相等这一关系,对原方程组进行简化,从而找到了解题的简捷方法。

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

初中数学·分式知识点归纳总结

分式知识点归纳 一、分式的定义: 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子 B A 叫做分式,A 为分子,B 为分母。 二、与分式有关的条件 ①分式有意义:分母不为0(0B ≠) ②分式无意义:分母为0(0B =) ③分式值为0:分子为0且分母不为0(???≠=0 0B A ) ④分式值为正或大于0:分子分母同号(???>>00B A 或? ??<<00B A ) ⑤分式值为负或小于0:分子分母异号(?? ?<>00B A 或???><00B A ) ⑥分式值为1:分子分母值相等(A=B ) ⑦分式值为-1:分子分母值互为相反数(A+B=0) 三、分式的基本性质 (1)分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。 字母表示:C B C ??=A B A ,C B C ÷÷=A B A ,其中A 、B 、C 是整式,C ≠0。 (2)分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变, 即:B B A B B --=--=--=A A A 注意:在应用分式的基本性质时,要注意 C ≠0这个限制条件和隐含条件B ≠0。 四、分式的约分 1.定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 2.步骤:把分式分子分母因式分解,然后约去分子与分母的公因。 3.两种情形:①分式的分子与分母均为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约 去分子分母相同因式的最低次幂。 ②分子分母若为多项式,先对分子分母进行因式分解,再约分。 4.最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。 ◆约分时。分子分母公因式的确定方法: 1)系数取分子、分母系数的最大公约数作为公因式的系数. 2)取各个公因式的最低次幂作为公因式的因式. 3)如果分子、分母是多项式,则应先把分子、分母分解因式,然后判断公因式. 五、分式的通分 1.定义:把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。 (依据:分式的基本性质!) 2.最简公分母:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 ◆通分时,最简公分母的确定方法: 1.系数取各个分母系数的最小公倍数作为最简公分母的系数. 2.取各个公因式的最高次幂作为最简公分母的因式. 3.如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.

【精品】分式方程的几种特殊解法

【关键字】精品 分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式,则可以通过在方程两边都加上分式,就将原方程化简成,从而轻松获解。 解:原方程两边都加上,则可得: 去分母,得: 解得: 经检验,是原分式方程的解。 二、巧用合比性质法。 例2:解方程:。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得: 去分母并化简得:,即 解得: 经检验,是原分式方程的解。 三、巧用等比性质法。 例3、解方程:。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原

方程化简后再求解。 解:由等比性质可得:。 化简得: 经检验,是原分式方程的解。 四、分组化简法。 例4、解方程:。 分析:此方程若直接通分将会出现高次方程,并且运算过程十分复杂,做法不可取。此题可采用分组组合后各自通分的方法来求解。 解:原方程可化为: 分别通分并化简,得: 解得: 经检验,是原分式方程的解。 五、倒数法。 例5、解方程:。 分析:本题若按常规方法去做,需通分和去分母,然后再求解,过程较复杂。但如果采用倒数法,则可以简化解题过程。 解:原方程两边取倒数,得: 移项化简,得: 方程两边取倒数,得: 解得: 经检验,是原分式方程的解。 六、列项变形法。 例6、解方程:。 分析:将该方程直接去分母,方程两边的运算十分繁杂。若注意到方程的分母特点是两个连续因式的积,它们的差为1。凡是这样的分式或分数都能拆开成两个分式或分数的差,使得除首、末两项之外的中间项可以相互抵消,从而达到化繁为简。。

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

初中数学分式随堂练习40

初中数学分式随堂练习40 一、选择题(共5小题;共25分) 1. 下列各式与相等的是 A. B. D. 2. 若,,,则,,大小关系是 A. B. C. D. 3. 为保证达万高速公路在年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲 队单独完成这项工程比规定时间多用天,乙队单独完成这项工程比规定时间多用天,如果甲、乙两队合作,可比规定时间提前天完成任务.若设规定的时间为天,由题意列出的方 程是 A. B. C. D. 4. 若为整数,且的值也为整数,则所有符合条件的的值有 A. 个 B. 个 C. 个 D. 个 5. 已知关于的分式方程的解是非负数,那么的取值范围是 A. B. C. 且 D. 二、填空题(共4小题;共20分) 6. 要使有意义,则实数的取值范围是. 7. 一种病毒的直径为米,用科学记数法表示为米. 8. 如果,那么的结果是. 9. 年月,全球首个火车站在上海虹桥火车站启动.虹桥火车站中网络峰值速率为 网络峰值速率的倍.在峰值速率下传输千兆数据,网络比网络快秒,求这两种网络的峰值速率.设网络的峰值速率为每秒传输千兆数据,依题意,可列方程为. 三、解答题(共4小题;共52分) 10. 阅读下列材料:

方程的解是;的解是;的解是; (即)的解是. 观察上述方程与解的特征,猜想关于的方程的解,并利用“方程的解” 的概念进行验证. 11. 求下列各分式的值: (1),其中. (2),其中,. 12. 计算:. 13. 阅读下面材料,并解答问题. 材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式. 【解析】 由分母为,可设,则 对应任意,上述等式均成立, ,, 这样,分式被拆分成了一个整式与一个分式的和. 解答: (1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式. (2)直接写出时,的最小值为.

分式方程解法知识讲解

16.3《分式方程解法》说课稿 《课标》指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”从教师的教学角度上看:教师是进行数学活动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为数学教学主导,在设计数学活动时要遵循以下原则:一、根据学生的年龄特征和认知特点组织教学。二、重视培养学生的应用意识和实践能力。1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。2、培养学生应用数学的意识和提高解决问题的能力。三、重视引导学生自主探索,培养学生的创新精神。1、引导学生动手实践、自主探索和合作交流。2、鼓励学生解决问题策略的多样化。 四、教师对教学目标,难点,重点把握要恰当、具体。 数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。 一、设计思想: 数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富 和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。

特殊分式方程的几种特殊解法

特殊分式方程的几种特殊解法 解分式方程最常用的方法是去分母法,把分式方程化为整式方程,以之求解的过程, 但在一些具体方程中,若用去分母的方法,其未知数的次数会增大,运算复杂,计算量加 大,易出现错误,因此要善于观察具体方程的特点,对一些特殊分式方程,采用特殊方法, 会简化解题过程。 一 ?比例法 x 1 a b 例1.解方程 (b 0) x 1 a b A D 分式:观察方程,形如: 的形式,可根据比例"两外项之积等于两内项之积” B C 而直接求解。 解:原方程化为 (x 1)(a b) (a b)(x 1) 2a a x b 2 3x 3 2x 3x 1 2x 2 解:原方程化为 (2 3x)(2x 2) (3 2x)(3x 整理得13x 7, 7 x 13 经检验x —是原方程的根。 13 二.换元法 y 3 4y 8 例3.解方程 y 2 y 3 分析:本题若移项,形如— D ,如果用比例法则去分母后方程变为 B C 2 3y 24y 7 0,对一元二次方程我们还不能求解。因此,经观察发现 8 4 匚2,其中匚2与丄虫互为倒数关系,可利用换元法简便求解。 y 3 y 3 y 3 y 2 解:设'一3 A ,则原方程变形为 y 2 整理得2bx b 0, 例2.解方程: 1)

4 A 0 A 整理得A 2 4 A 2 y 3 当A 2时, 2,解得y i 7 ; y 2 当A 2时,乂卫 2,解得y y 3 3 1 、 经检验,y 1 7, y 2 都是原方程的解。 3 例4.解方程组 3 2 5 (1) x y x y 1 4 4 ⑵ y x x y 分析:方程(1),( 2)中都含有 --------------- x y 1 i 设 a , b x y x y 则方程组变形为 3b 2a 5 b 4a 4 解这个二元一次方程组, 1 1 求出a 、b 的值,代入 禾口 中,即可解出x , y 的值。 x y x y 三.倒数法 关系,可有下面解法。 解: x - 2,或x 1 4 4 因此可运用换元法, 例5.已知:x - x 分析:已知条件中, 1 ~2 x , 1 —互为倒数2- 2 21,求 x 2 2 1 ......... x , x 2 -,其中 2 2, 1 —互为倒数关系,利用此 2 1 ~~2 x 例6. 解方程: 2x 3x 2 17 分析: 3x 2 方程的左边两项为倒数之和, 2x 1 4 因此可用倒数法简化求解,

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧 【典型例题】 1. 局部通分法: 例1. 解方程:x x x x x x x x -----=-----34456778 分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。 解:方程两边分别通分并化简,得: 145178()()()() x x x x --=-- 去分母得:()()()()x x x x --=--4578 解之得:x =6 经检验:x =6是原分式方程的根。 点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。 但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。 2. 换元法: 例2. 解方程: 7643165469222x x x x x x ----+=--+ 分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。 解:设,则原方程可化为:k x x =-+265 793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930 ∴,k k ==-129320 当时,k x x =--=126702 ()()x x -+=710 解之得:,x x 1217=-=

当时,k x x =--+=-93206593202 2012019302x x -+= 解此方程此方程无解。 经检验:,是原分式方程的根。x x 1217=-= 点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。 3. 拆项裂项法: 例3. 解方程: 12442212x x x x ++-+-= 分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。 解:原方程拆项,变形为: ()()()()12222222221x x x x x x ++++-+---= 裂项为: 122222221x x x x ++-++--= 化简得:321x += 解之得:x =1 经检验:x =1是原分式方程的解。 4. 凑合法: 例4. 解方程:x x x x 4143412 +-=--- 分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。 解:部分移项得: x x x x 4143412=--+--- ∴x x x x 4143412=------ ∴x 412= ∴x =2 经检验:x =2是原分式方程的根。

分式方程的特殊解法

分式方程的特殊解法 分式方程的解法除常规的去分母法和换元法之外,还有许多特殊的解法。 一、 分组通分法: 例1、 解方程 3 2411423---=---x x x x 分析:要整个方程一起通分,计算量大又易出错。观察方程中分母的特点可联想分组通分求解。 略解:方程两边分别通分,相减得 ) 3)(4(5)1)(2(5---=---x x x x x x 当05≠-x 时,)3)(4()1)(2(--=--x x x x ,解得2 51= x 当05=-x 时,解得52=x 经检验,2 51= x 52=x 都是原方程的解 二、 分离分式法: 例2、解方程43325421+++++=+++++x x x x x x x x 分析:每个分式的分母与分子相差1,利用这特点可采用分离分式法求解 略解:原方程可变形为 4 11311511211+-++-=+-++-x x x x 整理得 )4)(3(72)5)(2(72+++=+++x x x x x x 当072=+x 时,解得2 7- =x 当072≠+x 时,方程无解 经检验2 7- =x 是原方程的解 练习:② 6 5327621+++++=+++++x x x x x x x x 解:29-=x 三、 巧添常数 例3、解方程 33224411+-++-=+-++-x x x x x x x x 解析:同样若整体通分,次数增高,运算复杂,求解困难,而方程中每个分式的分子和分母都是相同两数的差与和,可在每个分式中添加常数“1”,会使问题柳暗花明,迅捷可解,可谓别有洞天. )133()122()144()111(++-+++-=++-+++-x x x x x x x x ,即:3 2224212+++=+++x x x x x x x x

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

初中数学分式专题.

分式化简、解分式方程和应用题三个重要问题 一、分式化简 1. 在分式的运算中,有整式时,可以把整式看做分母为1的式子,然后再计算。 2. 要注意运算顺序,先乘方、再乘除、后加减,同级运算从左到右(谁在前先 算谁)依次进行。有括号的先算括号里面的 3. 如果分式的分子分母是多项式,可先分解因式,再运算。 4. 注意分式化简题不能去分母. 1.先化简,再求值:23393 x x x ++--,其中1x =-. 2.先化简,再求值 4 421642++-÷-x x x x ,其中 x = 3 . 3.先化简,再求值:22424412x x x x x x x -+÷--++-,其中x =2-2. 4.计算:2228224a a a a a a +-??+÷ ?--?? 5.化简: 35(2)482y y y y -÷+---

6.化简,: 2211()22x y x y x x y x +--++, 7.先化简,再求值:211122 x x x -??-÷ ?++??,其中2x =. 8.计算:22221(1)121 a a a a a a +-÷+---+. 二.分式方程: 解分式方程的步骤: 1、去分母,化分式方程为整式方程两边同乘 以最简公分母,分子要括起来, 2、解整式方程-------去括号、移项、合并同类项、系数化为1 3、检验-------带入最简公分母,若为零,则为増根,应舍去。 1、解分式方程: 2131 x x =--. 2、解方程223-=x x

3、解分式方程: 3131=---x x x 4、解方程: 22333x x x -+=-- 5、解方程 22111x x =--- 6、解方程: x x x -=+--23123. 7、解分式方程: 6122x x x +=-+ 8、 解方程33122x x x -+=--.

初中数学分式化解求值解题技巧大全

化简求值常用技巧 在给定的条件下求分式的值,大多数条件下难以直接代入求值,它必须根据题目本身的特点,将已知条件或所求分式适当变形,然后巧妙求解.常用的变形方法大致有以下几种: 1、 应用分式的基本性质 例1 如果12x x + =,则 24 2 1 x x x ++的值是多少? 解:由0x ≠,将待求分式的分子、分母同时除以2x ,得 原式=. 2 2 2 2 11111121 3 1()1 x x x x == = -++ + -. 2、倒数法 例2 如果12x x + =,则 24 2 1 x x x ++的值是多少? 解:将待求分式取倒数,得 4 2 2 22 2 2 1 111()1213x x x x x x x ++=+ +=+ -=-= ∴原式=13 . 3、平方法 例3 已知12x x + =,则2 2 1x x + 的值是多少? 解:两边同时平方,得 2 2 2 2 1124,42 2.x x x x ++ =∴+ =-= 4、设参数法 例4 已知 0235 a b c ==≠,求分式 2 2 2 2323ab bc ac a b c +-+-的值. 解:设 235a b c k ===,则 2,3,5a k b k c k ===. ∴原式= 22 2 2 2 2323532566.(2)2(3)3(5) 5353 k k k k k k k k k k k ?+??-??= =- +-- 例5 已知 ,a b c b c a ==求 a b c a b c +--+的值. 解:设 a b c k b c a = ==,则 ,,.a bk b ck c ak ===

初中数学分式方程典型例题讲解

第十六章分式知识点和典型例习题 【知识网络】 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历“实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲 分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:()0b c b c a a a a ±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c a c ac ac ac ±±=±=≠≠; 3.分式的乘法与除法: b d bd a c ac ?=,b c b d bd a d a c ac ÷=?= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n 6.积的乘方与幂的乘方:(ab)m = a m b n , (a m ) n = a mn 7.负指数幂: a -p = 1p a a 0 =1 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)= a 2 - b 2 ;(a ±b)2= a 2±2ab+b 2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: 形如 A B (A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母. 【例1】下列代数式中:y x y x y x y x b a b a y x x -++-+--1 , ,,21,22π,是分式的有: . 题型二:考查分式有意义的条件:在分式中,分母的值不能是零.如果分母的值是零,则分式没 有意义. 【例2】当x 有何值时,下列分式有意义 (1) 44+-x x (2)232+x x (3)122-x (4)3||6--x x (5)x x 11- 题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

分式方程的几种特殊解法

分式方程的几种特殊解法 白云中学:孙权兵 解分式方程的一般步骤:(1)去分母,化分式方程为整式方程; (2)解整式方程;(3)检验,判断所求整式方程的解是否是原分式方程的解。但在具体求解时却不能死搬硬套,尤其是在解某些特殊的分式方程时,应能根据方程的特点,采用灵活多变的解法,并施以适当的技巧,才能避繁就简,巧妙地将题目解出。下面举例谈谈解分式方程的几种特殊技巧。 一、加减相消法。 例1、解方程:2017 2018112017201811222++-=++-+x x x x x 。 分析:若直接去分母固然可以求出该题的解,但并不是最佳解题方法。如果我们发现方程两边都加上分式 2017 201812++x x ,则可以通过在方程两边都加上分式2017201812++x x ,就将原方程化简成112=+x ,从而轻松获解。 解:原方程两边都加上2017201812++x x ,则可得:11 2=+x 去分母,得:12+=x 解得:1=x 经检验,1=x 是原分式方程的解。 二、巧用合比性质法。

例2:解方程:7 81222++=++x x x x 。 分析:若我们能发现方程两边的分式的分子比分母都多1的话,则可以利用合比性质将分子化为1,从而可以轻易将方程的解求出。 解:由合比性质可得:7 7-811-2222+++=+++x x x x x x )()()()( ∴ 7 1112+=+x x 去分母并化简得:062=--x x ,即0)2)(3=+-x x ( 解得:23-==x x 或 经检验,23-==x x 或是原分式方程的解。 三、巧用等比性质法。 例3、解方程:1 3242344++=++x x x x 。 分析:该方程两边的分式的分子之差和分母之差都是常数,故可考虑先用等比性质将原方程化简后再求解。 解:由等比性质可得: 1324)13()23(2444++=+-++-+x x x x x x )()(。 ∴ 13242++= x x 化简得: 02=x ∴ 0=x 经检验,0=x 是原分式方程的解。

分式方程解题技巧(提高)

分式方程解题技巧 例一, 一般结构的分式方程 解方程:x x x x x ++-=-2227115 解:(分解因式以便确定最简公分母)原方程变形为: ) 1(7)1)(1(1)1(5++-+=-x x x x x x )1(7)1(5-+=+x x x 4=x 检验:把4=x 代入0)1)(1(≠-+x x x 所以4=x 是原方程的解。 例1:解方程:) 4)(1(52)3)(2(1)2)(1(1+++=+++++x x x x x x x 分析:一般解法,最简公分母为)4)(3)(2)(1(++++x x x x ,此题直接去分母较为复杂。经观察发现,左边分母两个因式的差等与分子,右边分母两个因式的和等与分子。故考虑将分式拆开。 解:原方程变形为: 4 11131212111+++=+-+++-+x x x x x x 4 132+=+-x x 2 7-=x 经检验27- =x 是原方程的根。 例2:解方程:

20 7245361121330163223223+++++=+++++x x x x x x x x x x 分析:经观察发现直接去分母计算量非常可观,而且分母用公式法或十字相乘法都不能分解成两个因式的积。但是,同时也发现分子的最高次项的次数都比分母的最高次项高。我们知道假分数可以转化为带分数,故考虑将假分式变为真分式。 解:原方程变形为: 20 72522134222+++++=+++++x x x x x x x x 20 725213422+++=+++x x x x x x 解得:5=x 经检验5=x 是原方程的根。 例3:解方程:02)1(2122=++-+x x x x 分析:此题借用关系式2)1(122 2-+=+x x x x 较为简单。 解:原方程变形为:0)1 (2)1 (2=+-+x x x x 设x x y 1+= 则022=-y y 0=y 或2 当0=y 时,01=+x x ,则方程无解。 当2=y 时,21=+ x x ,即0122=+-x x ,则1=x 经检验:1=x 是原方程的解。 例4:解方程:5 26423234=+-+-+x x x x 分析:根据题目特点,利用下面关系式解题较为简单, 若c c x x 11+=+(c 为常数),则X=C 或c 1。

初中数学分式方程典型例题讲解

a c=ac,b a c= a p a0=1形如 A 【例1】下列代数式中:x1 x-y ,是分式的有:.π2 x-y,a+b , x+y , (1)x-4 x+4 (2) x2+2 (3) x2-1 (4)|x|-3 (5) a=“ ± . a±ac=bc±da(a≠0,c≠0); 第十六章分式知识点和典型例习题 3.分式的乘法与除法:b ? d bd a÷ c d= b d bd ? ac 【知识网络】 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m●a n=a m+n;a m÷a n=a m-n 6.积的乘方与幂的乘方:(ab)m=a m b n,(a m) n= 7.负指数幂:a-p=1 a mn 【思想方法】 1.转化思想 转化是一种重要的数学思想方法,应用非常广泛,运用转化思想能把复杂的问题转化为简单问题,把生疏的问题转化为熟悉问题,本章很多地方都体现了转化思想,如,分式除法、分式乘法;分式加减运算的基本思想:异分母的分式加减法、同分母的分式加减法;解分式方程的基本思想:把分式方程转化为整式方程,从而得到分式方程的解等. 2.建模思想 本章常用的数学方法有:分解因式、通分、约分、去分母等,在运用数学知识解决实际问题时,首先要构建一个简单的数学模型,通过数学模型去解决实际问题,经历实际问题———分式方程模型———求解———解释解的合理性”的数学化过程,体会分式方程的模型思想,对培养通过数学建模思想解决实际问题具有重要意义. 3.类比法 本章突出了类比的方法,从分数的基本性质、约分、通分及分数的运算法则类比引出了分式的基本性质、约分、通分及分式的运算法则,从分数的一些运算技巧类比引出了分式的一些运算技巧,无一不体现了类比思想的重要性,分式方程解法及应用也可以类比一元一次方程. 第一讲分式的运算 【知识要点】1.分式的概念以及基本性质; 2.与分式运算有关的运算法则 3.分式的化简求值(通分与约分) 4.幂的运算法则 【主要公式】1.同分母加减法则:b c b±c(a≠0) a a 8.乘法公式与因式分解:平方差与完全平方式 (a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2 (一)、分式定义及有关题型 题型一:考查分式的定义(一)分式的概念: B(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式.其中A叫做分式的分子,B 叫做分式的分母. 1 a-b x2-y2x+y , 题型二:考查分式有意义的条件:在分式中,分母的值不能是零如果分母的值是零,则分式没 有意义. 【例2】当x有何值时,下列分式有意义 3x26-x1 x-1 x 2.异分母加减法则:b d bc c=ac± da ac题型三:考查分式的值为0的条件: 1、分母中字母的取值不能使分母值为零,否则分式无意义

分式及分式方程知识点总结

分式及分式方程 聚焦考点☆温习理解 一、分式 1、分式的概念 一般地,用A 、B 表示两个整式,A ÷B就可以表示成B A 的形式,如果B 中含有字母,式子B A 就叫做分式。其中,A叫做分式的分子, B 叫做分式的分母。分式和整式通称为有理式。 2、分式的性质 (1)分式的基本性质: 分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。 (2)分式的变号法则: 分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。 3、分式的运算法则 ;;bc ad c d b a d c b a bd ac d c b a =?=÷=? );()(为整数n b a b a n n n = ;c b a c b c a ±=± bd bc ad d c b a ±=± 二、分式方程 1、分式方程 分母里含有未知数的方程叫做分式方程。 2、分式方程的一般方法 解分式方程的思想是将“分式方程”转化为“整式方程”。它的一般解法是: (1)去分母,方程两边都乘以最简公分母 (2)解所得的整式方程 (3)验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根。

3、分式方程的特殊解法 换元法: 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法。 名师点睛☆典例分类 考点典例一、分式的值 【例1】(2015·黑龙江绥化)若代数式6 265x 2-+-x x 的值等于0 ,则x=_________. 【点睛】分式6 265x 2-+-x x 的值为零则有x2-5x +6为0分母2x-6不为0,从而即可求出x 的值. 【举一反三】 1.要使分式x 1x 2 +-有意义,则x 的取值应满足( ) A. x 2≠ B. x 1≠- C. x 2= D. x 1=- 2.(2015·湖南常德)若分式211 x x -+的值为0,则x = 考点典例二、分式的化简 【例2】化简:2x x x 1x 1 ---=( ) A、0 B 、1 C 、x D、 1 x x - 【点睛】观察所给式子,能够发现是同分母的分式减法。利用同分母分式的减法法则计算即可得到结果. 【举一反三】 1.化简22 a b ab b a --结果正确的是【 】 2.若241()w 1a 42a +?=--,则w =( )

分式方程的解法

分式方程的解法 多年的教学,总结了一下分式方程的解法,供大家参考,希望对大家有所帮助。 方法1:计算法 例 解方程 32 223=-++x x x 解:移项,得 ()() ()()是原方程的根时, 检验:当计算,得 4,022440 164022164-032 223=≠-+===+-=-++=--++x x x x x x x x x x x x 原理:分式的值为0,分子为0,分母不为0.方法是把所有的项集中于方程左边,右边为0 ,从而利用分式的值为0求出未知数。 方法2:分式相等法 例 解方程 32 223=-++x x x 解:原方程化为 ()()()()()()()() ()()()() 4 16 412344322322232222322222322=-=--=+--+=++--+-+=-+++-x x x x x x x x x x x x x x x x x x x 经检验,x=4是原方程的解。 原理:两分式相等,分母相等,分子也相等。 方法3:等式性质法 例 解方程 32 223=-++x x x 解:方程两边同乘()()22-+x x 得 ()()()() 4 16 412 3443223222322=-=--=+--+=++-x x x x x x x x x x 经检验,x=4是原方程的解。 原理:利用等式性质,去分母化为整式方程。方法2结合方法3,降低去分母的难度。

方法4:比例式法 例 解方程 41 5+=x x 解:两外项的乘积等于两內项的乘积 () 5 55 54154-==-+=+=x x x x x x 经检验,x=-5是原方程的解。

初中数学分式专题

1 分式化简、解分式方程和应用题三个重要问题 一、分式化简 1. 在分式的运算中,有整式时,可以把整式看做分母为1的式子,然后再计 算。 2. 要注意运算顺序,先乘方、再乘除、后加减,同级运算从左到右(谁在前先 算谁)依次进行。有括号的先算括号里面的 3. 如果分式的分子分母是多项式,可先分解因式,再运算。 4. 注意分式化简题不能去分母. 1.先化简,再求值:23393 x x x ++--,其中1x =-. 2.先化简,再求值 4 421642++-÷-x x x x ,其中 x = 3 . 3.先化简,再求值:22424412x x x x x x x -+÷--++-,其中x =2-2. 4.计算:2228224a a a a a a +-??+÷ ?--?? 5.化简: 35(2)482y y y y -÷+---

2 6.化简,: 2211()22x y x y x x y x +--++, 7.先化简,再求值:211122 x x x -??-÷ ?++??,其中2x =. 8.计算:22221(1)121 a a a a a a +-÷+---+. 二.分式方程: 解分式方程的步骤: 1、去分母,化分式方程为整式方程两边同乘 以最简公分母,分子要括起来, 2、解整式方程-------去括号、移项、合并同类项、系数化为1 3、检验-------带入最简公分母,若为零,则为増根,应舍去。 1、解分式方程: 2131 x x =--. 2、解方程223-=x x

3 3、解分式方程:313 1=---x x x 4、解方程:22 333x x x -+=-- 5、解方程22 1 11x x =--- 6、解方程:x x x -=+--23 123. 7、解分式方程:6 122x x x +=-+

相关主题
文本预览
相关文档 最新文档