当前位置:文档之家› 2018版高考数学一轮复习第十一章统计与概率第6讲离散型随机变量的分布列理

2018版高考数学一轮复习第十一章统计与概率第6讲离散型随机变量的分布列理

2018版高考数学一轮复习第十一章统计与概率第6讲离散型随机变量的分布列理
2018版高考数学一轮复习第十一章统计与概率第6讲离散型随机变量的分布列理

第6讲 离散型随机变量的分布列

一、选择题

1.已知随机变量X

则m 的值为( A.115 B.215 C.15 D.415

解析 利用概率之和等于1,得m =315=1

5

.

答案 C 2.已知随机变量X 的分布列为P (X =i )=i

2a (i =1,2,3),则P (X =2)等于

( ).

A.19

B.1

6

C.1

3

D.14

解析 ∵12a +22a +32a =1,∴a =3,P (X =2)=22×3=1

3.

答案 C

3.若随机变量X 的概率分布列为

且p 1=1

2p 2,则p 1等于

( ).

A.12

B.1

3

C.1

4 D.16

解析 由p 1+p 2=1且p 2=2p 1可解得p 1=1

3.

答案 B

4.已知随机变量X 的分布列为:P (X =k )=1

2k ,k =1,2,…,则P (2

A.3

16

B.1

4

C.1

16

D.516

解析 P (2

16.

答案 A

5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).

A.15

B.25

C.35

D.45 解析 P (ξ≤1)=1-P (ξ=2)=1-C 14C 2

2C 36=45.

答案 D

6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于

( ).

A .C 1012? ????3810? ????582

B .

C 912? ????389? ????58238

C .C 911? ????589? ??

??382

D .C 911? ????3810? ??

??582

解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此

P (X =12)=3

8C 911? ????389? ????582=C 911? ????3810? ??

??

582

.

答案 D 二、填空题

7.设随机变量X 的分布列为P (X =i )=i 10,(i =1,2,3,4),则P ? ????1

2<X <72=________.

解析 P ? ????12<X <72=P (X =1)+P (X =2)+P (X =3)=35. 答案 3

5

8.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为________.

解析 η的所有可能值为0,1,2.P (η=0)=C 12C 1

2C 14C 14=14,P (η=1)=2C 12C 1

2C 14C 14=1

2,P (η=2)=

C 12C 1

2C 14C 14=1

4. 答案

9. 某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至少命中一次的概率为

16

25

,则该队员每次罚球的命中率为____________.

解析 由251612=-p 得5

3=p 答案

3

5

10.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________.

解析 X =-1,甲抢到一题但答错了,或抢到三题只答对一题;X =0,甲没抢到题,或甲抢到2题,但答时一对一错;X =1时,甲抢到1题且答对或甲抢到3题,且一错两对;

X =2时,甲抢到2题均答对;X =3时,甲抢到3题均答对.

答案 -1,0,1,2,3 三、解答题

11.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;

(2)该顾客获得的奖品总价值X 元的概率分布列.

解 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率 P =C 14C 1

6+C 2

4C 2

10=3045=23

. ?

????或用间接法,即P =1-C 2

6C 210=1-1545=23. (2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且 P (X =0)=C 04C 2

6C 210=13,P (X =10)=C 13C 1

6C 210=25,

P (X =20)=C 2

3C 210=115,P (X =50)=C 11C 1

6C 210=2

15,

P (X =60)=C 11C 13C 210=1

15.

所以X 的分布列为:

12. 设ξξ

=0 ;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P (ξ=0);

(2)求ξ的分布列,并求其数学期望E (ξ).

解 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 2

3

对相交棱,因此P (ξ=0)=8C 2

3C 212=8×366=4

11

.

(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P (ξ=2)=6C 12=111

, 于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=6

11,

所以随机变量ξ的分布列是

因此E (ξ)=1×611+213.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,2

3

. (1)求该高中获得冠军个数X 的分布列;

(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列. 解 (1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为

P (X =0)=?

????1-12×?

?

???

1-13×?

????1-23

=19,

P (X =1)=12×?

?

???

1-13×?

????1-23+? ?

?

??

1-12×13×?

????

1-23+?

????1-12×?

?

?

??

1-13

×23=718

P (X =2)=12×1

3×?

????1-23+?

?

?

??

1-12×13×23

+12×?

??

??

1-13

×23=718

P (X =3)=12×13

×23=19

.

∴X 的分布列为

(2)∵得分η=5X +2(3-X )=6+3X , ∵X 的可能取值为0,1,2,3.

∴η的可能取值为6,9,12,15,取相应值的概率分别为

P (η=6)=P (X =0)=19,P (η=9)=P (X =1)=718

, P (η=12)=P (X =2)=718

,P (η=15)=P (X =3)=19

.

∴得分η的分布列为

14. 4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数X 的分布列,并求李明在一年内领到驾照的概率.

解 X 的取值分别为1,2,3,4.

X =1,表明李明第一次参加驾照考试就通过了,

故P (X =1)=0.6.

X =2,表明李明在第一次考试未通过,第二次通过了,

故P (X =2)=(1-0.6)×0.7=0.28.

X =3,表明李明在第一、二次考试未通过,第三次通过了,

故P (X =3)=(1-0.6)×(1-0.7)×0.8=0.096.

X =4,表明李明第一、二、三次考试都未通过,

故P (X =4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024. ∴李明实际参加考试次数X 的分布列为

1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.997 6.

2018年河北省高考数学试卷(理科)(全国新课标ⅰ)

2018年河北省高考数学试卷(理科)(全国新课标Ⅰ) 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.(5分)设z=+2i,则|z|=() A.0 B.C.1 D. 2.(5分)已知集合A={x|x2﹣x﹣2>0},则?R A=() A.{x|﹣1<x<2}B.{x|﹣1≤x≤2}C.{x|x<﹣1}∪{x|x>2}D.{x|x≤﹣1}∪{x|x≥2} 3.(5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 则下面结论中不正确的是() A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.(5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=() A.﹣12 B.﹣10 C.10 D.12 5.(5分)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为() A.y=﹣2x B.y=﹣x C.y=2x D.y=x 6.(5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=() A.﹣B.﹣C.+D.+ 7.(5分)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

2018年高考新课标Ⅰ理科数学(含答案)

绝密★启用前 2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目 要求的。 1.设1i 2i 1i z -= ++,则||z = A .0 B . 12 C .1 D .2 2.已知集合{} 2 20A x x x =-->,则A =R e A .{} 12x x -<< B .{} 12x x -≤≤ C .} {}{|1|2x x x x <-> D .} {}{|1|2x x x x ≤-≥ 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图: 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上 C .新农村建设后,养殖收入增加了一倍

D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4.设n S 为等差数列{}n a 的前n 项和,若3243S S S =+,12a =,则=5a A .12- B .10- C .10 D .12 5.设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x = 6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A . 31 44 AB AC - B . 13 44 AB AC - C . 31 44 AB AC + D . 13 44 AB AC + 7.某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .172 B .52 C .3 D .2 8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为2 3 的直线与C 交于M ,N 两点,则FM FN ?= A .5 B .6 C .7 D .8 9.已知函数e 0()ln 0x x f x x x ?≤=? >?,, ,, ()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是 A .[–1,0) B .[0,+∞) C .[–1,+∞) D .[1,+∞) 10.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为 直角三角形ABC 的斜边BC ,直角边AB ,AC .△ABC 的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为p 1,p 2,p 3,则 A .p 1=p 2 B .p 1=p 3 C .p 2=p 3 D .p 1=p 2+p 3

(完整word版)2018年高考数学总复习概率及其计算

第十三章概率与统计本章知识结构图

第一节 概率及其计算 考纲解读 1.了解随机事件发生的不确定性、频率的稳定性、概率的意义、频率与概率的区别。 2.了解两个互斥事件的概率的加法公式。 3.掌握古典概型及其概率计算公式。 4.了解随机数的意义,能运用模拟方法估计概率。 5.了解几何概型的意义。 命题趋势探究 1.本部分为高考必考内容,在选择题、填空题和解答题中都有渗透。 2.命题设置以两种概型的概率计算及运用互斥、对立事件的概率公式为核心内容,题型及分值稳定,难度中等或中等以下。 知识点精讲 一、必然事件、不可能事件、随机事件 在一定条件下: ①必然要发生的事件叫必然事件; ②一定不发生的事件叫不可能事件; ③可能发生也可能不发生的事件叫随机事件。 二、概率 在相同条件下,做次重复实验,事件A 发生次,测得A 发生的频率为,当很大时,A 发生的频率总是在某个常数附近摆动,随着的增加,摆动幅度越来越小,这时就把这个常数叫做A 的概率,记作。对于必然事件A ,;对于不可能事件A ,=0. 三、基本事件和基本事件空间 在一次实验中,不可能再分的事件称为基本事件,所有基本事件组成的集合称为基本事件空间。 四、两个基本概型的概率公式 1、古典概型 条件:1、基本事件空间含有限个基本事件 2、每个基本事件发生的可能性相同 ()(A) = ()A card P A card = Ω包含基本事件数基本事件总数 2、几何概型 条件:每个事件都可以看作某几何区域Ω的子集A ,A 的几何度量(长度、面积、体积或时间)记为 A μ.

()P A = A μμΩ 。 五、互斥事件的概率 1、互斥事件 在一次实验中不能同时发生的事件称为互斥事件。事件A 与事件B 互斥,则 ()()() P A B P A P B =+U 。 2、对立事件 事件A,B 互斥,且其中必有一个发生,称事件A,B 对立,记作B A =或A B =。 ()() 1P A p A =- 。 3、互斥事件与对立事件的联系 对立事件必是互斥事件,即“事件A ,B 对立”是”事件A ,B 互斥“的充分不必要条件。 题型归纳及思路提示 题型176 古典概型 思路提示 首先确定事件类型为古典概型,古典概型特征有二:有限个不同的基本事件及各基本事件发生的可能性是均等的;其次计算出基本事件的总数及事件A 所包含的基本事件数;最后计算 ()A P A = 包含基本事件数 基本事件总数。 例13.1 设平面向量(),1m a m =,()2,n b n = ,其中{}, 1.2,3,4m n ∈ (1)请列出有序数组(),m n 的所有可能结果; (2) 若“使得()m m n a a b ⊥-成立的(),m n 为事件A ,求事件A 发生的概率。 分析:两向量垂直的充要条件是两向量的数量积为0,从而可得m 与n 的关系,再从以上 (),m n 的16个有序数组中筛选出符合条件的,即得事件A 包含的基本事件个数。 解析:(1)由{}, 1.2,3,4m n ∈,有序数组(),m n 的所有可能结果为()1,1 , ()()() 1,2,1,3,1,4, ()()()() 2,1,2,2,2,3,2,4, ()()()() 3,1,3,2,3,3,3,4, ()()()()4,1,4,2,4,3,4,4 共16个。 (2)因为(),1m a m =,()2,n b n =,所以()2,1m n a b m n -=-- .又()m m n a a b ⊥-,得 ()(),12,10m m n ?--= ,即22m 10m n -+-= ,所以()21n m =- 。故事件A 包含的

2018年高三数学(理科)二轮复习完整版【精品推荐】

高考数学第二轮复习计划 一、指导思想 高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主,通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用,但知识较为零散,综合应用存在较大的问题。第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,强化数学的学科特点,同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是发展学生思维水平、提高综合能力发展的关键时期,因而对讲、练、检测要求较高。 强化高中数学主干知识的复习,形成良好知识网络。整理知识体系,总结解题规律,模拟高考情境,提高应试技巧,掌握通性通法。 第二轮复习承上启下,是知识系统化、条理化,促进灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲练、检测等要求较高,故有“二轮看水平”之说. “二轮看水平”概括了第二轮复习的思路,目标和要求.具体地说,一是要看教师对《考试大纲》的理解是否深透,研究是否深入,把握是否到位,明确“考什么”、“怎么考”.二是看教师讲解、学生练习是否体现阶段性、层次性和渐进性,做到减少重复,重点突出,让大部分学生学有新意,学有收获,学有发展.三是看知识讲解、练习检测等内容科学性、针对性是否强,使模糊的清晰起来,缺漏的填补起来,杂乱的条理起来,孤立的联系起来,让学生形成系统化、条理化的知识框架.四是看练习检测与高考是否对路,不拔高,不降低,难度适宜,效度良好,重在基础的灵活运用和掌握分析解决问题的思维方法. 二、时间安排: 1.第一阶段为重点主干知识的巩固加强与数学思想方法专项训练阶段,时间为3月10——4月30日。 2.第二阶段是进行各种题型的解题方法和技能专项训练,时间为5月1日——5月25日。 3.最后阶段学生自我检查阶段,时间为5月25日——6月6日。 三、怎样上好第二轮复习课的几点建议: (一).明确“主体”,突出重点。 第二轮复习,教师必须明确重点,对高考“考什么”,“怎样考”,应了若指掌.只有这样,才能讲深讲透,讲练到位.因此,每位教师要研究2009-2010湖南对口高考试题. 第二轮复习的形式和内容 1.形式及内容:分专题的形式,具体而言有以下八个专题。 (1)集合、函数与导数。此专题函数和导数、应用导数知识解决函数问题是重点,特别要注重交汇问题的训练。 (2)三角函数、平面向量和解三角形。此专题中平面向量和三角函数的图像与性质,恒等变换是重点。 (3)数列。此专题中数列是重点,同时也要注意数列与其他知识交汇问题的训练。 (4)立体几何。此专题注重点线面的关系,用空间向量解决点线面的问题是重点。 (5)解析几何。此专题中解析几何是重点,以基本性质、基本运算为目标。突出直线和圆锥曲线的交点、弦长、轨迹等。 (6)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。 (7)排列与组合,二项式定理,概率与统计、复数。此专题中概率统计是重点,以摸球问题为背景理解概率问题。 ((9)高考数学思想方法专题。此专题中函数与方程、数形结合、化归与转化、分类讨论思想方法是重点。 (二)、做到四个转变。 1.变介绍方法为选择方法,突出解法的发现和运用.

2018年高考全国三卷理科数学试卷

2018年普通高等学校招生全国统一考试(III卷) 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则 A.B.C.D. 2. A.B.C.D. 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 4.若,则 A.B.C.D. 5.的展开式中的系数为 A.10 B.20 C.40 D.80 6.直线分别与轴,轴交于、两点,点在圆上,则面积的取值范围是 A.B.C.D.

7.函数的图像大致为 8.某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则 A.B.C.D. 9.的内角的对边分别为,,,若的面积为,则 A.B.C.D. 10.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A.B.C.D. 11.设是双曲线()的左、右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为A.B.2 C.D. 12.设,,则 A.B.C.D. 二、填空题:本题共4小题,每小题5分,共20分. 13.已知向量,,.若,则________. 14.曲线在点处的切线的斜率为,则________. 15.函数在的零点个数为________. 16.已知点和抛物线,过的焦点且斜率为的直线与交于,两点.若 ,则________. 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须 作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(12分) 等比数列中,.

2017-2018年高考数学总复习:极坐标

2017-2018年高考数学总复习:极坐标 x cos sin y ρθ ρθ =?? =? 222x y ρ+= 考点一。直角坐标化极坐标 (1)点M 的直角坐标是(1-,则点M 的极坐标为______. 解:点M 极坐标为:2(2,2),()3 k k Z π π+ ∈. (2)求直线3x-2y+1=0的极坐标方程。 解:极坐标方程为01sin 2cos 3=+-θρθρ。 (3)在极坐标系中,圆心在π)且过极点的圆的极坐标方程为______. 解:圆心:)02(,-,22(2x y +=。圆的极坐标方 程为ρθ。 考点二。极坐标化直角坐标 (1)求普通方程)3 R ∈=ρπ θ(。 解:y=kx,且k=33 tan =π ,则x 3y =的直线。 (2)将曲线的极坐标方程ρ=4sin θ化 成直角坐标方程。 解:将ρ=2 2y x +,sin θ= 2 2y x y +代入ρ=4sin θ,得x 2+y 2=4y ,即x 2+(y-2)2 =4. (3)求过圆4cos =ρθ的圆心,且垂直于极轴的直线极坐标方程. 解:由θρcos 4=得θρρcos 42=.所以x y x 42 2=+,22(2)4x y -+=圆心坐标(2,0) 直线方程为2=x .直线的极坐标方程为2cos =θρ。 (4)将极坐标方程4sin 2 θ=3化为普通方程。 解:由4sin 2 θ=3,得4·2 22y x y +=3,即y 2=3 x 2 ,y=±x 3. (5)化极坐标方程2 4sin 52 θ ρ?=为普通方程。

解:2 1c o s 4s i n 4 22c o s 52 2 θ θρρρρθ-?=?=-=, 即25x =,化简225 54 y x =+ .表示抛物线. (6)求点 (,)π 23 到圆2cos ρθ= 的圆心的距离。 解:)3 , 2(π化为)3,1(,圆θρcos 2=化为0222=-+x y x ,圆心的坐标是)0,1(,故距 离为3。 (7)求点M (4, )到直线l :ρ(2cos θ+sin θ)=4的距离. (8)已知21,C C 极坐标方程分别为θρθρcos 4,3cos ==(2 0,0θρ<≤≥),求曲线1 C 与2C 交点极坐标. 解:21,C C 分别为4)2(,32 2=+-=y x x ,且0≥y ,两曲线交点为(3,3). 所以,交 点的极坐标为?? ? ? ?6, 32π。 考点三。极坐标应用 命题点1.求面积(12121 A B S =sin -2 ραρβρραβ?∴(,),(,) ()) (1)在极坐标系中,已知两点A ,B 的极坐标分别为? ????3,π3,? ????4,π6,求△AOB 的面积. 解: 由题意得S △AOB =12×3×4×sin ? ????π3-π6=1 2 ×3×4×sin π6=3. (2)在极坐标系中,已知两点A ,B 的极坐标分别为 ),)和(,(6 5-53 4π π ,求△AOB 的面积. 解: 由题意得5))6 5(3sin(5421S =--???= ?π π. )化成为()

2018年高考数学试题

2018年普通高等学校招生全国统一考试 (全国卷Ⅱ)理科试卷 本试卷共23题,共150分,共5页。考试结束后,将本试卷和答题卡一并交回。 注意事项:1、答题前,考试现将自己的姓名,准考证号填写清楚,将条形 码准确粘贴在条形码区域内 2、选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。 3、请按照题号顺序在答题卡 各题目的答题区域内做答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。 4、作图可先试用铅笔画出,确定后必须用黑色字迹的签字笔描黑。 5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、 选择题:本题共12小题,每小题5分,共60分。 在每小题给出的四个选项中,只有一项是符合题目要求的。 1、1212i i +=- A 、4355i -- B 、4355i -+ C 、3455i -- D 3455 i -+ 2、已知集合(){}22,|3,,,A x y x y x Z y Z =+≤∈∈则A 中元素的个数为() A 、9 B 、8 C 、5 D4 3、函数 ()2x x e e f x x --=的图象大致是() x x

4、已知向量() ,1,1,2a b a a b a a b =?=--=满足则() A 、4 B 、3 C 、2 D 、0 5、双曲线()222210,0x y a b a b -=>> 则其渐近线方程为() A 、 y = B 、 y = C 、2 y x =± D y x = 6、在△ABC 中,cos 2C = ,BC=1,AC=5,则AB=( ) A 、 B C D 7、为计算11111123499100S =-+-+ +-,设计了右侧的程序框图,则空白框中应填入 A 、i=i+1 B 、i=i+2 C 、i=i+3 D 、i=i+4

高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第八章

第八章 解析几何 第41讲 直线的斜率与方程 A 应知应会 一、 选择题 1. (2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-1 4 的直线方程为 ( ) A. 3x +4y +15=0 B. 3x +4y +6=0 C. 3x +y +6=0 D. 3x -4y +10=0 2. 直线2x cos α-y -3=0??? ?α∈????π6,π3 的倾斜角的取值范围是 ( ) A. ????π6,π3 B. ????π4,π3 C. ????π4,π2 D. ????π4,2π 3 3. (2019·湖北四地七校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ????π4-x =f ????π4+x ,则直线ax -by +c =0的倾斜角为( ) A. π4 B. π3 C. 2π3 D. 3π 4 4. 如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 5. (2019·张家口模拟)若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3 x -y =33 的倾斜角的2倍,则( ) A. m =-3 ,n =1 B. m =-3 ,n =-3 C. m =3 ,n =-3 D. m =3 ,n =1 二、 解答题 6. 求过点A (1,3),斜率是直线y =-4x 的斜率的1 3 的直线方程.

7. 求适合下列条件的直线方程. (1) 经过点P(3,2),且在两坐标轴上的截距相等; (2) 求过点(2,1)且在x轴上的截距与在y轴上的截距之和为6的直线方程. B巩固提升 一、填空题 1. 直线x+3y+1=0的倾斜角是________. 2. 过点P(2,3)且在两坐标轴上截距相等的直线方程为________. 3. 已知直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________. 4. (2019·江苏姜堰中学)已知△ABC的三个顶点A(-5,0),B(3,-3),C(0,2),则BC边上中线所在的直线方程为________. 二、解答题 5. (2019·启东检测)已知直线l:(2+m)x+(1-2m)y+4-3m=0. (1) 求证:不论m为何实数,直线l过一定点M; (2) 过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程. 6. 如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交 OA,OB于A,B两点,当AB的中点C恰好落在直线y=1 2x上时,求直线AB的方程. (第6题)

精编2018年高考数学总复习全书汇编

专题一集合、常用逻辑用语、平面向量、复数、算法、合情推理[高考领航]————————————摸清规律预测考情

考点一 集合、常用逻辑用语 1.设有限集合A ,card(A )=n (n ∈N *),则

(1)A 的子集个数是2n ; (2)A 的真子集个数是2n -1; (3)A 的非空子集个数是2n -1; (4)A 的非空真子集个数是2n -2; (5)card(A ∪B )=card A +card B -card(A ∩B ). 2.(1)(?R A )∩B =B ?B ??R A ; (2)A ∪B =B ?A ?B ?A ∩B =A ; (3)?U (A ∪B )=(?U A )∩(?U B ); (4)?U (A ∩B )=(?U A )∪(?U B ). 3.若p 以集合A 的形式出现,q 以集合B 的形式出现,即A ={x |p (x )},B ={x |q (x )},则关于充分条件、必要条件又可叙述为: (1)若A ?B ,则p 是q 的充分条件; (2)若A ?B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件. 类型一 集合的概念及运算 [典例1] (2016·高考全国卷Ⅰ)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B =( ) A.? ????-3,-32 B.? ? ? ??-3,32 C.? ????1,32 D.? ?? ??32,3 解析:通解:(直接法)解x 2-4x +3<0,即(x -1)(x -3)<0,得1<x <3,故A ={x |1<x <3};

2018年高考数学一轮复习感知高考第116—120题(含答案解析)

高考一轮复习116 1.已知ABC ?中,角,,A B C 的对边,,a b c 满足()c o s c a A C =+,则tan C 的最大值是 . 解:()222 cos cos 2a c b c a A C a B a ac +-=+=-=-? 即() 22213c b a =-,且B 为钝角,C 为锐角 由余弦定理得( )2222222221423cos 226a b b a a b c a b C ab ab ab +--+-+===≥ 锐角C 在区间0,2π?? ??? 上递减,故当( )min cos C =,则( )max tan C =2.各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生有______种不同的填报专业志愿的方法(用数字作答). 解:327 35180A A -?= 高考一轮复习117 1.已知,αβ为锐角,且()sin cos sin ααββ+= ,则tan α的最大值是 . 解法一:()()()()sin sin cos sin cos cos sin sin sin αββαββααβαββββ ?+-?+??+===-+ 即()tan 2tan αββ+= ()()( )2tan tan tan tan tan 1tan tan 12tan αβββααββαβββ+-=?+-?= ==??+++ 当且仅当tan β= 解法二:由()sin cos sin ααββ+=得sin cos cos sin sin sin ααβαββ -= 即1cos cos sin sin sin αβαββ??=+ ???

2018年高考数学真题

2018年普通高等学校招生全国统一考试(卷) 数学Ⅰ 1. 已知集合{}8,2,1,0=A ,{}8,6,1,1-=B ,那么_____=B A I 2. 若复数z 满足i z i 21+=?,其中i 是虚数单位,则z 的实部为_____ 3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位 裁判打出的分数的平均数为_____ 4. 一个算式的伪代码如图所示,执行此算法,最后输出的S 的值为______ 5. 函数1log )(2-=x x f 的定义域为______ 6. 某兴趣小组有2名男生和3名女生,现从中选2名学生去参加, 则恰好有2名女生的概率为_______ 7. 已知函数)22)(2sin(π?π?<<-+=x y 的图象关于直线3 π =x 对称,则?的值是______ 8. 在平面直角坐标系xOy 中.若双曲线0)b 0(122 22>>=-,a b y a x 的右焦点F(c ,0)到一 条渐近线的距离为 c 2 3 ,则其离心率的值是_____ 9. 函数f(x)满足f(x +4)=f(x)(x ∈R),且在区间]2,2(-上,??? ??? ?≤<-+≤<=,02,21 ,20,2cos )(x x x x x f π则))15((f f 的值为______ 10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面 体的体积为_______ 11. 若函数)(12)(2 3 R a ax x x f ∈+-=在),0(+∞有且只有一个 零点,则)(x f 在[-1,1]上的最大值与最小值的和为_______ 12. 在平面直角坐标系xOy 中,A 为直线l :x y 2=上在第一象限的点,B (5,0),以 8 99 9 011 (第3题) I ←1 S ←1 While I<6 I ←I+2 S ←2S End While Pnint S (第4题)

2018年高考数学总复习专题1.1集合试题

专题1.1 集合 【三年高考】 1.【2017高考江苏1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1 【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1. 【考点】集合的运算、元素的互异性 【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件. (2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防范空集.在解决有关,A B A B =??等集合问题时,往往容易忽略空集的情况,一 定要先考虑?时是否成立,以防漏解. 2.【2016高考江苏1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{} {}{}1,2,3,6231,2A B x x =--<<=-.故答案应填:{}1,2- 【考点】集合运算 【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确江苏高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解. 2.【2015高考江苏1】已知集合{ }3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5 【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算

2018年江苏省高考数学试卷及解析

2018年江苏省高考数学试卷 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.(5.00分)已知集合A={0,1,2,8},B={﹣1,1,6,8},那么A∩ B= . 2.(5.00分)若复数z满足i?z=1+2i,其中i是虚数单位,则z的实部为. 3.(5.00分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为. 4.(5.00分)一个算法的伪代码如图所示,执行此算法,最后输出的S的值为. 5.(5.00分)函数f(x)=的定义域为. 6.(5.00分)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为. 1

7.(5.00分)已知函数y=sin(2x+φ)(﹣φ<)的图象关于直线x=对 称,则φ 的值为. 8.(5.00分)在平面直角坐标系xOy中,若双曲线﹣=1(a>0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值为.9.(5.00分)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为. 10.(5.00分)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为. 11.(5.00分)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为. 12.(5.00分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为. 13.(5.00分)在△ABC中,角A,B,C所对的边分别为a,b,c,∠ABC=120°,∠ABC的平分线交AC于点D,且BD=1,则4a+c的最小值为. 2

江苏版2018年高考数学一轮复习专题1.1集合的概念及其基本运算讲

专题1.1 集合的概念及其基本运算【考纲解读】 内容 要求 5年统计 A B C 集合 集合及其表示√2017.1 2016.1 2015.1 2014.1 2013·4 子集√ 交集、并集、补集√ 【直击考点】 题组一常识题 1.【教材改编】设全集U={小于9的正整数},A={1,2,3},B={3,4,5,6},则?U(A∪B)=________. 【答案】{7,8} 2.【教材改编】已知集合A={a,b},若A∪B={a,b,c},则这样的集合B有________个.【答案】4 【解析】因为A∪B?B,A={a,b},所以满足条件的B可以是{c},{a,c},{b,c},{a,b,c},所以集合B有4个.学# 3.【教材改编】设全集U={1,2,3,4,5, 6,7,8,9},?U(A∪B)={1,3},A∩(?U B)={2,4},则集合B=________. 【答案】{5,6,7,8,9} 【解析】由?U(A∪B)={1,3},得1,3?B;由A∩(?U B)={2,4},得2,4?B,所以B={5,6,7,8,9}. 题组二常错题 4.设集合M={(x,y)|y=x2},N={(x,y)|y=2x},则集合M∩N的子集的个数为________.【答案】8 【解析】由函数y=x2与y=2x的图像可知,两函数的图像在第二象限有1个交点,在第一象限有2个交点(2,4),(4,16),故M∩N有3个元素,其子集个数为23=8. 5.已知集合M={x︱x-a=0},N={x︱ax-1=0},若M∩N=N,则实数a的值是________.【答案】0或1或-1 【解析】M={a},∵M∩N=N,∴N?M,∴N=?或N=M,∴a=0或a=±1. 6.已知集合A={m+2,2m2+m},若3∈A,则m=________.

2018年高考数学总复习 统计与统计案例

第三节 统计与统计案例 考纲解读 1. 理解随机抽样的必要性和重要性。 2. 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法。 3. 了解分布的意义和作用,会列频率分布表,会画出频率分布直方图、频率折线图、茎叶图,理解它们各自的特点。 4. 理解样本数据标准差的意义和作用,会计算数据标准差。 5. 能从样本的频率分布估计总体分布,会用样本的基本数字牲估计总体的基本数字特征,理解用样本估计总体的思想。 6. 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题。 7. 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系。 8. 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。 9. 了解常见的统计方法,并能应用这些方法解决一些实际问题。 (1)独立性检验 了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用。 (2)回归分析 了解回归分析的基本思想、方法及其简单应用。 命题趋势探究 1. 本节内容是高考必考内容,以选择题、填空题为主。 2. 命题内容为:(1)三种抽样(以分层抽样为主);(2)频率分布表和频率分布直方图的制作、识图及运用。(1)(2)有结合趋势,考题难度中下。 3. 统计案例为新课标教材新增内容,考查考生解决实际问题的能力。 知识点精讲 一、抽样方法 三种抽样方式的对比,如表13-7所示。 类型 共同点 各自特点 相互关系 使用范围 简单随机抽样 抽样过程都是不放回抽样,每个个体被抽到的机会均等,总体容量N ,样本容量n ,每个个体被抽到的概率n P N = 从总体中随机逐个抽取 总体容量较小 系统抽样 总体均分几段,每段T 个, 第一段取a 1, 第二段取a 1+T , 第三段取a 1+2T , …… 第一段简单随机抽样 总体中的个体个数较多 分层抽样 将总体分成n 层,每层按比例抽取 每层按简单随机抽样或系统抽样 总体由差异明显的几部分组成 二、样本分析 (1)样本平均值:1 1n i i x x n ==∑。 (2)样本众数:样本数据中出现次数最多的那个数据。 (3)样本中位数:将数据按大小排列,位于最中间的数据或中间两个数据的平均数。

2018年全国3卷高考数学试题理科

2018年普通高等学校招生全国统一考试 理科数学 注意事项: 1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。 3.考试结束后,将本试卷和答案卡一并交回。 一、选择题(本题共12小题,每小题5分,共60分.在每小题给的四个选项中,只有一项符合) 1.已知集合{}|10A x x =-≥,{}012B =, ,,则A B =I ( ) A .{}0 B .{}1 C .{}12, D .{}012, , 2.()()12i i +-=( ) A .3i -- B .3i -+ C .3i - D .3i + 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫 卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼 的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( ) 4.若1sin 3α=,则cos2α=( ) A .89 B .79 C .79- D .89 -

5.5 22x x ??+ ???的展开式中4x 的系数为( ) A .10 B .20 C .40 D .80 6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ?面积的取值范围是( ) A .[]26, B .[]48, C .232????, D .2232???? , 7.函数422y x x =-++的图像大致为( ) 8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( ) A .0.7 B .0.6 C .0.4 D .0.3 9.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ?的面积为222 4 a b c +-,则C =( ) A .2π B .3π C .4π D .6 π

2018高考理科数学全国一卷试题及答案

2018高考理科数学全国一卷 一.选择题 1.设则( ) A. B. C. D. 2、已知集合 ,则( ) A. B. C. D. 3、某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。为更好地了解该地区农村的经济收入变 化情况,统计了该地区系农村建设前 后农村的经济收入构成比例。得到 如下饼图: 则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 4、记为等差数列的前项和,若,则( ) A.-12 B.-10 C.10 D.12 5、设函数,若为奇函数,则曲线在点处的切线方程为( ) A. B. C. D. 6、在中,为边上的中线,为的中点,则( ) A. B. C. D. 7、某圆柱的高为2,底面周长为16,其三视图如下图。圆柱表面上的点M在正视 图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面 上,从M到N的路径中,最短路径的长度为( ) A. B. C. D. 8、设抛物线的焦点为,过点且斜率为的直线与交于两点,则( ) A.5 B.6 C.7 D.8

9、已知函数,,若存在个零点,则的取值范围是( ) A. B. C. D. 10、下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个车圈构成,三个半圆的直径分别为直角三角形 的斜边,直角边.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为,则( ) A. B. C. D. 11、已知双曲线,为坐标原点,为的右焦点,过的直线 与的两条渐近线的交点分别为若为直角三角形,则( ) A. B. C. D. 12、已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( ) A. B. C. D. 13、若满足约束条件则的最大值为。 14、记为数列的前n项的和,若,则。 15、从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数 字填写答案) 16、已知函数,则的最小值是。 三解答题: 17、在平面四边形中, 1.求; 2.若求 18、如图,四边形为正方形,分别为的中点,以 为折痕把折起,使点到达点的位置,且. 1. 证明:平面平面; 2.求与平面所成角的正弦值

高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第二章

第二章 基本初等函数 第6讲 函数的概念及其表示方法 A 组 应知应会 一、 选择题 1. (2019·北京一模)已知函数f (x )=x 3-2x ,则f (3)等于( ) A. 1 B. 19 C. 21 D. 35 2. (2019·石家庄二模)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集合N 的函数关系的是( ) A B C D 3. (2019·厦门质检)已知函数f (x )=???? ?3x ,x ≤0,-????12x ,x >0, 则f (f (log 23))等于( ) A. -9 B. -1 C. -13 D. -1 27 4. (2019·河南名校段测)设函数f (x )=?????log 3x ,0<x ≤9,f (x -4),x >9, 则f (13)+2f ????13 的值为( ) A. 1 B. 0 C. -2 D. 2 5. (2019·河北衡水)若函数y =x 2-3x -4的定义域为[0,m ],值域为??? ?-25 4,-4 ,则实数m

的取值范围是( ) A. (0,4] B. ????32,4 C. ????32,+∞ D. ??? ?3 2,3 二、 解答题 6. (1) 已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式. (2) 已知函数f (x )的定义域为(0,+∞),且f (x )=2f ???? 1x ·x -1,求f (x )的解析式. 7. 已知 f (x )=x 2-1, g (x )=? ?? ??x -1,x >0,2-x ,x <0. (1) 求f (g (2))和g (f (2))的值; (2) 求f (g (x ))和g (f (x ))的表达式.

高三数学-2018年高考数学总复习讲座-分类讨论思想[整理] 精品

2018年高考数学总复习讲座 分类讨论思想 在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。 引起分类讨论的原因主要是以下几个方面: ①问题所涉及到的数学概念是分类进行定义的。如|a|的定义分a>0、a=0、a<0三种情况。这种分类讨论题型可以称为概念型。 ②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。如等比数列的前n项和的公式,分q=1和q≠1两种情况。这种分类讨论题型可以称为性质型。 ③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。这称为含参型。 另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。 进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。其中最重要的一条是“不漏不重”。 解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。 Ⅰ、再现性题组: 1.集合A={x||x|≤4,x∈R},B={x||x-3|≤a,x∈R},若A?B,那么a的范围是_____。 A. 0≤a≤1 B. a≤1 C. a<1 D. 00且a≠1,p=log a (a3+a+1),q=log a (a2+a+1),则p、q的大小关系是_____。 A. p=q B. pq D.当a>1时,p>q;当0

相关主题
文本预览
相关文档 最新文档