当前位置:文档之家› 二元函数的极限与连续

二元函数的极限与连续

二元函数的极限与连续
二元函数的极限与连续

第6章多元微分学

教学目的:

1.理解多元函数的概念和二元函数的几何意义。

2.了解二元函数的极限与连续性的概念,以及有界闭区域上的连续函数的性质。

3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。

4.理解方向导数与梯度的概念并掌握其计算方法。

5.掌握多元复合函数偏导数的求法。

6.会求隐函数(包括由方程组确定的隐函数)的偏导数。

7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。

8.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值。

9.会用拉格郎日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。

教学重点:

1.二元函数的极限与连续性;

2.函数的偏导数和全微分;

3.方向导数与梯度的概念及其计算;

4.多元复合函数偏导数;

5.隐函数的偏导数

6.曲线的切线和法平面及曲面的切平面和法线;

7.多元函数极值和条件极值的求法。

教学难点:

1.二元函数的极限与连续性的概念;

2.全微分形式的不变性;

3.复合函数偏导数的求法;

4.隐函数(包括由方程组确定的隐函数)的偏导数;

5.拉格郎日乘数法;

6.多元函数的最大值和最小值。

6.1 二元函数的极限与连续6.1.1 区域

1.平面点集

由平面解析几何知道, 当在平面上引入了一个直角坐标系后, 平面上的点P

与有序二元实数组),(y x 之间就建立了一一对应. 于是, 我们常把有序实数组

),(y x 与平面上的点P 视作是等同的. 这种建立了坐标系的平面称为坐标平面.

二元的序实数组),(y x 的全体, 即{}R y x y x R R R ∈=?=,),(2就表示坐标平面. 坐标平面上具有某种性质B 的点的集合, 称为平面点集, 记作:

{}

B y x y x E 具有性质),(),(=。

例如, 平面上以原点为中心、r 为半径的圆内所有点的集合是 {}

222),(r y x y x C <+=

如果我们以点P 表示),(y x ,以OP 表示点P 到原点O 的距离, 那么集合C 可表成 {}

r OP P C <= .

2.邻域

设),(000y x P 是xoy 平面上的一个点, δ是某一正数. 与点),(000y x P 距离小于

δ的点),(y x P 的全体, 称为点P 0的δ邻域, 记为),(0δP U , 即

}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x P U . 邻域的几何意义:),(0δP U 表示xoy 平面上以点),(000y x P 为中心、δ >0为半径的圆的内部的点),(y x P 的全体.

点0P 的去心δ邻域, 记作) ,(0δP U ο

, 即 :}||0 |{) ,(00δδ<<=P P P P U ο

. 注:如果不需要强调邻域的半径δ, 则用)(0P U 表示点0P 的某个邻域, 点0P 的去心邻域记作)(0P U ο

.

3.点与点集之间的关系

任意一点P ∈R 2与任意一个点集E ?R 2之间必有以下三种关系中的一种:

(1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )?E , 则称P 为E 的内点;

(2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )?E =?, 则称P 为E 的外点;

(3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边界点.

E 的边界点的全体, 称为E 的边界, 记作?E .

E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .

聚点:如果对于任意给定的0>δ, 点P 的去心邻域),(δP U ο

内总有E 中的点, 则称P 是E 的聚点.

由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E 。 例如, 设平面点集E ={(x , y )|1

满足1

E 的边界点, 它们都不属于E ; 满足x 2+y 2=2的一切点(x , y )也是E 的边界点, 它们都属于E ; 点集E 以及它的界边?E 上的一切点都是E 的聚点.

4.区域

开集: 如果点集E 的点都是内点, 则称E 为开集. 闭集: 如果点集的余集E c 为开集, 则称E 为闭集. 开集的例子: E ={(x , y )|1

集合{(x , y )|1

连通性: 如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都

属于E,则称E为连通集.

区域(或开区域):连通的开集称为区域或开区域.例如E={(x,y)|1x2+y2 2}.

闭区域:开区域连同它的边界一起所构成的点集称为闭区域.例如E={(x, y)|1≤x2+y2≤2}.

有界集:对于平面点集E,如果存在某一正数r,使得E?U(O,r),

其中O是坐标原点,则称E为有界点集.

无界集:一个集合如果不是有界集,就称这集合为无界集.

例如,集合{(x,y)|1≤x2+y22}是有界闭区域;集合{(x,y)| x+y>1}是无界开区域;

集合{(x,y)| x+y≥1}是无界闭区域.

*5. n维空间

设n为取定的一个自然数,我们用n R表示n元有序数组(x1,x2,???,x n)的全体所构成的集合,即

R n=R?R?????R={(x1,x2,???,x n)| x i∈R,i=1, 2,???,n}.

R n中的元素(x1,x2,???,x n)有时也用单个字母x来表示,即x=(x1,x2,???,x n).当所有的x i(i=1, 2,???,n)都为零时,称这样的元素为R n中的零元,记为0或O .在解析几何中,通过直角坐标,R2(或R3)中的元素分别与平面(或空间)中的点或向量建立一一对应,因而R n中的元素x=(x1,x2,???,x n)也称为R n中的一个点或一个n维向量,x i称为点x的第i个坐标或n维向量x的第i个分量.特别地,R n 中的零元0称为R n中的坐标原点或n维零向量.

为了在集合R n中的元素之间建立联系,在R n中定义线性运算如下:

设x =(x 1, x 2, ? ? ? , x n ), y =(y 1, y 2, ? ? ? , y n )为R n 中任意两个元素, λ∈R , 规定 x +y =(x 1+ y 1, x 2+ y 2, ? ? ? , x n + y n ), λx =(λx 1, λx 2, ? ? ? , λx n ). 这样定义了线性运算的集合R n 称为n 维空间.

R n 中点x =(x 1, x 2, ? ? ? , x n )和点 y =(y 1, y 2, ? ? ? , y n )间的距离, 记作ρ(x , y ), 规定

2222211)( )()(),(n n y x y x y x -+???+-+-=y x ρ.

显然, n =1, 2, 3时, 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一致.

R n 中元素x =(x 1, x 2, ? ? ? , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中, 通常将||x ||记作|x |), 即

22221 ||||n

x x x ???++=x . 采用这一记号, 结合向量的线性运算, 便得

),()( )()(||||2222211y x y x ρ=-+???+-+-=-n n y x y x y x .

在n 维空间R n 中定义了距离以后, 就可以定义R n 中变元的极限: 设x =(x 1, x 2, ? ? ? , x n ), a =(a 1, a 2, ? ? ? , a n )∈R n . 如果

||x -a ||→0,

则称变元x 在R n 中趋于固定元a , 记作x →a . 显然, x →a ? x 1→a 1, x 2→a 2, ? ? ? , x n →a n .

在R n 中线性运算和距离的引入, 使得前面讨论过的有关平面点集的一系列概念, 可以方便地引入到n (n ≥3)维空间中来, 例如,

设a =(a 1, a 2, ? ? ? , a n )∈R n , δ是某一正数, 则n 维空间内的点集

U (a , δ)={x | x ∈ R n , ρ(x , a )<δ}

就定义为R n 中点a 的δ邻域. 以邻域为基础, 可以定义点集的内点、外点、边界点和聚点, 以及开集、闭集、区域等一系列概念.

6.1.2 多元函数的概念

例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系 V =πr 2h .

这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定.

例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系 V

RT p =,

其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定.

例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系 2

12

1R R R R R +=

. 这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定.

定义1:设D 是2R 的一个非空子集, 称映射R D f →:为定义在D 上的二元函数, 通常记为: ),(y x f z =,D y x ∈),((或D P P f z ∈=),() 其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量.

上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f

在点(x , y )处的函数值, 记作),(y x f , 即),(y x f z =. 值域: f (D )={z | z =f (x , y ), (x , y )∈D }.

函数的其它符号: ),(y x z z = , ),(y x g z =等.

类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数. 一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f :

D →R 就称为定义在D 上的n 元函数, 通常记为:u =f (x 1, x 2, ? ? ? , x n ), (x 1, x 2, ? ? ? , x n )∈D ,

或简记为:u =f (x ), x =(x 1, x 2, ? ? ? , x n )∈D , 也可记为:u =f (P ), P (x 1, x 2, ? ? ? , x n )∈D .

关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而, 对这类函数, 它的定义域不再特别标出. 例如, 函数z =ln(x +y )的定义域为{(x , y )|x +y >0}(无界开区域); 函数z =arcsin(x 2+y 2)的定义域为{(x , y )|x 2+y 2≤1}(有界闭区域).

二元函数的图形: 点集{(x , y , z )|z =f (x , y ), (x , y )∈D }称为二元函数z =f (x , y )的图形, 二元函数的图形是一张曲面.

例如 z =ax +by +c 是一张平面, 而函数z =x 2+y 2的图形是旋转抛物面.

6.1.3 二元函数的极限

与一元函数的极限概念类似, 如果在),(),(000y x P y x P →的过程中, 对应的函数值),(y x f 无限接近于一个确定的常数A , 则称A 是函数),(y x f 当

),(),(00y x y x →时的极限.

定义2:设二元函数),()(y x f P f =的定义域为D ,),(000y x P 是D 的聚点.如果存在常数A ,对于任意给定的正数0>ε总存在正数δ, 使得当

),(),(0δP U D y x P ο

?∈时, 都有 ε<-=-A y x f A P f ),()(

成立, 则称常数A 为函数),(y x f 当),(),(00y x y x →时的极限, 记为 A y x f y x y x =→),(lim

)

,(),(00, 或A y x f →),((),(),(00y x y x →),

也记作

A P f P P =→)(lim 0

或)()(0P P A P f →→

上述定义的极限也称为二重极限. 例4. 设2

2221

sin )(),(y x y x y x f ++=, 求证0),(lim )0,0(),(=→y x f y x .

证:因为

222

22

22222 |1sin ||| |01sin

)(||0),(|y x y

x y x y x y x y x f +≤+?+=-++=-, 可见对?ε>0, 取εδ=, 则

当δ<-+-<2

2

)0()0(0y x ,即),(),(δO U D y x P ο

?∈时,总有ε<),(y x f ,

因此0),(lim )

0,0(),(=→y x f y x 。

必须注意:

(1)二重极限存在, 是指P 以任何方式趋于0P 时, 函数都无限接近于A . (2)如果当P 以两种不同方式趋于0P 时, 函数趋于不同的值, 则函数的极限不存在. 讨论:

(i )函数???

??=+≠++=0

00 ),(222222y x y x y x xy y x f 在点(0, 0)有无极限?

提示:当点),(y x P 沿x 轴趋于点(0, 0)时,

00lim )0 ,(lim ),(lim 0

)

0,0(),(===→→→x x y x x f y x f ;

当点),(y x P 沿y 轴趋于点(0, 0)时,

00lim ) ,0(lim ),(lim 0

)

0,0(),(===→→→y y y x y f y x f .

当点),(y x P 沿直线kx y =有

22222022 )0,0(),(1lim lim k k x k x kx y x xy x kx

y y x +=+=+→=→. 因此, 函数),(y x f 在(0, 0)处无极限. (ii )

y

x xy y x +-+→11lim

)

0,0(),(

提示:y

x xy y x f +-+=

1

1),(在)0,0(点的去心领域内并不总是有意义(0≠+y x ),

这有悖于二重极限的定义,所以极限不存在。 亦可:当取路径)0(2≠-=k x kx y 时,由于极限

y

x xy y x +-+→1

1lim

)

0,0(),(=22

3011lim kx x kx x -+-→=k kx

x kx x 21)(21

lim 2230-=-→ 与k 值有关[1)1(-+αt )~t α(0→t )],所以极限不存在。

多元函数的极限运算法则: 与一元函数的情况类似. 例5:求

x xy y x )sin(lim

)2,0(),(→. 解:

y xy xy x xy y x y x ?=→→)

sin(lim )sin(lim

)

2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim

→→?==1?2=2.

注(3):求二元函数的极限一般是通过换元或代数式变形等方法把问题转化为一元函数的极限问题---即多元问题‘一元化’。需要强调的是一元函数极限的L ’Hospital 法则不能用于二元函数求极限。 例6:求下列极限 (1)

xy

y x xy 1

)

0,0(),()sin 1(lim

+→; (2)

y x y x y x 1

cos 1sin )(lim

)0,0(),(+→;

(3)2244)0,0(),()sin(lim y x y x y x ++→; (4)2

)(lim 22x y x y x xy ++∞→+∞→ 解:(1)xy

y x xy 1

)0,0(),()sin 1(lim

+→=

e xy xy

xy xy y x =+→sin sin 1)

0,0(),(]

)

sin 1[(lim ;

(2)

y x y x y x 1

cos 1sin )(lim

)0,0(),(+→=0;(无穷小乘有界函数仍为无穷小)

(3)设θθsin ,cos r y r x ==,则

2244)0,0(),()sin(lim y

x y x y x ++→=244440)sin cos sin(lim r r r r θθ+→=0)cos (sin lim 4

420=+→θθr r ; (4)由于:22

2

)2

1()(21)

(

02

2

222

2x x x y x y x y x xy =????

?

? ??++≤+≤,0)21(lim 2

=+∞→x x ,

由夹逼法则可知原极限等于零。

6.1.4 二元函数的连续性

定义3:设二元函数),()(y x f P f =的定义域为D ,),(000y x P 为D 的聚点, 且

D P ∈0.如果

),(),(lim

00)

,(),(00y x f y x f y x y x =→,

则称函数),(y x f 在点),(000y x P 连续.

如果函数),(y x f 在D 的每一点都连续, 那么就称函数),(y x f 在D 上连续,

或者称),(y x f 是D 上的连续函数.

二元函数的连续性概念可相应地推广到n 元函数f (P )上去. 例7:设x y x f sin ),(=,证明),(y x f 是2R 上的连续函数。

证 设2000),(R y x P ∈, ?ε>0, 由于x sin 在0x 处连续, 故?δ>0, 当δ<-0x x 时, 有 ε<-0sin sin x x

以上述δ作P 0的δ邻域),(0δP U ,则当),(),(0δP U y x P ∈时, 显然 ),(),(00y x f y x f -=ε<-0sin sin x x

即x y x f sin ),(=在点),(000y x P 连续. 由0P 的任意性知, x sin 作为y x ,的二元函数在2R 上连续。

证 对于任意的2000),(R y x P ∈,因为

),(sin sin lim

),(lim 000)

,(),()

,(),(0000y x f x x y x f y x y x y x y x ===

→→,

所以函数x y x f sin ),(=在点),(000y x P 连续. 由0P 的任意性知, x sin 作为y x ,的二元函数在2R 上连续.

类似的讨论可知, 一元基本初等函数看成二元函数或二元以上的多元函数时, 它们在各自的定义域内都是连续的.

定义4:设函数),(y x f 的定义域为D ,),(000y x P 是D 的聚点. 如果函数

),(y x f 在点),(000y x P 不连续, 则称),(000y x P 为函数),(y x f 的间断点. 例如:函数???

??=+≠++=0

00 ),(222222y x y x y x xy y x f ,

其定义域2R D =,O (0, 0)是D 的聚点. ),(y x f 当(x , y )→(0, 0)时的极限不存在, 所以点O (0, 0)是该函数的一个间断点.

又如, 函数1

1sin

22-+=y x z , 其定义域为D ={(x , y )|x 2+y 2≠1}, 圆周C ={(x , y )|x 2+y 2=1}上的点都是D 的聚点, 而),(y x f 在C 上没有定义, 当然),(y x f 在C 上各点都不连续, 所以圆周C 上各点都是该函数的间断点. 注: 间断点可能是孤立点也可能是曲线上的点.

可以证明, 多元连续函数的和、差、积仍为连续函数; 连续函数的商在分母不为零处仍连续; 多元连续函数的复合函数也是连续函数.

多元初等函数: 与一元初等函数类似, 多元初等函数是指可用一个式子所表示的多元函数, 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.

例如2

221y

y x x +-+, )sin(y x +, 2

22z y x e ++都是多元初等函数. 一切多元初等函数在其定义区域内是连续的. 所谓定义区域是指包含在定义域内的区域或闭区域.

由多元连续函数的连续性, 如果要求多元连续函数)(P f 在点P 0处的极限, 而该点又在此函数的定义区域内, 则)()(lim 00

P f P f p p =→。

例8:求

xy y

x y x +→)2,1(),(lim

.

解: 函数xy

y

x y x f +=

),(是初等函数, 它的定义域为{}0,0),(≠≠=y x y x D , )2,1(0P 为D 的内点, 故存在0P 的某一邻域D P U ?)(0,而任何邻域都是区域,

所以)(0P U 是),(y x f 的一个定义区域, 因此

2

3)2,1(),(lim )

2,1(),(=

=→f y x f y x . 一般地, 求)(lim 0

P f P P →时, 如果)(P f 是初等函数, 且0P 是)(P f 的定义域的内

点, 则)(P f 在点0P 处连续, 于是)()(lim 00

P f P f P P =→.

例9:求xy

xy y x 1

1lim

)

0 ,0(),(-+→. 解: )

11()11)(11(lim

11lim

)0 ,0(),()

0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x .

多元连续函数的性质:

性质1 (有界性与最大值最小值定理)在有界闭区域D 上的多元连续函数, 必定在D 上有界, 且能取得它的最大值和最小值.

性质1就是说, 若)(P f 在有界闭区域D 上连续, 则必定存在常数M >0, 使得对一切D P ∈,有M P f ≤)(,且存在D P P ∈21,,使得 {}D P P f P f ∈=)(max )(1;{}D P P f P f ∈=)(min )(2,

性质2 (介值定理) 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值.

思考:一元连续函数的零点存在定理在多元连续函数中该如何理解?

求多元函数极限的方法

求多元函数极限的方法 【摘要】对于大部分学生,尤其是初接触高等数学的同学而言,极限是一道很难过的关,因为那种“无限逼近”却又“无法达到”的抽象对于刚刚结束中学数学学习,习惯于具体图形分析、函数计算的同学来说,在思维上有了更高的要求。而对于高等数学来讲,极限又是相当重要的基础,不管是函数连续性的验证,亦或是单侧导数的求解,极限都是很重要的一个环节,它就相当于一条线惯于始终,所以说学好极限,是学好高等数学的一个起点。【1】 【关键词】多元函数;求极限多种方法;求极限常出现的错误 【引言】之前学过如连续、导数微分和积分等都要用极和秋极限的方法,例如:利用定义来求极限、用柯西收敛准则、利用两边夹定理等等。这些方法虽然简便易于理解和掌握,但对 于一些特殊的极限题目很难解决,例如:设0a >,10a >,2 12(3) 3n n n n a a a a a a ++=+求lim n n a →∞的问题题目尽给出了第n 项和第n +1项的关系若用利用定义来求极限、用柯西收敛准则 1 ! lim ! n k n k n =→∞ ∑及求一些复合函数极限的问题本文将探讨一些特殊的求极限的方法,对某些用常 见方法不易求解的题目运用此方法可以容易地解出。【2】本文将从多个方面,通过利用极限的性质及相关概念和几个典型例题对常用求极限的方法进行解析,并列出容易出错的地方。 1 利用极限定义的思想观察函数的极限 例1、讨论当x → 12时函数y =21 x x +的极限。我们列出了当x →12 时某些函数值,考察 从列表可以看出,当x 趋向于2时,y 就趋向于0.7,即x →2 时,y =21 x x +的极限是0.75。 2、利用四则运算法则求极限 例2(1)求2 3 32 1 lim(4)x x x →-+ (2)221 lim 21 x x x →-+ 解(2)2 21lim 21x x x →-+=2 2 2 lim(1)3lim(21)5 x x x x →→-=+ 3、利用无穷小量与无穷大量的关系及无穷小量的性质求极限 例3求0 1 lim sin x x x →

求二元函数极限地几种方法

精彩文档 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21 lim y x y x +→=3 1.

精彩文档 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) () () ,0,02 211lim 231x y x y →+= ++ ()( 22 ,0,0lim x y →= + 11022 = +=.

数学分析下——二元函数的极限课后习题

第二节 二元函数的极限 1、试求下列极限(包括非正常极限): (1)(,)(0,0)lim x y x 2y 2x 2+y 2 ; (2)(,)(0,0)lim x y 1+x 2+y 2x 2+y 2 ; (3) (,)(0,0) lim x y x 2+y 21+x 2+y 2 -1 ; (4)(,)(0,0)lim x y xy+1 x 4+y 4 ; (5)(,) (1,2)lim x y 12x-y ; (6)(,)(0,0)lim x y (x+y)sin 1 x 2+y 2 ; (7)(,)(0,0)lim x y sin(x 2+y 2)x 2+y 2 x 2+y 2 . 2、讨论下列函数在点(0,0)的重极限与累次极限: (1)f(x,y)=y 2x 2+y 2 ; (2)f(x,y)=(x+y)sin 1x sin 1y ; (3)f(x,y)=x 2y 2x 2y 2+(x-y)2 ; (4)f(x,y)=x 3+y 3 x 2+y ; (5)f(x,y)=ysin 1x ; (6)f(x,y)=x 2y 2 x 3+y 3 ; (7)f(x,y)=e x -e y sinxy . 3、证明:若1 。 (a,b) lim (x,y )f(x,y)存在且等于A ;2。 y 在b 的某邻域内,有 lim x a f(x,y)= (y)则 y b lim a lim x f(x,y)=A. 4、试应用ε—δ定义证明 (x,y)(0,0)lim x 2y x 2+y 2 =0. 5、叙述并证明:二元函数极限的唯一性定理、局部有界性定理与局部保号性定理. 6、试写出下列类型极限的精确定义: (1) (x,y) ( ,) lim f(x,y)=A ; (2) (x,y) (0, ) lim f(x,y)=A. 7、试求下列极限: (1) (x,y) ( , )lim x 2+y 2 x 4+y 4 ; (2)(x,y)(, ) lim (x 2+y 2)e -(x+y);

(整理)二元函数极限的求法.

二元函数极限的求法 数学与统计学院、数学与应用数学、0701班,湖北,黄石,435002 1.引言 多元函数的极限在高等数学中非常重要,但由于多元函数的自变量多,因此对于判断其极限存在与否及其求法,比起一元函数的极限就显得比较困难.求极限和证明极限的方法很多,一般我们常用定义法,初等变形法,两边夹准则,阶的估计等.在这几种方法中,定义法是基础,但是比较繁琐,其他方法有的较易,有的较难,让人不知道从何下手.因此,我们有必要总结探讨出比较容易好的方法去求多元函数的极限.多元函数极限在现在的生活中也有很大的用处,比如工程计算方面.从以上来看,研究归纳总结多元函数极限的求法问题是有意义和必要的.本文主要研究二元函数极限的定义以及二元函数极限求解的几种方法,并以实例加以说明. 2.二元函数极限的定义 定义1 设E 是2R 的一个子集,R 是实数集,f 是一个规律,如果对E 中的每一点(,)x y ,通过规律f ,在R 中有唯一的一个u 与此对应,则称f 是定义在E 上的一个二元函数,它在点(,)x y 的函数值是u ,并记此值为(,)f x y ,即(,)u f x y =. 有时,二元函数可以用空间的一块曲面表示出来,这为研究问题提供了直观想象.例如,二元函数222y x R x --=就是一个上半球面,球心在原点,半径为R ,此函数定义域为满足关系式222R y x ≤+的x ,y 全体,即 }|),{(222R y x y x D ≤+=.又如,xy Z =是马鞍面. 知道多元函数的定义之后,在我们求多元函数极限之前我们必须知道多

元函数极限的定义. 定义2 设E 是2R 的一个开集,A 是一个常数,二元函数()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当()00,r M M δ<<时,有()f M A ε-<,就称A 是二元函数在0M 点的极限.记为()0 lim M M f M A →=或 ()()0f M A M M →→. 定义的等价叙述 1 :设E 是2R 的一个开集,A 是一个常数,二元函数 ()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当()() 22 000x x y y δ< -+-<时,有(,)f x y A ε-<,就称A 是二元函数在0 M 点的极限。记为()0 lim M M f M A →=或()()0f M A M M →→. 定义的等价叙述2: 设E 是2R 的一个开集,A 是一个常数,二元函数 ()(,)f M f x y =在点()000,M x y E ∈附近有定义.如果0>?ε,0>?δ,当 000,0x x y y δδ<-<<-<且()()00,,x y x y ≠时, 有(,)f x y A ε-<,就称A 是二元函数在0M 点的极限.记为 ()0 l i m M M f M A →=或 ()()0f M A M M →→. 注:(1)和一元函数的情形一样,如果0 lim ()M M f M A →=,则当M 以任何 点列及任何方式趋于0M 时,()f M 的极限是A ;反之,M 以任何方式及任何点列趋于0M 时,()f M 的极限是A .但若M 在某一点列或沿某一曲线0M →时,()f M 的极限为A ,还不能肯定()f M 在0M 的极限是A . 二元函数的极限较之一元函数的极限而言,要复杂得多,特别是自变量的变化趋势,较之一元函数要复杂.

求二元函数极限的几种方法二元函数极限定理

1 / 15 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125. x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

2 / 15 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解 : 00 x y →→ 00 x y →→= 0x y →→= 00 1. 4 x y →→==-例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解 : 原式 ()() ( ) )() () ,0,02 211lim 231x y x y →= + ()( 22 ,0,0lim x y →= + 11022 = +=.

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

求二元函数极限几种方法

1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈I 时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求 在点(1,2)的极限. 解: 因为在点(1,2)处连续,所以 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 . 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等.

例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 0x y →→= 00 1. 4 x y →→==-例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) ( ) () ,0,02 211lim 231x y x y →= + ()( 22 ,0,0lim x y →= + 11022 = +=. 2.3 利用等价无穷小代换 一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的 等价无穷小((,)0)u x y →,有 sin (,)(,)u x y u x y :; 2(,) 1cos (,)2 u x y u x y -:;

求多元函数极限的方法

求多元函数极限的方法 【摘要】对于大部分学生,尤其是初接触高等数学的同学而言,极限是一道很难过的关,因为那种“无限逼近”却又“无法达到”的抽象对于刚刚结束中学数学学习,习惯于具体图形分析、函数计算的同学来说,在思维上有了更高的要求。而对于高等数学来讲,极限又是相当重要的基础,不管是函数连续性的验证,亦或是单侧导数的求解,极限都是很重要的一个环节,它就相当于一条线惯于始终,所以说学好极限,是学好高等数学的一个起点。【1】 【关键词】多元函数;求极限多种方法;求极限常出现的错误 【引言】之前学过如连续、导数微分和积分等都要用极和秋极限的方法,例如:利用定义来求极限、用柯西收敛准则、利用两边夹定理等等。这些方法虽然简便易于理解和掌握,但对 于一些特殊的极限题目很难解决,例如:设0a >,10a >,2 12(3) 3n n n n a a a a a a ++=+求lim n n a →∞的问题题目尽给出了第n 项和第n +1项的关系若用利用定义来求极限、用柯西收敛准则 1 ! lim ! n k n k n =→∞ ∑及求一些复合函数极限的问题本文将探讨一些特殊的求极限的方法,对某些用常 见方法不易求解的题目运用此方法可以容易地解出。【2】本文将从多个方面,通过利用极限的性质及相关概念和几个典型例题对常用求极限的方法进行解析,并列出容易出错的地方。 1 利用极限定义的思想观察函数的极限 例1、讨论当x → 12时函数y =21 x x +的极限。我们列出了当x →12 时某些函数值,考察 从列表可以看出,当x 趋向于2时,y 就趋向于0.7,即x →2 时,y =21 x x +的极限是0.75。 2、利用四则运算法则求极限 例2(1)求2 332 1 lim(4)x x x →-+ (2)221 lim 21 x x x →-+ 解(2)221lim 21x x x →-+=222 lim( 1)3lim(21)5 x x x x →→-=+ 3、利用无穷小量与无穷大量的关系及无穷小量的性质求极限 例3求0 1 lim sin x x x → 解因为0 lim x x →=0,且1sin 1x ≤即1sin x 有界,所以01lim sin x x x →=0

二元函数的极限与连续5页word文档

§2.3 二元函数的极限与连续 定义设二元函数在点的某邻域内有意义, 若存在 常数A,,当(即)时,都有 则称A是函数当点趋于点时的极限,记作 或 或或。必须注意这个极限值与点趋于点的方式无关,即不论P 以什么方 向和路径(也可是跳跃式地,忽上忽下地)趋向。只要P与充分接近, 就能 使与A 接近到预先任意指定的程度。注意:点P趋于点点方式可有无穷多 种,比一元函数仅有左,右两个单侧极限要复杂的多(图8-7)。 图8-7 同样我们可用归结原则,若发现点P按两个特殊的路径趋于点时,极限 存在,但不相等, 则可以判定在该点极限不存在。这是判断多元函数极限不 存在的重要方法之一。 一元函数极限中除了单调有界定理外,其余的有关性质和结论, 在二

元函数极 限理论中都适用,在这里就不一一赘述了。 例如若有, 其中 求多元函数的极限, 一般都是转化为一元函数的极限来求, 或利用夹逼定理 来计算。例4 求。解由于 而,根据夹逼定理知 ,所以 例5求(a≠0)。解。例6求。解由于且 ,所以根据夹逼定理知 . 例7 研究函数在点处极限是否存在。解当x2+y2≠0时,我们研究函数,沿x→0,y=kx→0这一方式趋于 (0,0)的极限,有,。很显然,对于不同的k值,可得到不同的极

限值,所以极限不存在,但 。注意:的区别, 前面两个求极限方式的 本质是两次求一元函数的极限, 我们称为累次极限, 而最后一个是求二元函数的 极限,我们称为求二重极限。 例8 设函数。它关于原点的两个累次极限都不存在,因 为对任何,当时,的第二项不存在极限;同理对任何 时,的第 一项也不存在极限,但是, 由于, 因此 由例7知, 两次累次极限存在, 但二重极限不存在。由例8可知,二重极限存 在,但二个累次极限不存在。我们有下面的结果: 定理1若累次极限和二重极限 都存在,则 三者相等(证明略)。推论若存在但

多元函数的定义域 极限

多元函数的定义域,极限 1,设函数Z=arcsin (x+y ),则定义域是 ; 答:?≤+≤-11y x 定义域为: {};11,),(≤+≤-y x y x 2,设函数Z=) ln(1y x y +,则定义域是 ; 解:由{}0/),(1 11φy y x D y z =?= 所以 {}0,0/,(21φφY y x y y x D D D +== (图 形讲义) 3,设函数Z= y x y x --2 4,则定义域是 ; {}0/,).(2 φπy x y y x 且 解:由04000422 φπφy x y x y y y x y x ≤???? ???? ???≥-≥- (图 形讲义) 4,求2 21)ln(y x x x y z --+ -=的定义域。

解:由 ?? ? ??+≥??????--≥-1001002222πφφφy x x x y y x x x y (图 形讲义) 5,设 xy e y x y x f xy ++= 2 2 3sin ),(π,求) ,(lim 2 1 y x f y x →→。 解:因为),(y x f 是初等函数,且D ∈)2,1( 所以),(y x f 在(1,2)处连续, 故 2322sin )2,1(),(lim 2 22 2 32 1 +=++==→→e e f y x f y x π 6,设2 22lim x y x y x xy ???? ??+∞ →∞→的极限。 解: 因为 2 2 21022x x y x xy ?? ? ??≤??? ? ? ?+≤ ( xy y x y x 2,0,02 2≥+φφΘ) 而 0)(lim ,021lim 2 2 22=+?=? ?? ??∞ →∞→∞ →∞→x y x x y x y x xy 7,求x xy a y x sin lim →→;

求二元函数极限的几种方法.

1 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125. x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

2 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 0x y →→= 0x y →→= 00 1. 4 x y →→==- 例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) ( ) () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= 11022 = +=.

求二元函数极限的几种方法精品

1文档来源为:从网络收集整理.word 版本可编辑. 【关键字】情况、方法、条件、领域、问题、准则、方式、检验、分析、推广、满足、保证、方向 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 . 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等.

2文档来源为:从网络收集整理.word 版本可编辑. 例3 求 00 x y →→ 解: 00 x y →→ 例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) ( ) () ,0,02 211lim 231x y x y →= + 11 022 = +=. 2.3 利用等价无穷小代换 一元函数中的等价无穷小概念可以推广到二元函数.在二元函数中常见的 等价无穷小((,)0)u x y →,有 sin (,)(,)u x y u x y ; 2(,) 1cos (,)2 u x y u x y -; []ln 1(,)(,)u x y u x y +;tan (,)(,)u x y u x y ;arcsin (,)(,)u x y u x y ; arctan ( ,) (,)u x y u x y (,) 1 u x y n ;(,)1(,)u x y e u x y -;同一元函数一样,等价无穷小代换只能在乘法和除法中应用. 例5 求 00 x y →→ 解: 当 0x →,0y →时,有0x y +→1 1 ()2 x y +,所以

求二元函数极限几种方法

. 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈I 时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125. x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

. 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 0x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) () () ,0,02 211lim 231x y x y →= + ()( 22 ,0,0lim x y →= + 11022 = +=.

2二元函数极限

§2二元函数极限 2222 1x y (1)x y →+(x,y)(0,0)、试求下列极限lim 分析:对趋近于原点且含有22x y +类的极限问题,采用极坐标变换较为简单。 22222222 222 22 ()x r cos ,y r sin (x,y)(0,0)r 0 x y f (x,y)0r sin cos r x y >0f (x,y)0r x y lim 0x y →=θ=θ→?→-==θθ≤+?εδδ-≤≤ε∴=+(x,y)(0,0)解:1对函数自变量作极坐标变换:这时由于因此,对,取时,就有 22 22 (x,y)(0,0)1x y (2)lim x y →+++ 222 222(x,y)(0,0)r 0x r cos ,y r sin 1x y 1r lim =lim x y r →→=θ=θ +++=+∞+解:令 22(x,y)(3) lim → 分析:可以先分母有理化,再使用极坐标变化。 22(x,y)(x,y)(0,0) r 0 x r cos ,y r sin lim lim =1)2 →→→=θ=θ =解:令

44 (x,y)(0,0)44224444444 (x,y)(0,0)xy 1 (4) lim x y x r cos ,y r sin ,(x,y)0r 000<1 sin cos (3cos 4) 4 xy 1r sin cos 142r sin 22M x y r (cos sin )r (3cos 4)4r xy 1 lim →→++=θ=θ→?→?θ+θ=+θ+θθ++θ∴==>≥+θ+θ+θ+∴解:令不妨限制的,则,当0时44 x y =+∞+ (x,y)(1,2)1 (5)lim 2x y →- (x,y)(0,0)11M>0x 1,y 24M 2M 111 M 2x-y 2(x 1)(2y)2x 12y 1 lim 2x y →?-< -<≠=≥>-++-+-∴=∞ -解:对,当且(x,y)(1,2)时有 22 (x,y)(0,0)2222 (x,y)(0,0) 1 (6) lim (x y)sin x y >01 sin x y x y 1 lim (x y)sin 0x y →→++εε ?ε≤+<ε +∴+=+解:对,当x <,y <时有 22 (x+y) 2222 (x,y)(0,0)222222(x,y)(0,0)r 0sin(x y ) (7)lim x y x r cos ,y r sin ,(x,y)0r 0sin(x y )sin r lim = lim 1 x y r →→→++=θ=θ→?→+=+解:令令 2、讨论下列函数在点(0,0)处的重极限与累次极限 2 2 2 y (1)f (x,y)x y =+

求二元函数极限几种方法

11 / 15 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125. x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 / 15 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 0x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) ( ) () ,0,02 211lim 231x y x y →= + ()( 22 ,0,0lim x y →= + 11022 = +=.

二元函数的极限

§2 二元函数的极限 (一) 教学目的: 掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系. (二) 教学内容:二元函数的极限的定义;累次极限. 基本要求: (1)掌握二元函数的极限的定义,了解重极限与累次极限的区别与联系,熟悉判别极限 存在性的基本方法. (2) 较高要求:掌握重极限与累次极限的区别与联系,能用来处理极限存在性问题. (三) 教学建议: (1) 要求学生弄清一元函数极限与多元函数极限的联系与区别,教会他们求多元函数极 限的方法. (2) 对较好学生讲清重极限与累次极限的区别与联系,通过举例介绍判别极限存在性的较完整的方法. 一 二元函数的极限 先回忆一下一元函数的极限: A x f x x =→)(lim 0 的“δε-” 定义(c31): 设函数)(x f 在0x 的某一空心邻域),(100 δx U 内由定义,如果对 1,0, 0δδδε≤>?>?, 当 ),(0δx U x ∈,即 δ<-||0x x 时,都有 ε<-|)(|A x f ,则称0x x →时,函数)(x f 的极限是 A. 类似的,我们也可以定义二元函数的极限如下: 设二元函数),(y x f 为定义在2R D ?上的二元函数,在点),(000y x P 为D 的一个聚点,A 是一个确定的常数,如果对 0, 0>?>?δε,使得当 D P U y x P ),(),(00 δ∈ 时, 都有 ε<-|)(|A P f ,则称f 在D 上当 0P P →时,以A 为极限。记作 A P f D P P P =∈→)(lim 0 也可简写为 A P f P P =→)(lim 0 或 A y x f y x y x =→),(lim ) ,(),(00 例1 用定义验证 7)(lim 2 2 )1,2(),(=++→y xy x y x 证明: |16||7|2 2 2 2 -+-+-+≤-++y x xy x x y xy x

多元函数的极限与连续习题课

第十六章 多元函数的极限与连续习题课 一 概念叙述题 1.叙述0 lim ()P P f P A →=,其中0,P P 的坐标为00(,),(,)x y x y . lim ()0,0,P P f P A εδ→=??>?>当00(;)P U P D ∈I δ时,有()f P A ε-< (方形邻域)0,0,εδ??>?>当0x x δ-<,0y y δ-<, 00(,)(,)x y x y ≠,有(,)f x y A ε-< (圆形邻域)0,0,εδ??>?>当0δ<,有(,)f x y A ε-<. 2. 叙述 00(,)(,) lim (,)x y x y f x y →=+∞,00(,)(,) lim (,)x y x y f x y →=-∞, 00(,)(,) lim (,)x y x y f x y →=∞的定义. 000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=+∞??>?>-<-<≠>当时,有 0,0,0(,)G f x y G δδ??>?>< <>当时,有000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=-∞??>?>-<-<≠<-当时,有 000000(,)(,) lim (,)0,0,,,(,)(,)(,)x y x y f x y G x x y y x y x y f x y G δδδ→=∞??>?>-<-<≠>当时,有. 3.叙述 0(,)(,) lim (,)x y y f x y A →+∞=的定义. 00(,)(,) lim (,)0,0,0,,(,)x y y f x y A M x M y y f x y A εδδε→+∞=??>?>?>>-<-<当时,有 4.叙述 0(,)(,) lim (,)x y x f x y →-∞=+∞的定义. 00(,)(,) lim (,)0,0,0,,(,)x y x f x y G M x x y M f x y G δδ→-∞=+∞??>?>?>-<<->当时,有 5. 叙述 (,)(,) lim (,)x y f x y →-∞+∞=-∞的定义. (,)(,) lim (,)0,0,,(,)x y f x y G M x M y M f x y G →-∞+∞=-∞??>?><-><-当时,有. 注:类似写出(,)(,) lim (,)x y f x y →=VW d 的定义,其中d 取,,,A ∞+∞-∞,?取0,,,x ∞+∞-∞, W 取0,,,y ∞+∞-∞. 6.叙述f 在点0P 连续的定义. f 在点0P 连续?ε?, 0δ?>,只要0(;)P U P D δ∈I ,就有0()()f P f P ε-< ?ε?, 0δ?>,当0x x δ-<,0y y δ-<,就有00(,)(,)f x y f x y ε-< ?ε?, 0δ?>,δ,就有00(,)(,)f x y f x y ε-<.

二元函数的极限及其连续性

二元函数的极限及其连续性 在一元函数中,我们曾学习过当自变量趋向于有限值时函数的极限。对于二元函数z=f(x,y)我们同样可以学习当自变量x与y趋向于有限值ξ与η时,函数z的变化状态。 在平面xOy上,(x,y)趋向(ξ,η)的方式可以时多种多样的,因此二元函数的情况要比一元函数复杂得多。如果当点(x,y)以任意方式趋向点(ξ,η)时,f(x,y)总是趋向于一个确定的常数A, 那末就称A是二元函数f(x,y)当(x,y)→(ξ,η)时的极限。 这种极限通常称为二重极限。 下面我们用ε-δ语言给出二重极限的严格定义: 二重极限的定义 如果定义于(ξ,η)的某一去心邻域的一个二元函数f(x,y)跟一个确定的常数A有如下关系:对于任意给定的正数ε,无论怎样小,相应的必有另一个正数δ,凡是满足 的一切(x,y)都使不等式 成立, 那末常数A称为函数f(x,y)当(x,y)→(ξ,η)时的二重极限。 正像一元函数的极限一样,二重极限也有类似的运算法则: 二重极限的运算法则 如果当(x,y)→(ξ,η)时,f(x,y)→A,g(x,y)→B. 那末(1):f(x,y)±g(x,y)→A±B; (2):f(x,y).g(x,y)→A.B; (3):f(x,y)/g(x,y)→A/B;其中B≠0 像一元函数一样,我们可以利用二重极限来给出二元函数连续的定义: 二元函数的连续性 如果当点(x,y)趋向点(x0,y0)时,函数f(x,y)的二重极限等于f(x,y)在点(x0,y0)处

的函数值f(x0,y0),那末称函数f(x,y)在点(x0,y0)处连续.如果f(x,y)在区域D的每一点都连续,那末称它在区域D连续。 如果函数z=f(x,y)在(x0,y0)不满足连续的定义,那末我们就称(x0,y0)是f(x,y)的一个间断点。 关于二元函数间断的问题 二元函数间断点的产生与一元函数的情形类似,但是二元函数间断的情况要比一元函数复杂,它除了有间断点,还有间断线。 二元连续函数的和,差,积,商(分母不为零)和复合函数仍是连续函数。 例题:求下面函数的间断线 解答:x=0与y=0都是函数的间断线。

求二元函数极限的几种方法

你今天的日积月累,终会变成别人的望尘莫及。 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 2.1 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21 lim y x y x +→=3 1.

你今天的日积月累,终会变成别人的望尘莫及。 2.2 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2 220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( ) ) () () ,0,02 211lim 231x y x y →+= ++ ()( 22 ,0,0lim x y →= + 11022 = +=.

求二元函数极限的几种方法

求二元函数极限的几种方法 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

相关主题
文本预览
相关文档 最新文档