当前位置:文档之家› 《大学化学》(傅献彩著)讲义3-化学热力学原理与化学平衡(上)

《大学化学》(傅献彩著)讲义3-化学热力学原理与化学平衡(上)

《大学化学》(傅献彩著)讲义3-化学热力学原理与化学平衡(上)
《大学化学》(傅献彩著)讲义3-化学热力学原理与化学平衡(上)

化学热力学,化学平衡

化学热力学化学平衡 一、选择题 ()1. 下列过程中,△G=0的是 (A) 氨在水中解离达平衡(B) 理想气体向真空膨胀(C) 乙醇溶于水(D) 炸药爆炸()2. 一定条件下,合成氨反应呈平衡状态,3H2+N2=2NH3-------K1, 3 2H2+ 1 2 N2=NH3-----K2,则K1与K2的关系为 (A) K1=K2(B) K12 = K2(C) K22=K1(D) 无法确定 ()3. 下列反应中哪个是表示△r H m=△f H m(AgBr,s)的反应 (A) Ag+(aq)+Br―(aq)=AgBr(s) (B) Ag(s)+1/2 Br2(l)=AgBr(s) (C) 2Ag(s)+Br2(g)=2AgBr(s) (D) Ag(s)+1/2 Br2(g)=AgBr(s) ()4.已知:A+B?→ ?M+N,Δr H1=35 kJ·mol-1;2M+2N?→ ?2D,Δr H2=-80 kJ·mol-1;则 A+B?→ ?D的Δr H3是 (A) -5kJ·mol-1(B) -10kJ·mol-1(C) -45kJ·mol-1(D) 45kJ·mol-1 ()5. H2 O(l,100℃,101.3 kPa) ?→ ?H2 O(g,100℃,101.3 kPa), 设H2 O(g)为理想气体,则由始态到终态体系所吸收的热量Q为 (A) >ΔH(B) <ΔH(C) =ΔH(D) =ΔU ()6. 下列单质的Δf H m不等于零的是 (A) Fe(s) (B) C(石墨) (C) Ne(g) (D) Cl2 (l) ()7. 合成氨反应3H2(g)+N2(g) 2NH3(g)在恒压下进行时,若向体系中引入氩气,则氨的产率 (A) 减小;(B) 增大;(C) 不变;(D) 无法判断。 ()8. 下列反应中,△r H m与产物的△f H m相同的是 (A)2H2 (g)+O2 (g) →2H2O(l)(B)NO(g)+?O2(g)→NO2(g) (C)C(金刚石)→C(石墨)(D)H2 (g)+?O2 (g) →H2O(g) ()9. 在标准压力和373 K下,水蒸气凝聚为液态水时体系中应是 (A) ΔH= 0 (B) ΔS= 0 (C) ΔG= 0 (D) ΔU = 0 ()10. 某体系在失去15kJ热给环境后,体系的内能增加了5kJ,则体系对环境所作的功是 (A) -20 kJ(B) -10 kJ(C) 10 kJ(D) 20 kJ ()11. 已知Zn(s) + 1/2O2 (g) =ZnO(s) Δr H m 1 = -351.5 kJ·mol-1 Hg(l) + 1/2O2 (g) =HgO(s,红) Δr H m 2 = -90.8 kJ·mol-1 则Zn(s) + HgO(s,红) =ZnO(s) + Hg(l) 的Δr H m为(kJ·mol-1) (A) 442.3 (B) -260.7 (C) 260.7 (D) -442.3 ()12.下列物理量中,属于状态函数的是 (A) ΔH(B) ΔU(C) Q(D) H ()13. 稳定纯态单质在298 K,100 kPa下,下述正确的是

化工热力学

《化工热力学》综合复习资料 一、乙腈(1)和乙醛(2)在87.0kPa ,80℃时混合形成等分子蒸汽混合物,已知B 11= - 2.619m 3/kmol , B 22=- 0.633m 3/kmol ,δ12= - 4.060m 3/kmol ,请计算混合物中组分1和2的逸度1?f 和2 ?f 。 二、在某T , p 下,测得某二元体系的活度系数值可用下列方程表示:122ln (20.5) x x γ=+,211ln (20.5) x x γ=+,i γ为基于Lewis -Randall 规则标准状态下的活度系数。试问,这两个方程式是否符合热力学一致性? 三、在一定温度和压力下,某二元液体混合物的活度系数如用下式表达: )(ln 221bx a x +=γ )(ln 112bx a x +=γ 式中a 和b 仅为温度和压力的函数,γi 为基于Lewis-Randall 规则标准态下的活度系数。请问,这两个表达式是否满足Gibbs-Duhem 方程? 四、苯(1)-环己烷(2)恒沸混合物的组成x 1=0.525,其在常压下(101.325 kPa)的沸点为77.4℃,如果气相可视为理想气体,液相服从Van Laar 方程。并已知纯组分在77.4℃下的饱和蒸气压分别为: s p 1=93.2 kPa , s p 2=91.6 kPa 。试求(1) Van Laar 方程的方程参数。(2) 在77.4℃下与x 1=0.7成平衡的气相 组成y 1。 五、甲醇(1)和甲乙酮(2)在337.3K 和1.013×105Pa 下形成恒沸物,其恒沸组成x 1为0.842,并已知在337.3K 时甲醇和甲乙酮的饱和蒸气压分别为Pa p s 4110826.9?=,Pa p s 4 210078.6?=。如气相可视为理想气体,液相服从Van Laar 方程。试计算(1) Van Laar 方程的方程参数。(2)由纯组分混合形成1 mol 该溶液的ΔG 值。 六、在98.66kPa ,327.6K 时丙酮(1)-甲醇(2)形成796.01=x 的恒沸物。并已知327.6K 时纯组分的饱和蒸汽压为:39.951=s p kPa ,06.652=s p kPa 。试用Van Laar 方程求该溶液在x 1=0.5时的活度系数γ1和γ2。 七、已知某二元恒沸混合物的组成x 1=0.75,其在常压下(101.325 kPa)的沸点为95℃,如果气相可 视为理想气体,液相服从Van Laar 方程。并已知纯组分在95℃下的饱和蒸汽压分别为:s p 1=88 kPa , s p 2=60 kPa 。试求(1) Van Laar 方程的方程参数。(2)由纯组分混合形成1 mol 该溶液的ΔG 值。

物理化学第03章化学平衡热力学原理

第三章 化学平衡热力学原理 复习思考题 1.化学反应的m r G ?与Θ?m r G 有什么不同?用m r G ?及Θ ?m r G 判断化学反应进行的方向有什 么不同? 2.“Θ Θ -=?K RT G ln m r ,可见Θ ?m r G 就是反应处于平衡时的吉布斯自由能变化。”这种说 法对吗?为什么? 3.平衡常数改变了,平衡是否移动?平衡发生了移动,平衡常数是否改变? 4.什么是标准平衡常数ΘK ?“标准平衡常数数值上总是等于1”的说法对吗? Θ K 值能否 根据某温度、任一压强下反应达平衡时各气体的分压按 ∏B B ν p 计算? 5.对于一个化学反应,当人为地改变反应体系中各反应物及生成物所取的标准状态时,反 应的m r G ?Δ、Θ ?m r G 及Θ K 有无变化?为什么? 6.为什么有纯凝聚相参加的反应其平衡数表示式中没有凝聚相物质的平衡分压出现? 7.下列碳的不完全燃烧反应为: 2C(s)+O2(g)==== 2CO(g) Θ?m r G =(-232 600-167.8 T)J ·mol -1 当升高温度时, Θ ?m r G 变得更负,从而使Θ K 更大,反应就更完全,对吗? 8.在H 2S 气体中加入较多的NH 3,体系中可有下列二反应进行: ① NH3(g)+H2S(g)==== NH4HS(g) ② NH3(g)+H2S(g)==== NH4HS(s) 当达到平衡时,二反应的Θ ?m r G 、m r G ?是否相等? 9.CO2(g)+C(s)==== 2CO(g)反应是气体物质的量增加的反应,反应向右进行时,压强会增大。这就不是恒温恒压条件下的反应了,是否还能用等温方程式计算m r G ?并用以判定反应的方向呢? 10.在相同温度下,下列两反应的平衡常数是否相同?([C]表示溶解在铁液中的碳) C(石墨)+CO 2(g)==== 2CO(g) [C]+CO 2(g)==== 2CO(g) 11.工业上制取水煤气的反应为:C(s)+H2O(g)==== CO(g)+H2(g) 已知Θ ?m r H =133.5 kJ ·mol -1 ,设在673 K 时达到平衡,试讨论下列因素对平衡的影响: ①提高反应温度;②增加体系的总压;③增加水蒸气的分压;④增加碳的数量;⑤加N 2气。 12.已知一理想气体化学反应:A(g)==== 2B(g),在298.15 K ,Θ p K =0.027,试问:

工程热力学基本概念

第一章 1.基本概念 热力系统:用界面将所要研究的对象与周围环境分隔开来,这种人为分隔的研究对象,称为热力系统,简称系统。 边界:分隔系统与外界的分界面,称为边界。 外界:边界以外与系统相互作用的物体,称为外界或环境。 闭口系统:没有物质穿过边界的系统称为闭口系统,也称控制质量。 开口系统:有物质流穿过边界的系统称为开口系统,又称控制体积,简称控制体,其界面称为控制界面。 绝热系统:系统与外界之间没有热量传递,称为绝热系统。 孤立系统:系统与外界之间不发生任何能量传递和物质交换,称为孤立系统。 单相系:系统中工质的物理、化学性质都均匀一致的系统称为单相系。 复相系:由两个相以上组成的系统称为复相系,如固、液、气组成的三相系统。 单元系:由一种化学成分组成的系统称为单元系。 多元系:由两种以上不同化学成分组成的系统称为多元系。 均匀系:成分和相在整个系统空间呈均匀分布的为均匀系。 非均匀系:成分和相在整个系统空间呈非均匀分布,称非均匀系。 热力状态:系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。 平衡状态:系统在不受外界影响的条件下,如果宏观热力性质不随时间而变化,系统内外同时建立了热的和力的平衡,这时系统的状态称为热力平衡状态,简称为平衡状态。 状态参数:描述工质状态特性的各种物理量称为工质的状态参数。如温度(T)、压力(P)、比容(υ)或密度(ρ)、内能(u)、焓(h)、熵(s)、自由能(f)、自由焓(g)等。 基本状态参数:在工质的状态参数中,其中温度、压力、比容或密度可以直接或间接地用仪表测量出来,称为基本状态参数。 温度:是描述系统热力平衡状况时冷热程度的物理量,其物理实质是物质内部大量微观分子热运动的强弱程度的宏观反映。 热力学第零定律:如两个物体分别和第三个物体处于热平衡,则它们彼此之间也必然处于热平衡。 压力:垂直作用于器壁单位面积上的力,称为压力,也称压强。 相对压力:相对于大气环境所测得的压力。如工程上常用测压仪表测定系统中工质的压力即为相对压力。 比容:单位质量工质所具有的容积,称为工质的比容。 密度:单位容积的工质所具有的质量,称为工质的密度。 强度性参数:系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性,如温度、压力等。在热力过程中,强度性参数起着推动力作用,称为广义力或势。

热力学发展简史

热力学发展简史 “温度”贯穿我们的一生,人人都知冷暖,古代人便会钻木取火,不可否认的一个方面是为了取暖,而现在,点暖炉,空调等设备的使用也都是人们为了得到一个合适的温度以更好的生活。学了一个学期的工程热力学后发现温度对于热热力学研究起着至关重要的作用。而温度的定义以及测量可以说是热力学的开端。 在17 世纪中,虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验和教训。但是,由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料,以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标是以盐水和冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把他们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。 一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种

化工热力学名词解释

化工热力学名词解释 1、(5分)偏离函数:* M M M R -= 指气体真实状态下的热力学性质M 与同一T ,P 下当气体 处于理想状态下热力学性质M* 之间的差额。 2、(5分)偏心因子: 000 .1)lg(7.0--==r T s r P ω 表示分子与简单的球形流体(氩,氪、氙) 分子在形状和极性方面的偏心度。 3、(5分)广度性质 4、(5分)R-K 方程(Redlich -Kwong 方程) 5、(5分)偏摩尔性质:偏摩尔性质 i j n P T i i n nM M ≠??=,,]) ([ 在T 、P 和其它组分量n j 均不变情况下,向无限多的溶液中加入1mol 的组分i 所引起的一系列热力学性质的变化。 6、(5分)超额性质:超额性质的定义是 M E = M -M id ,表示相同温度、压力和组成下,真实 溶液与理想溶液性质的偏差。ΔM E 与M E 意义相同。其中G E 是一种重要的超额性质,它与活度系数 7、(5分)理想溶液:理想溶液有二种模型(标准态):^ f i id = X i f i (LR ) 和 ^ f i id = X i k i (HL ) 有三个特点:同分子间作用力与不同分子间作用力相等,混合过程的焓变化,内能变化和体 积变化为零,熵变大于零,自由焓变化小于零。 8、(5分)活度: 化工热力学简答题 1、(8分)简述偏离函数的定义和作用。 偏离函数定义, * M M M R -= 指气体真实状态下的热力学性质M 与同一T ,P 下当气体处于理想状态下热力学性质M* 之间的差额。如果求得同一T ,P 下M R ,则可由理想气体的M* 计算真实气体的M 或ΔM 。 2、(8分)甲烷、乙烷具有较高的燃烧值,己烷的临界压力较低,易于液化,但液化石油气的主要成分既不是甲烷、乙烷也不是己烷,而是丙烷、丁烷和少量的戊烷。试用下表分析液化气成分选择的依据。

物理化学发展史

物理化学发展史——早期溶液理论和今日中学化学 很荣幸今天能为大家介绍物理化学发展史,物理化学博大精深,很有内涵,所以我耍个机灵,取了早期溶液理论的发展这一节,同时谈一谈今日中学化学对溶液理论的研究和教学实践。首先我想谈一谈物理化学,既然叫物理化学,那他一定和物理有点关联,例如空气湿度多大时我们能够观察到雾的现象?早晨的露珠为什么呈现球形?天上云层很厚实,为什么不下雨?人工降雨的原理到底是什么?等等这些物理现象,其实都属于物质的性质,而物理化学其实是研究物质性质和化学反应原理的学科。 自1887年奥斯特沃尔德和范霍夫合办了德文《物理化学杂志》,这门学科获得了快速的发展,今天物理化学的发展程度当然已经超乎人们的想象,具体包括化学热力学、化学动力学,电化学,光化学,表面化学,胶体化学,结构化学,量子化学,催化理论等等分支。应该说,物理化学以热力学、动力学和量子力学为基础。日本化学史家山岗望提出,物理化学学发端于拉瓦锡时代,本生进一步将物理学的实验方法应用到化学研究上,把物理学原理用来解释化学现象则是从范霍夫开始的。这段时间大致与两次工业革命的兴起重叠,也就是说,物理化学建立在产业革命兴起的大背景下,期间涌现了无数大牛,更有麦克斯韦,玻尔兹曼,普朗克这三尊神。例如麦克斯韦,以电磁理论闻名于世的物理大神,为化学做出的贡献在我看来要更加惊人。请看这两个数,一个热力学K,一个是动力学K,这两个K为什么长这么像?类似的还有克劳修斯克拉博隆方程,如果我把ΔG和ΔEa都用能量E表示,你会发现形式上和麦克斯韦能量分布积分式惊人的相似。这三位确定了热运动的本质,确定了热力学第二定律的适用范围,明确地给出了熵与微观状态数的数学关系。有意思的是文科里面更喜欢谈熵,伟大的科幻小说家阿西莫夫以熵增定律为主题写了科幻史上我认为是最好的一篇——最后的问题。 好言归正传,关于溶液理论,就必须提物理化学三剑客:阿伦尼乌斯,范霍夫和奥斯特沃尔德,三人之间的性格可以说迥异,又来自三个不同国家但对稀溶液的研究将他们的命运深深的绑定,三人友谊可以说是科学史上一段佳话。 故事要从溶液的依数性说起。首先是关于溶液渗透压的发现。最早观察到渗透现象的是法国物理学家诺勒。1748年他为了改进酒的制作时曾作过一个实验:把酒精装满一个玻璃圆筒,用猪膀胱膜封住,然后把圆筒全部浸进水中。他发现膀胱膜向外膨胀,即发现水通过膜渗透进了圆筒,最后膀胱膜竟被撑破。但他并未意识到这就是渗透压造成的。最早对渗透压进行半定量研究的则是法国生理学家杜特罗夏在1830年左右进行的。他用一个钟罩形的玻璃容器,下面用羊皮纸封住,从上面插进一支长玻璃管,容器中分别放入各种不同浓度、不同物质的溶液,然后把它浸入水槽中。于是观察到玻璃管内液面上升,浓度越大,水柱越高,两者成正比。这时候他意识到:这个压力是由于外面的水通过羊皮纸向溶液方向迁移而产生的。他给这种现象命名为“渗透”,该术语来源于希腊文“wσμos”,意思是“推进”。1848年,德国化学家K.维洛尔特(Karl Vierordt)证实了他的这一结论。但由于动物膜既可让溶剂分子也可让溶质分子渗透,只是速度不同,所以测得的渗透压力只是暂时的,不稳定的,而且与溶剂、溶质的渗透相对速度有关,因此测得的渗透压也只是粗略的,而且由于这类半透膜不够坚固,经受不住浓溶液的很大的渗透压。 1867年,德国生理化学家特劳贝让亚铁氰化铜或丹宁-明胶沉积在多孔陶瓷上,制出了真正只让水分子透过的膜,范霍夫称它为半透膜。这种膜非常牢固,能够经受几百个大气压的渗透压。1884年德国植物学家普菲弗便利用这种半透膜研究植物的枯萎状况,对蔗糖溶液的渗透压进行了广泛的定研究,得到了准确的数据。 这些实验结果激起了范霍夫对渗透压进行理论探讨的热情。他从浦菲弗的数据得知,含有一克蔗糖中加水,水加的越多,渗透压越小,但一定是一个常数,与波义耳定律对气体的

工程热力学-热力学发展简史

科学思维的发展 自然科学溯源于古希腊,十五世纪时勃兴于欧洲,当时欧洲刚经历千年「黑暗时代」,文艺复兴开始,而地中海沿岸贸易兴旺,为开拓市场需要,遂推动天文、地理、数学和力学的发展。而波兰人哥白尼(Nicolas Copernicus),在一五四三年提出「日心说」,其理论经伽利略(Galileo Galilei)、开普勒(Johann Kepler)的论证与发展,使西方的自然观,由笼统、模糊的认识,进入到深入、细致的研究。十六、十七世纪,英国人培根(Roger Bacon)大力提倡「科学方法」,即通过实验、列表、比较、排除、归纳而逐步上升到公理,奠定了西方科学严谨的研究方法和传统。 与培根同时代的法国人笛卡儿(Rene Descartes),把整个自然界看作一架大机器,试图以机械运动说明自然界的一切,并且主张要从错综复杂的事物中区别出最简单事物,然后予以有秩序的研究。他的《方法谈》标示了西方知识传统的「分析还原原理」,认为总体可以分解为部分;复杂、非线性系统,也可以分解为简单线性系统来理解。故奠定了追求简单性和线性解的西方科学及人文思维基础。 英国人牛顿(Sir Issac Newton)在一六八六年提出《自然哲学的数学原理》巨著,创立了以「万有引力」及「运动三定律」为基础的古典力学。他把整个自然界描述成一个秩序井然的大机械钟,只要这个钟上紧发条,便能自动运转,但这机械论仍要请上帝做「第一推动」,为这大钟上紧发条。到十八世纪下半叶,由国家支持的科学机构已在欧美各国普遍建立,故自然科学分门别类而迅速发展,十九世纪自然科学由分门别类的材料收集,进到对经验材料的综合整理和理论概括。 在牛顿的古典力学基础上,热力学大师克劳修斯(Rudolf Julius Emmanuel Clausius)在一八六七年提出热力学第二定律,说明一个孤立系统,总由有序而朝向均匀、简单、消灭差别的无序方向发展,即「熵」(entropy)增加,从而得出「宇宙总体走向退化、死亡」的结论。 热力学的基本定律 热力学是专门探讨能量内涵、能量转换以及能量与物质间交互作用的科学,尤其专注在系统与外在环境间能量的交互作用,是结合工程、物理与化学的一门学问。早期物理中,把研究热现象的部分称为热物理,后来称为热学,近代则称之为热力学,被许多理工相关科系列为必修的基础课程。许多工程科学都是由热力学所衍生的或与其有密切关联,例如热传学、流体力学、材料科学等。 顾名思义,热力学和「热」有关,和「力」也有关。广义而言,热力学主要是研究有关能量的科学,因此物质的特性也是其必须探讨的范围。热力学的应用范围很广,主要包括:引擎、涡轮机、压缩机、帮浦、发电机、推进器、燃烧系统、冷冻空调系统、能源替代系统、生命支持系统及人工器官等。 热是一种传送中的能量。物体的原子或分子透过随机运动,把能量由较热的物体传往较冷的物体。

第三章化学热力学

第三章化学热力学 (g) + O2(g) ?H2O(l)(298K)的Q p与Q V之差(kJ·mol-1)是………………………() (A)(B) (C)(D) 2.已知HCN(aq)与NaOH(aq)反应,其中和热是kJ·mol-1,H+(aq) + OH-(aq) = H2O(l),= kJ·mol-1,则1 mol HCN 在溶液中电离的热效应(kJ·mol-1)是……………() (A)(B) (C)(D) 3.已知2PbS(s) + 3O2(g) = 2PbO(s) + 2SO2(g) ,= kJ·mol-1 ,则该反应的Q V值是…………………………………………………………………………() (A)(B) (C)(D) 4.如果体系经过一系列变化,最后又变到初始状态,则体系的………………………() (A)Q = 0 W = 0 ΔU = 0 ΔH = 0 (B)Q 0 W 0 ΔU = 0 ΔH = Q (C)Q = WΔU = Q - WΔH = 0 (D)Q WΔU = Q - WΔH = 5.在一定温度下:(1) C(石墨) + O2(g) = CO2(g) ΔH1 ;(2) C(金刚石) + O2(g) = CO2(g) ΔH2;(3) C(石墨) = C(金刚石) ΔH3 = kJ·mol-1,其中ΔH1和ΔH2的关系是…………………………………………………………………() (A)ΔH1>ΔH2(B)ΔH1<ΔH2 (C)ΔH1=ΔH2(D)不能判断 6.若两个液态组分混合形成理想溶液,则混合过程的…………………………………( (A)ΔV = 0 ΔH = 0 ΔS = 0 ΔG = 0(B)ΔV > 0 ΔH < 0 ΔS < 0 ΔG > 0 (C)ΔH = 0 ΔV = 0 ΔS > 0 ΔG < 0 (D)ΔH > 0 ΔV < 0 ΔG< 0 ΔS > 0

化学热力学与化学平衡

第二讲化学热力学与化学平衡 一、基础知识点 1. 焓与焓变 (1)热力学第一定律: (2)焓: 热力学把定义为焓 焓变: 例1 1g火箭燃料肼在氧气中完全燃烧(等容),放热20.7kJ(273.15K),求1mol肼在该温度下完全燃烧的内能变化和等压反应热 2. 生成焓,熵,自由能 标态(100kPa)和T(K)下,由稳定单质生成1mol化合物(或不稳定态单质或其他形式)的焓变称为该物质在T(K)时的标准生成焓(kJ/mol) 标态下,1mol某物质的熵值叫做标准熵()(J/mol) 标态(100kPa)和T(K)下,由稳定单质生成1mol化合物(或不稳定态单质或其他形式)的自由能变化值称为该物质在T(K)时的标准生成自由能(kJ/mol)G:吉布斯自由能G = H - TS ?G m < 0 反应右向自发进行; ?G m = 0 反应达平衡; ?G m > 0 反应左向自发进行 3. 化学平衡 可逆反应:在同一条件下,既能向正反应方向又能向逆反应方向进行的反应。

化学平衡:正逆反应速度相等时,体系所处的状态称为化学平衡。 (1)建立平衡的前提:封闭体系、恒温、可逆反应; (2)建立平衡的条件:正逆反应速度相等(动态平衡,体系并非处于静止状态); (3)建立平衡的标志:各物质浓度不再随时间改变。平衡状态是封闭体系中可逆反应进行的最大限度; (4)化学平衡是有条件的平衡。外界因素:温度、压力、浓度、添加剂等。 4. 化学平衡常数 (1)一切可逆反应: (2)对于含气体的可逆反应: where mol/L→K C : (mol/L) ?n ; Pa , atm →K p : (Pa) ?n, (atm) ?n ?n = 0时,K C ,K p 无量纲 (1)如果反应中有固体和纯液体参加,它们的浓度不应写在平衡关系式中,因为它们的浓度是固定不变的,化学平衡关系式中只包括气态物质和溶液中各溶质的浓度。 (2)稀溶液中进行的反应,如有水参加,水的浓度也不必写在平衡关系式中 (3)同一化学反应,可以用不同的化学反应方程式来表示,每个化学方程式都有自己的平衡常数关系式及相应的平衡常数。进行化学平衡的计算时必须写出反应方程式和相应的平衡常数。 (4)对于气体反应,写平衡常数关系式时,除可以用平衡时的(物质的量)浓度表示外,也可以用平衡时气体的分压来表示 5. 平衡常数意义 (1)平衡常数的大小可以判断反应进行的程度、估计反应的可逆性。因为平衡状态是

第三章 地球化学热力学基础

第三章地球化学热力学基础 热力学是研究热现象的一门科学。它从具有公理性质的几个基本定律出发,演绎物质体系的宏观性质与热、功形式的能量之间的关系。经典热力学只研究达到平衡态时物质体系的宏观性质,近代热力学的发展还可以研究非平衡态、不可逆过程和自然界的自组织现象等。热力学原理应用于研究化学反应(包括相变)形成了化学热力学分支,它要解决的主要问题是根据化学反应和相变过程中伴随的能量变化,预测化学反应和相变的方向和进程。化学热力学与地球化学相结合形成了地球化学热力学。 热力学的基本定律是大量实验事实和生产经验的总结,它是非常可靠的。热力学的方法是演绎性的。因而,从基本定律出发,通过严密的逻辑推理而得出的结论,必然具有高度的普适性和可靠性。热力学可以广泛地用于解决不同学科领域的许多问题。热力学的研究对象是宏观体系,即由大数量分子构成的集合体,它不考虑物质的微观结构,一点也不涉及物质体系宏观性质变化的微观机理和变化速率。 地球化学是研究地球和天体物质的化学组成、化学反应和

化学演化历史的一门科学。由于地球化学的研究对象具有空间上的巨大性、时间上的漫长性和演化过程的多阶段多旋迴性等特点,它们的成因和演化往往不是研究者可以直接观察的,甚至是难以在实验室里重现的。地球化学家只得采用反序的思维方法,即根据地质地球化学过程中产生的遗迹,如对岩石、矿物、岩体和矿床等地质体的研究,反演地球演化历史中发生过的各种地质地球化学作用的性质及其物理化学条件。因而热力学是地质地球化学研究中极其有用的理论工具。假定我们直接观察到的各种地质体是曾经在某种热力学平衡条件下形成的,并且自形成那时以来,一直保持着当时的平衡状态,而未被后来的作用所改造,那么依靠实验测得的矿物和岩石的热力学性质,运用热力学理论,可以合理地推测各种地质体形成的过程及其物理化学条件。事实上地质地球化学家运用热力学原理解决地学问题,有力地推动了地球化学的发展,地球化学热力学已经成为现代地球化学体系中的重要分支学科。 热力学应用于地质地球化学研究的成功例子极多,下面仅举几个实例予以说明,它们是由几位地质地球化学大师在地球化学发展初期所作的开创性研究工作。 J.H.Van′t Hoff在1896—1909年进行了一系列水—盐体系相平衡的实验研究,其目的是解释德国上古生代二叠纪蔡希斯坦(Zechstein)统海相钾盐矿床的成因,这种类型的矿床在

热力学发展简史

热力学发展简史 “温度”贯穿我们的一生,人人都知冷暖,古代人便会钻木取火,不可否认的一个方面就是为了取暖,而现在,点暖炉,空调等设备的使用也都就是人们为了得到一个合适的温度以更好的生活。学了一个学期的工程热力学后发现温度对于热热力学研究起着至关重要的作用。而温度的定义以及测量可以说就是热力学的开端。 在17 世纪中, 虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验与教训。但就是, 由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料, 以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的就是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标就是以盐水与冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标就是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把她们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热与功的转化问题。于就是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这就是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其就是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力与燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。 一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种

热力学 动力学 化学平衡练习

热力学、动力学、化学平衡练习题 一.选择题: 1.下列参数中,哪个不属于状态函数? (A)温度T (B)压强P (C)热Q (D)焓H 2.已知反应)(2 1)()(2222g O l O H l O H + =的198-O ?-=?mol kJ H m r 反应)()(22g O H l O H =的1 0.44-O ?=?mol kJ H m r 则反应)()(2)(22222g O g O H l O H +=的为O ?m r H (A) -54 1 -?mol kJ (B) -1081 -?mol kJ (C) -1421 -?mol kJ (D)1421 -?mol kJ 3.在恒温条件下,若化学平衡发生移动,则其平衡常数 (A)不变 (B)减小 (C)增大 (D)难以判断 4.反应)()(2 1)()(22g CO g N g CO g NO += +的10.373-O ?-=?mol kJ H m r ,若要提高 )(g NO 和)(g CO 的转化率,可采取的方法是 (A)高温低压 (B)高温高压 (C)低温高压 (D)低温低压 5.已知某反应的速率常数为1 min 35.0-=k ,则此反应是 (A)零级反应 (B)一级反应 (C)二级反应 (D)三级反应 6.一个复杂反应的速度是 (A)由最慢的一步基元反应决定 (B)由最快的一步基元反应决定 (C)各步基元反应速度之和 (D)无法确定的 7.相同温度下,下列哪个反应的熵增量最大? (A))()(2)(2223g O g SO g SO += (B))(),()(22g O s C g CO +=石墨 (C))()(3)(2223g N g H g NH += (D))(2)()(22424l O H s CaSO s O H CaSO +=? 8.某反应在298K 及×105 Pa 时正反应能自发进行,高温时,逆反应能自发 进行,说明该反应正向属于下列哪种类型? (A)0,0>??S H (C)0,0?>?S H

第三章 金属电化学腐蚀的热力学原理

第三章金属电化学腐蚀的热力学原理 §3-1 腐蚀原电池 1.腐蚀原电池是指导致金属材料的破坏而不能对外做有用功的短路原电池。 电极反应方程式阳极:Fe →Fe2+ +2e 阴极:2H+ +2e →H2 (图3-1) 电极反应方程式阳极:Fe →Fe2+ +2e 阴极:2H+ +2e →H2 O2 + 4H+ +4e →2H2O

(图3-2) 电化学腐蚀发生的根本原因是由于介质中存在着平衡电极电位高于金属的平衡电极电位的氧化性物质。 2.腐蚀原电池的组成及工作过程 1)组成:阳极、阴极、电解质溶液、外电路。 2)工作过程:①金属阳极溶解过程如Fe →Fe2+ +2e ②溶液中氧化性物质的阴极还原过程如

2H+ +2e →H2 ③电子和离子的定向流动过程 以上三个过程是彼此独立进行的,但又是串联在一起的,因而只要其中的某个过程的进行受到阻滞,则金属的腐蚀速度就会减缓。3.电化学腐蚀的次生过程 腐蚀电池工作过程中,阳极附近金属离子(如Fe2+)浓度增大,阴极附近的pH升高,则随着离子的迁移发生如下反应: Fe2+ + 2OH- →Fe(OH)2 ↓ 或者进一步被氧化为:4Fe(OH)2+ O2 +2H2O →Fe(OH)3↓ 即铁在含氧水溶液中腐蚀的次生过程。 如图所示是铁在含氧水溶液中的腐蚀及其次生过程。

(图3-3 P22) 4.腐蚀原电池的分类 按照电极的大小,被破坏金属的表观形态,腐蚀电池可分为三类: 1)超微电池腐蚀:金属表面上存在的超微 观的(原子大小的)电化学不均一性引起,可以认为阴阳极是等电位,导致金属材料 的均匀腐蚀。 2)微电池腐蚀:金属表面存在许多微小的

化学热力学的发展简史

化学热力学的发展简史 姓名:xx 学号:xx 1 引言 化学热力学是物理化学中最早发展起来的一个分支学科,主要应用热力学原理研究物质系统在各种物理和化学变化中所伴随的能量变化、化学现象和规律,依据系统的宏观可测性质和热力学函数关系判断系统的稳定性、变化的方向和限度。化学热力学的基本特点是其原理具有高度的普适性和可靠性.对于任何体系,化学热力学性质是判断其稳定性和变化方向及程度的依据。也就是说,相平衡、化学平衡、热平衡、分子构象的稳定性、分子间的聚集与解离平衡等许多重要问题都需要用化学热力学的原理和方法进行判断和解决。化学热力学的研究范畴决定了它与化学乃至化学学科以外的其他学科具有很强的交叉渗透性。化学热力学在化学学科的发展中发挥着不可替代的重要作用,与其他学科的发展相互促进。热力学的历史始于热力学第一定律,100多年来,化学热力学有了很大的发展和广阔的应用。 2 化学热力学的筑基 化学热力学的主要理论基础是经典热力学。19世纪上半叶,作为物理学的巨大成果,“能”的概念出现了; 人们逐渐认识到热只是能的多种可互相转换的形式之一,科学家意识到了统治科学界百年之久的“热质说”是错误的,于是热力学应运而生。19世纪中叶,人们在研究热和功转换的基础上,总结出热力学第一定律和热力学第二定律,解决了热能和机械能转换中在量上的守恒和质上的差异。1873-1878年,吉布斯进一步总结出描述物质系统平衡的热力学函数间的关系,并提出了相律。20世纪初,能斯特提出了热定理,使“绝对熵”的测定成为可能。为了运用热力学函数处理实际非理想系统,1907 年,路易斯提出了逸度和活度的概念%至此,经典热力学建立起完整的体系。 2.1 Hess定律 俄国的赫斯很早就从化学研究中领悟了一些能量守恒的思想。1836年,赫斯向彼得堡科学院报告: “经过连续的研究,我确信,不管用什么方式完成化合,由此发出的热总是恒定的,这个原理是如此之明显,以至于如果我不认为已经被

工程热力学基本概念

第一章 工质:实现热能和机械能之间转换的媒介物质。 系统:热设备中分离出来作为热力学研究对象的物体。 状态参数:描述系统宏观特性的物理量。 热力学平衡态:在无外界影响的条件下,如果系统的状态不随时间发生变化,则系统所处的状态称为热力学平衡态。 压力:系统表面单位面积上的垂直作用力。 温度:反映物体冷热程度的物理量。 温标:温度的数值表示法。 状态公理:对于一定组元的闭口系统,当其处于平衡状态时,可以用与该系统有关的准静态功 形式的数量n 加上一个象征传热方式的独立状态参数,即(n+1 )个独立状态参数来确定。 热力过程:系统从初始平衡态到终了平衡态所经历的全部状态。 准静态过程:如过程进行的足够缓慢,则封闭系统经历的每一中间状态足够接近平衡态,这样的过程称为准静态过程。 可逆过程:系统经历一个过程后如果系统和外界都能恢复到各自的初态,这样的过程称为可逆过程。无任何不可逆因素的准静态过程是可逆过程。 循环:工质从初态出发,经过一系列过程有回到初态,这种闭合的过程称为循环。 可逆循环:全由可逆过程粘组成的循环。 不可逆循环:含有不可逆过程的循环。 第二章 热力学能:物质分子运动具有的平均动能和分子间相互作用而具有的分子势能称为物质的热力学能体积功:工质体积改变所做的功热量:除功以外,通过系统边界和外界之间传递的能量。焓:引进或排出工质输入或

输出系统的总能量。 技术功:工程技术上将可以直接利用的动能差、位能差和轴功三项之和称为技术功。功:物质间通过宏观运动发生相互作用传递的能量。 轴功:外界通过旋转轴对流动工质所做的功。 流动功:外界对流入系统工质所做的功。 第三章 热力学第二定律: 克劳修斯说法:不可能使热量从低温物体传到高温物体而不引起其他变化。 开尔文说法:不可能从单一热源吸热使之完全转化为有用功而不引起其他变化。卡诺循环:两热源间的可逆循环,由定温吸热、绝热膨胀、定温放热、绝热压缩四个可逆过程组成。 卡诺定理:在温度为T1 的高温热源和温度为T2 的低温热源之间工作的一切可逆热机,其热效 率相等,与工质的性质无关;在温度为T1的高温热源和温度为T2的低温热源之间工作的热机 循环,以卡诺循环的热效率为最高。 熵:沿可逆过程的克劳修斯积分,与路径无关,由初、终状态决定。 熵流:沿任何过程(可逆或不可逆)的克劳修斯积分,称为“熵流” 。 熵产:系统熵的变化量与熵流之差。 熵增原理:在孤立系统和绝热系统中,如进行的过程是可逆过程,其系统总熵保持不变;如为不可逆过程,其熵增加;不论什么过程,其熵不可能减少。 第四章

热力学的基本概念汇总

§4-1 热力学的基本概念 本节介绍一些基本概念——热力学系统 平衡态 准静态过程。 一、热力学系统(Thermodynamic System )(系统) 1.热力学系统 在热力学中,把所要研究的对象,即由大量微观粒子组成的物体或物体系称为热力学系统。在下一节中,将对热力学系统进行详细的讨论。外界环境(环境):系统以外的物质 1)概念:在热力学中,把要研究的宏观物体叫作热力学系统,简称系统,也称为工作物质。热力学系统是由大量分子组成的,可以是固体、液体和气体等。本章主要研究理想气体。 与热力学系统相互作用的环境称为外界。 2)热力学系统的分类:根据系统与外界是否有作功和热量的交换,系统可分为: 一般系统:有功、有热交换 透热系统:无功、有热交换 绝热系统:有功、无热交换 封闭系统:无功、无热交换(又称为孤立系统) 对于平衡态的系统,可以用压强、温度、体积来描述系统的状态。 根据系统与外界是否有物质和能量交换,系统可分为: 孤立系统:无能量、无质量交换 ——isolated system 封闭系统:有能量、无质量交换 ——closed system 开放系统:有能量、有质量交换 ——Open system 绝热系统:无能量交换 ——adiabatic system 二、平衡态 1.气体的物态参量 对于由大量分子组成的一定量的气体,其宏观状态可以用体积V 、压强P 和温度T 来描述。描述系统状态变化的物理量称为气体的物态参量。有体积(V) 、压强(p)、温度(T) 1)气体的体积(V olumn )V —— 几何参量 气体的体积V 是指气体分子无规则热运动所能到达的空间。对于密闭容器中的气体,容器的体积就是气体的体积。 单位:m 3 注意:气体的体积和气体分子本身的体积的总和是不同的概念。 2)压强(Pressure )P ——力学参量 压强P 是大量分子与容器壁相碰撞而产生的,它等于容器壁上单位面积所受到的正压力。定义式为 S F P 单位:(1)SI 制帕斯卡 Pa 1Pa=1N ·m -2 (2)cm ·Hg 表示高度为1cm 的水银柱在单位底面上的正压力。 1mm ·Hg=1Toor (托) (3)标准大气压 1atm=76ch ·Hg=1.013×105Pa 工程大气压 9.80665×104Pa 3)温度(Temperature )T ——热力学参量 温度的概念是比较复杂的,它的本质与物质分子的热运动有密切的关系。温度的高低反映分子热运动激烈程度。在宏观上,我们可以用温度来表示物体的冷热程度,并规定较热的物体有较高的温度。

热力学发展史阅读感想

热力学发展史阅读感想 廖瑞杰 (北京航空航天大学能源与动力工程学院,北京 100191) “热”这一个字伴随着人类的发展,人们对热的本质及热现象的认识经历了一个漫长的、曲折的探索过程。在古代,人们就知道冷与热的差别,能够利用摩擦生热、燃烧、传热、爆炸等热现象,来达到一定的目的。温度对于热力学研究起着至关重要的作用。温度的定义以及测量是热力学的开端,三个热力学基本定律的发现是贯穿热力学发展史的线索。 在17 世纪中,虽然有些科学家对温度的测定及温标的建立,作出不同程度的贡献,提供了有益的经验和教训。但是,由于没有共同的测温基准,没有一致的分度规则,缺乏测温物质的测温特性的资料,以及没有正确的理论指导,因此,在整个17 世纪中,并没有制作出复现性好的、可供正确测量的温度计及温标。在18 世纪中,“测温学”有较大的突破。其中最有价值的是,1714 年法伦海脱所建立的华氏温标,以及1742 年摄尔修斯所建立的摄氏温标(即百分温标)。华氏温标是以盐水和冰的混合物作为基准点(0°F),而以水的冰点(32°F)及水的沸点(212°F)作为固定参考点。摄氏温标是以 水的冰点(100℃)及水的沸点(0℃)作为固定参考点及基准点,并把他们分作100等分,每个间隔定义为一度,故称之为百分温标。1749 年,该温标的基准点及固定参考点,被摄尔修斯的助手斯托墨颠倒过来,这就是后来常用的摄氏温标。 18世纪末19世纪初,随着蒸汽机在生产中的广泛应用,人们越来越关注热和功的转化问题。于是,热力学应运而生。1798年,汤普生通过实验否定了热质的存在。德国医生、物理学家迈尔在1841-1843年间提出了热与机械运动之间相互转化的观点,这是热力学第一定律的第一次提出。在热力学第一定律提出之前,人们一直围绕着制造永动机的可能性问题展开激烈的讨论,尤其是到了19世纪早期,不少人沉迷于一种神秘机械——第一类永动机的制造,因为这种设想中的机械只需要一个初始的力量就可使其运转起来,之后不再需要任何动力和燃料,却能自动不断地做功。直至热力学第一定律发现后,第一类永动机的神话才不攻自破。一:热力学第一定律 1.热力学第一定律的文字表述 自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递中能量的数量保持不变。该定律就称为热力学第一定律,也称为能量转换与守恒定律,这一定律也被表示为:第一类永动机(不消耗任何形式的能量而能对外做功的机械)是不能制作出来的。 2.热力学第一定律建立的成因 1)理论——迈尔 迈尔是明确提出“无不能生有”,“有不能变无”的能量守恒与转化思想的第一人。而这理论正是建立热力学第一定律的基础。

相关主题
文本预览
相关文档 最新文档