当前位置:文档之家› 高二数学立体几何(详细答案)

高二数学立体几何(详细答案)

高二数学立体几何(详细答案)
高二数学立体几何(详细答案)

高二数学立体几何

一、选择题: (本大题共12小题,每小题3分,共36分.) 1、已知),1,2,1(),1,1,0(-=-=b a 则与的夹角等于 A .90°

B .30°

C .60°

D .150°

2、设M 、O 、A 、B 、C 是空间的点,则使M 、A 、B 、C 一定共面的等式是 A .0=+++OC OB OA OM

B .O

C OB OA OM --=2

C .4

13

12

1++= D .0=++

3、下列命题不正确的是

A .过平面外一点有且只有一条直线与该平面垂直;

B .如果平面的一条斜线在平面内的射影与某直线垂直,则这条斜线必与这条直线垂直;

C .两异面直线的公垂线有且只有一条;

D .如果两个平行平面同时与第三个平面相交,则它们的交线平行。 4、若m 、n 表示直线,α表示平面,则下列命题中,正确的个数为 ①

//m n n m αα??⊥?⊥?②//m m n n αα⊥???⊥?③//m m n n αα⊥??⊥??④//m n m n αα?

?⊥?⊥?

A .1个

B .2个

C .3个

D .4个 5、四棱锥成为正棱锥的一个充分但不必要条件是

A .各侧面是正三角形

B .底面是正方形

C .各侧面三角形的顶角为45度

D .顶点到底面的射影在底面对角线的交点上 6、若点A (42

+λ,4-μ,1+2γ)关于y 轴的对称点是B (-4λ,9,7-γ),则λ,μ,γ的值依次为

A .1,-4,9

B .2,-5,-8

C .-3,-5,8

D .2,5,8 7、已知一个简单多面体的各个顶点处都有三条棱,则顶点数V 与面数F 满足的关系式是 A .2F+V=4 B .2F -V=4 C .2F+V=2 (D )2F -V=2 8、侧棱长为2的正三棱锥,若其底面周长为9,则该正三棱锥的体积是 A .

239 B .433 C .233 D .4

3

9 9、正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AB ,BB 1的中点,A 1E 与C 1F 所成的角是

θ,则

A .θ=600

B .θ=450

C .52cos =

θ D .5

2

sin =θ 10、已知球面的三个大圆所在平面两两垂直,则以三个大圆的交点为顶点的八面体的体积

与球体积之比是

A .2∶π

B .1∶2π

C .1∶π

D .4∶3π

11、设A ,B ,C ,D 是空间不共面的四点,且满足0=?AC AB ,0=?AD AC ,0=?AD AB ,则△BCD 是 A .钝角三角形 B .直角三角形 C .锐角三角形 D .不确定 12、将B ∠=600,边长为1的菱形ABCD 沿对角线AC 折成二面角θ,若∈θ[60°,120°],

则折后两条对角线之间的距离的最值为

A .最小值为43, 最大值为23

B .最小值为43, 最大值为43

C .最小值为41, 最大值为43

D .最小值为43, 最大值为23

二、填空题:(本大题共6题,每小题3分,共18分) 13、已知向量a 、满足|a | =

3

1

,|| = 6,a 与的夹角为3π,则3|a |-2(a ·)+4||

=________;

14、如图,在四棱锥P -ABCD 中,E 为CD 上的动点,四边形ABCD 为 时,

体积V P -AEB 恒为定值(写上你认为正确的一个答案即可).

A

B

C

D

E

P

15、若棱锥底面面积为2

150cm ,平行于底面的截面面积是2

54cm ,底面和这个截面的距离是12cm ,则棱锥的高为 ;

16、一个四面体的所有棱长都是2,四个顶点在同一个球面上,则此球的表面积

为 . 三、解答题:(本大题共6题,共46分)

17.在如图7-26所示的三棱锥P —ABC 中,PA ⊥平面ABC , PA=AC=1,PC=BC ,PB 和平面ABC 所成的角为30°。

(1)求证:平面PBC ⊥平面PAC ;

(2)比较三个侧面的面积的算术平均数与底面积数值的大小; (3)求AB 的中点M 到直线PC 的距离。

18.如图8-32,在正三棱柱ABC—A1B1C1中,E∈BB1,截面A1EC⊥侧面AC1。

(1)求证:BE=EB1;

(2)若AA1=A1B1,求平面A1EC与平面A1B1C1所成二面角(锐角)的度数。

19.已知边长为a的正三角形ABC的中线AF与中位线DE相交于G(如图7-28),将此三角形沿DE折成二面角A′—DE—B。

(1)求证:平面A′GF⊥平面BCED;

(2)当二面角A′—DE—B为多大时,异面直线A′E与BD互相垂直?证明你的结论。

20.如图7-29,在四棱锥P—ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,

AD=2,侧棱PB=15,PD=3。

(1)求证:BD⊥平面PAD;

(2)若PD与底面ABCD成60°的角,试求二面角P—BC—A的大小。

21.如图7-30,已知VC 是△ABC 所在平面的一条斜线,点N 是V 在平面ABC 上的射影,且N 位于△ABC 的高CD 上。AB=a,VC 与AB 之间的距离为h ,M ∈VC 。

(1)证明∠MDC 是二面角M —AB —C 的平面角; (2)当∠MDC=∠CVN 时,证明VC ⊥平面AMB ;

(3)若∠MDC=∠CVN=θ(0<θ<

2

π),求四面体MABC 的体积。

22.如图7-31,已知矩形ABCD ,AB=2AD=2a,E 是CD 边的中点,以AE 为棱,将△DAE 向上折起,将D 变到D ′的位置,使面D ′AE 与面ABCE 成直二面角(图7-32)。

(1)求直线D ′B 与平面ABCE 所成的角的正切值; (2)求证:AD ′⊥BE ;

(3)求四棱锥D ′—ABCE 的体积; (4)求异面直线AD ′与BC 所成的角。

高二数学立体几何 答案

一、选择题:

1、D

2、D

3、B

4、C

5、A

6、B

7、B

8、B

9、C 10、C 11、C 12、B 二、填空题:

13、23 14、AB ∥CD 15、30cm 16、3π 三、解答题

17.解 (1)由已知PA ⊥平面ABC ,PA=AC=1,得△PAC 为等腰直角三角形,PC=CB=2。

在Rt △PAB 中,∠PBA=30°,∴PB=2,∴△PCB 为等腰直角三角形。 ∵PA ⊥平面ABC , ∴AC ⊥BC ,又AC ∩PC=C ,PC ⊥BC , ∴BC ⊥平面PAC ,∵BC 平面PBC ,∴平面PBC ⊥平面PAC 。

(2)三个侧面及底面都是直角三角形,求得侧面PAC 的面积为

2

1

,侧面PAB 面积值为23,

侧面PCB 面积值为1,底面积值为

2

2

。三个侧面面积的算术平均数为633+。

633+-2

2=62

333-+,

其中3+3- 32=(3-22)+(3-2)=(9-8)+(3-2)>0, ∴三个侧面面积的算术平均数大于底面积的数值。 (3)如图,过M 作MD ⊥AC ,垂足为D 。

∵平面PAC ⊥平面ABC 且相交于AC ,∴MD ⊥平面PAC 。

过D 作DE ⊥PC ,垂足为E ,连结ME ,则DE 是ME 在平面PBC 上的射影, ∵DE ⊥PC ,∴ME ⊥PC ,ME 的长度即是M 到PC 的距离。 在Rt △ABC 中,∵MD ∥BC ,∴MD=

2

1

BC=22。在等腰Rt △PAC 中,DE=DCsin45°=42,

在Rt △ABC 中,∵MD ∥BC ,∴MD=

2

1BC=22。在等腰Rt △PAC 中,DE=DCsin45°=42,

∴ME=22DE MD +=

8121+=4

10,即点M 到PC 的距离为 4

10

。 18.解 (1)在截面A 1EC 内,过E 作EG ⊥A 1C ,G 是垂足。∵面A 1EC ⊥面AC 1,

∴EG ⊥侧面AC 1,取AC 的中点F ,连结BF ,FG ,由AB=BC 得BF ⊥AC 。∵面ABC ⊥侧面AC 1,∴BF ⊥侧面AC 1,得BF ∥EG 。由BF ,EG 确定一个平面,交侧面AC 1于FG 。∵BE ∥侧面AC 1,∴BE ∥FG ,四边形BEGF 是平行四边形,BE=FG 。∵BE ∥AA 1,∴FG

∥AA 1。又△AA 1C ∽△FGC ,且AF=FC ,∴FG=

21AA 1=21BB 1,即BE=2

1BB 1,故BE=EB 1。 (2)分别延长CE 、C 1B 1交于点D ,连结A 1D 。∵EB 1∥CC 1,EB 1=21BB 1=2

1

CC 1,

∴DB 1=21DC 1=B 1C 1=A 1B 1。∵∠B 1A 1C 1=∠B 1C 1A 1=60°,∠DA 1B 1=∠A 1DB 1=2

1

(180°-∠DB 1A 1)=30°,∴∠DA 1C 1=∠DA 1B 1+∠B 1A 1C 1=90°,即DA 1⊥A 1C 1。∵CC 1⊥平面

A 1C 1

B 1,即A 1

C 1是A 1C 在平面A 1C 1

D 上的射影,根据三垂线定理得DA 1⊥A 1C 1,∴∠CA 1C 1是所求二面角的平面角。∵CC 1= AA 1=A 1B 1=A 1C 1, ∠A 1C 1C=90°,∴∠CA 1C 1=45°,即所求二面角为45°。

19.解 (1)∵△ABC 是正三角形,AF 是BC 边的中线, ∴AF ⊥BC 。

又D 、E 分别是AB 、AC 的中点,

∴DE ∥

2

1

BC 。 ∴AF ⊥DE ,又AF ∩DE=G , ∴A ′G ⊥DE ,GF ⊥DE , ∴DE ⊥平面A ′FG , 又DE 平面BCED , ∴平面A ′FG ⊥平面BCED 。

(2)∵A ′G ⊥DE ,GF ⊥DE ,

∴∠A ′GF 是二面角A ′—DE —B 的平面角。 ∵平面A ′GF ∩平面BCED=AF , 作A ′H ⊥AG 于H , ∴A ′H ⊥平面BCED 。

假设A ′E ⊥BD ,连EH 并延长AD 于Q ,则EQ ⊥AD 。 ∵AG ⊥DE ,

∴H 是正三角形ADE 的重心,也是中心。 ∵AD=DE=AE=

2a ,∴A ′G=AG=43a,HG=3

1

AG=123a 。

在Rt △A ′HG 中,cos ∠A ′GH=

G A HG '=3

1.

∵∠A ′GF =π-∠A ′GH, ∴cos ∠A ′GF= -31,∴∠A ′GF=arcos(-3

1), 即当∠A ′GF=arcos(-

3

1

)时,A ′E ⊥BD 。 20.解 (1)由已知AB=4,AD=2,∠BAD=60°, 得BD 2=AD 2+AB 2-2AD ·ABcos60° =4+16-2×2×4×2

1

=12。 ∴AB 2=AD 2+BD 2,

∴△ABD 是直角三角形,∠ADB=90°, 即AD ⊥BD 。

在△PDB 中,PD=3,PB=15,BD=12, ∴PB 2=PD 2+BD 2,故得PD ⊥BD 。 又PD ∩AD=D ,∴BD ⊥平面PAD 。 (2)∵BD ⊥平面PAD ,BD 平面ABCD ,

∴平面PAD ⊥平面ABCD 。

作PE ⊥AD 于E ,又PE 平面PAD ,∴PE ⊥平面ABCD , ∴∠PDE 是PD 与底面BCD 所成的角,∴∠PDE=60°, ∴PE=PDsin60°=3·

23=2

3。 作EF ⊥BC 于F ,连PF ,则PF ⊥BC ,∴∠PFE 是二面角P —BC —A 的平面角。 又EF=BD=12,∴在Rt △PEF 中,

tan ∠PFE=EF PE

=3223

=4

3。

故二面角P —BC —A 的大小为arctan

4

3。 21.解 (1)由已知,VN ⊥平面ABC ,N ∈CD ,AB 平面ABC ,

得VN ⊥AB 。又∵CD ⊥AB ,DC ∩VN=N ∴AB ⊥平面VNC 。

又V 、M 、N 、D 都在VNC 所在平面内,

所以,DM 与VN 必相交,且AB ⊥DM ,AB ⊥CD , ∴∠MDC 为二面角M —AB —C 的平面角。 (2)由已知,∠MDC=∠CVN ,

在△VNC 与△DMC 中,∠NCV=∠MCD ,且∠VNC=90°, ∴∠DMC=∠VNC=90°,故有DM ⊥VC 。又AB ⊥VC , ∴VC ⊥平面AMB 。 (3)由(1)、(2)得MD ⊥AB ,MD ⊥VC ,且D ∈AB ,M ∈VC , ∴MD=h 。又∵∠MDC=θ.

∴在Rt △MDC 中,CM=h ·tan θ。 ∴V 四面体MABC =V 三棱锥C —ABM =3

1

CM ·S △ABM =

31h ·tan θ·21ah =6

1

ah 2tan θ 22.解 (1)∵D ′—AE —B 是直二面角,

∴平面D ′AE ⊥平面ABCE 。

作D ′O ⊥AE 于O ,连 OB ,则D ′O ⊥平面ABCE 。 ∴∠D ′BO 是直线D ′B 与平面ABCE 所成的角。 ∵D ′A=D ′E=a ,且D ′O ⊥AE 于O ,∠AD ′E=90° ∴O 是AE 的中点, AO=OE=D ′O=

2

2

a, ∠D ′AE=∠BAO=45°。 ∴在△OAB 中,OB=???-+AB cos45222OA AB OA

=2

22a)

)(22(2)·2()22(

22a a a ?-+=210a 。 ∴在直角△D ′OB 中,tan ∠D ′BO=OB

O

D '=55。 (2)如图,连结B

E ,

∵∠AED=∠BEC=45°, ∴∠BEA=90°, 即BE ⊥AE 于E 。

∵D ′O ⊥平面ABCE , ∴D ′O ⊥BE ,

∴BE ⊥平面AD ′E , ∴BE ⊥AD ′。

(3)四边形ABCE 是直角梯形,

∴S ABCE =

21(a+2a )·a=2

3a 2。 ∵D ′O 是四棱锥的高且D ′O=

2

2

a, ∴V D ′—ABCE =

31(22a )·(2

3a 2)=42a 3。

(4)作AK ∥BC 交CE 的延长线于K ,

∴∠D ′AK 是异面直线AD ′与BC 所成的角, ∵四边形ABCK 是矩形, ∴AK=BC=EK=a 。 连结OK ,D ′K, ∴OK=D ′O=

2

2

a, ∠D ′OK=90°, ∴D ′K=a, AK=AD ′=D ′K=a 。 ∴△D ′AK 是正三角形,∴∠D ′AK=60°, 即异面直线AD ′与BC 成60°

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

2015年高二数学学业水平考试复习学案(1318)立体几何

俯视图侧视图 正视图高二学考必修二学案 第1课 空间几何体的结构、三视图和直观图 一、要点知识:1、棱(圆)柱、棱(圆)锥、棱(圆)台的结构特征: (1)___________________________________,_______________________________________, _______________________________________,由这些面所围成的多面体叫做棱柱。 (2)___________________________________,____________________________由这些面所围成的多面体叫做棱锥。 (3)______________________________________________________这样的多面体叫做棱台。 (4)______________________________________________________叫做圆柱,旋转轴叫做_______,垂直与轴的边旋转而成的圆面叫做_______,平行与轴的边旋转而成的曲面叫做______,无论旋转到什么位置,不垂直于轴的边都叫做___________ (5) _____________________________________________________所围成的旋转体叫做圆锥。 (6) _____________________________________________________叫做圆台。 (7) _____________________________________________________叫做球体,简称球。 2、中心投影、平行投影及空间几何体的三视图、直观图 (1)光由一点向外散射形成的投影,叫做______________ (2)在一束平行光线照射下形成的投影,叫做__________,投影线正对着投影面时,叫做正投影,否则叫斜投影。 3、正视图:光线从物体的_______投影所得的投影图,它能反映物体的_______和长度。 侧视图:光线从物体的________投影所得的投影图,它能反映物体的高度和宽度。 俯视图:光线从物体的________投影所得的投影图,它能反映物体的长度和宽度。 学业水平考试怎么考 1. 下列几何体中,正视图、侧视图和俯视图都相同的是( ). A .圆柱 B.圆锥 C.球 D.三菱柱 2、如图是一个几何体的三视图,则该几何体为( ) A 、球 B 、圆柱 C 、圆台 D 、圆锥 3.如图是一个几何体的三视图,则该几何体为( ) A.球 B.圆锥 C.圆柱 D.圆台 二、课前小练: 1、有一个几何体的三视图如下图所示,这个几何体应是一个( ) A 、棱台 B 、棱锥 C 、棱柱 D 、都不对 2、下列结论中 (1).有两个面互相平行,其余各面都是平面四边形的几何体叫棱柱 ; (2).有两个面互相平行,其余各面都是平行四边形的几何体叫棱柱; (3).用一个平面去截棱锥,棱锥的底面和截面之间的部分叫棱台; (4).以直角三角形的一条直角边所在直线为旋转轴将直角三角形旋转一周而形成的曲面所围成的几何体叫 圆锥。其中正确的结论是( ) A.3 B.2 C.1 D.0 3、将图1所示的三角形绕直线l 旋转一周,可以得到如图2所示的几何体的是哪一个三角 形( ) 4、下面多面体是五面体的是( ) C ′ A ′ Y ′ D ′

高中数学空间几何体知识点总结

空间几何体知识点总结 一、空间几何体的结构特征 1 .柱、锥、台、球的结构特征 由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公 共边叫做多面体的棱,棱与棱的公共点叫做顶点。 把一个平面图形绕它所在平面内的一条定直线旋转形成的圭寸闭几何体称之为旋转体,其中定直线称为旋转体的 轴。 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的 侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形,,的棱柱分别叫做三棱柱、四棱柱、五棱柱 注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: 四棱柱I底面为平行四边形怦行六面体I侧棱垂直于底面IB平行?硕本I底面为矩形 ■------------------------------ Bh. ------------ ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 斜棱柱棱柱: κ=≡τ?tr J車""理》正棱柱 按方体底面为正方形正四棱柱恻棱与底面边栓相萨IlE方体I 棱柱的性质:

高一数学立体几何练习题及部分答案大全

立 体几何试题 一.选择题(每题4分,共40分) 1.已知AB 0300300150空间,下列命题正确的个数为( ) (1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形 (3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等 A 1 B 2 C 3 D 4 3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是( ) A 平行 B 相交 C 在平面内 D 平行或在平面内 4.已知直线m αα过平面α外一点,作与α平行的平面,则这样的平面可作( ) A 1个 或2个 B 0个或1个 C 1个 D 0个 6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( ) A 平行 B 垂直相交 C 异面 D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有( ) A 0个 B 1个 C 无数个 D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥? B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=?I D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分) 11.已知?ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________ 12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条 13.一块西瓜切3刀最多能切_________块

立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA ⊥矩形ABCD 所在平面,M 、N 分别为AB 、PC 的中点; (1)求证:MN//平面PAD (2)若∠PDA=45°,求证:MN ⊥平面PCD 2(本小题满分12分) 如图,在三棱锥P ABC -中,,E F 分别为,AC BC 的中点. (1)求证://EF 平面PAB ; (2)若平面PAC ⊥平面ABC ,且PA PC =,90ABC ∠=?, 求证:平面PEF ⊥平面PBC . P A C E B F

(1)证明:连结EF , E 、F 分别为AC 、BC 的中点, //EF AB ∴. ……………………2分 又?EF 平面PAB ,?AB 平面PAB , ∴ EF ∥平面P AB . ……………………5分 (2)PA PC = ,E 为AC 的中点, PE AC ∴⊥ ……………………6分 又 平面PAC ⊥平面ABC PE ∴⊥面ABC ……………………8分 PE BC ∴⊥……………………9分 又因为F 为BC 的中点, //EF AB ∴ 090,BC EF ABC ⊥∠=∴ ……………………10分 EF PE E = BC ∴⊥面PEF ……………………11分 又BC ? 面PBC ∴面PBC ⊥面PEF ……………………12分 3. 如图,在直三棱柱ABC —A 1B 1C 1中,AC=BC ,点D 是AB 的中点。 (1)求证:BC 1//平面CA 1D ; (2)求证:平面CA 1D⊥平面AA 1B 1B 。 4.已知矩形ABCD 所在平面外一点P ,PA ⊥平面ABCD ,E 、F 分别是 AB 、PC 的中点. (1) 求证:EF ∥平面PAD ; (2) 求证:EF ⊥CD ; (3) 若∠PDA =45°,求EF 与平面ABCD 所成的角的大小.

高二立体几何大全

立体几何习题 1. 如图,四棱锥P-ABCD 的底面是正方形, ,,//,PA ABCD AE PD EF CD AM EF ⊥⊥=底面 (1) 证明MF 是异面直线AB 与PC 的公垂线; (2) 若3PA AB =,求直线AC 与平面EAM 所成角的正弦值 2. 已知三棱柱ABC -A 1B 1C 1中,底面边长和侧棱长均为a ,侧面A 1ACC 1⊥底面ABC ,A 1B =2 6a , (Ⅰ)求异面直线AC 与BC 1所成角的余弦值; (Ⅱ)求证:A 1B ⊥面AB 1C . 3. 如图,四棱锥S ABCD -的底面是边长为1的正方形,SD 垂直于底面 ABCD ,SB = 3 1.求证BC SC ⊥; 2.求面ASD 与面BSC 所成二面角的大小; 3.设棱SA 的中点为M ,求异面直线DM 与SB 所成角的大小 B C D A P M F E

4. 在三棱锥S —ABC 中,△ABC 是边长为4的正三角形,平面SAC ⊥平面ABC ,SA=SC=23,M 、N 分别为AB 、SB 的中点. (Ⅰ)证明:AC ⊥SB ; (Ⅱ)求二面角N —CM —B 的大小; (Ⅲ)求点B 到平面CMN 的距离. 5. 如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值; (2) 求直线EC 1与FD 1所成的余弦值. 6. 如图,在底面是菱形的四棱锥P —ABC D中,∠ABC=600,PA=AC=a ,PB=PD=a 2,点E 在PD 上,且PE:ED=2:1. (I )证明PA ⊥平面ABCD ; (II )求以AC 为棱,EAC 与DAC 为面的二面角 的大小; (Ⅲ)在棱PC 上是否存在一点F ,使BF//平面AEC ?证明你的结论. 1 B 1D B A 1E F B C D A P E

最新人教A版高中数学必修2空间立体几何知识点归纳

第一章 空间几何体知识点归纳 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 1、空间几何体的三视图和直观图 投影:中心投影 平行投影 (1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 3、斜二测画法的基本步骤: ①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使''' x O y ∠=450(或1350 ),注意它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘ 轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘ 轴,且长度变为原来的一半; ⑴圆柱侧面积;l r S ??=π2侧面⑵圆锥侧面积:l r S ??=π侧面 ⑶圆台侧面积:()S r R l π=+侧面 ⑷体积公式: h S V ?=柱体;h S V ?=31锥体; ()1 3 V h S S =下 台体上 ⑸球的表面积和体积:

立体几何典型例题精选(含答案)

F E D C B A 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形, EF ∥平面ABCD , 1EF =,,90FB FC BFC ?=∠=,3AE =. (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值. 变式2:[2014·福建卷] 在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,如图1-5所示. (1)求证:AB ⊥CD ; (2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF;(2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC= 2. (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC 上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小.

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ , DP AQ AB 2 1 ==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6 . (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为 6 π ,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==, F , G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

高中数学立体几何大题练习题答案

立体几何大题专练 1、如图,已知PA⊥矩形ABCD 所在平面,M、N 分别为AB、PC 的中点; (1)求证:MN// 平面PAD (2)若∠ PDA=45 °,求证:MN ⊥平面PCD 2(本小题满分12 分) 如图,在三棱锥P ABC中,E,F 分别为AC,BC 的中点. 1)求证:EF // 平面PAB ; 2)若平面PAC 平面ABC,且PA PC ,求 证:平面PEF 平面PBC . ABC 90 , A P C F B

(1)证明:连结EF , Q E、F 分别为AC 、BC的中点, EF // AB. ???????? 2 分又EF 平面PAB ,AB 平面PAB ,EF∥平面PAB. ????????5 分 (2)Q PA PC,E为AC的中点, PE AC ???????? 6 分 又Q 平面PAC 平面ABC PE 面ABC ????????8 分 PE BC ????????9 分 又因为F 为BC 的中点, EF // AB Q ABC 900, BC EF ????????10 分 Q EF I PE E BC 面PEF ????????11 分 又Q BC 面PBC 面PBC 面PEF ????????12 分 3. 如图,在直三棱柱ABC—A1B1C1中,AC=BC,点D是AB的中点。 1)求证:BC1// 平面CA1D; 2)求证:平面CA1D⊥平面AA1B1B。 4.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F 分 别是AB、PC的中点. (1) 求证:EF∥平面PAD; (2) 求证:EF⊥ CD; (3) 若∠ PDA=45°,求EF与平面ABCD 所成的角的大小.

精选高中立体几何证明方法及例题

由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: αβ αγβγ //,// ==???? a b a b 面面平行性质 ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化: a a OA a PO a PO a AO ?⊥?⊥⊥?⊥αα 在内射影则 面面垂直判定 线面垂直定义 l a l a ⊥??⊥? ??α α 面面垂直性质,推论2 αβ αββα⊥=?⊥?⊥??? ? ? b a a b a , αγβγαβ γ⊥⊥=?⊥? ?? ? ? a a 面面垂直定义 αβαβαβ =--?⊥? ?? l l ,且二面角成直二面角

面面∥面面平行判定2 线面垂直性质2a b a b //⊥?⊥??? α α a b a b ⊥ ⊥???? αα// a a ⊥⊥?? ?? αβα β // αβα β//a a ⊥⊥? ?? a 4. 应用以上“转化”的基本思路——“由求证想判定,由已知想性质。” 5. 唯一性结论: 1. 三类角的定义: (1)异面直线所成的角θ:0°<θ≤90 ° (2)直线与平面所成的角:0°≤θ≤90° (3)二面角:二面角的平面角θ,0°<θ≤180° 2. 三类角的求法:转化为平面角“一找、二作、三算” 即:(1)找出或作出有关的角;(2)证明其符合定义; (3)指出所求作的角; (4)计算大小。

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

高二文科数学立体几何平行与垂直部分练习题

高二文科数学立体几何平行与垂直部分练习题 1.如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE ; (3)求直线BE 与平面1A AC 所成角的正弦值. 2.如图,正方体ABCD -A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F.求证:EF ∥平面ABCD. 3.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点. (1)证明:PB //平面AEC ; (2)设1,3AP AD ==三棱锥P ABD -的体积34 V =求A 到平面PBC 的距离.

A D B C P E 4.如图,已知四边形ABCD 是矩形,PA⊥平面ABCD,M, N分别是AB, PC的中点. (1)求证:MN∥平面PAD; (2)求证:MN⊥DC; 5.已知四棱锥P ABCD -的底面为直角梯形,// AB DC,⊥ = ∠PA DAB, 90ο底面ABCD,且1 PA AD DC ===,2 AB=,M是PB的中点. (1)求证:CM PAD P面; (2)证明:面PAD⊥面PCD; (3)求AC与PB所成的角的余弦值; (4)求棱锥M PAC -的体积。 6.已知四棱锥P-ABCD,底面ABCD为矩形,侧棱PA⊥平面ABCD,其中BC=2AB=2PA=6,M、N为侧棱PC上的两个三等分点 A B C D P N

(1)求证:AN∥平面MBD; (2)求异面直线AN与PD所成角的余弦值; (3)求二面角M-BD-C的余弦值. 7.如图,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,E是PC的中点。 求证:(1)PA∥平面BDE (2)平面PAC⊥平面BDE 8.在四棱锥ABCD P-中,底面ABCD为矩形,ABCD PD底面 ⊥,1 = AB,2 = BC,3 = PD,F G、分别为CD AP、的中点. (1) 求证:// FG平面BCP; (2) 求证:PC AD⊥; F G P D C B A 9.如图,已知在侧棱垂直于底面的三棱柱111 ABC A B C -中,3 AC=,5 AB=,4 BC=,P M D C B A N

高中数学立体几何知识点及练习题

点、直线、平面之间的关系 ㈠平面的基本性质 公理一:如果一条直线上有两点在一个平面内,那么直线在平面内。 公理二:不共线的三点确定一个平面。 推论一:直线与直线外一点确定一个平面。 推论二:两条相交直线确定一个平面。 推论三:两条平行直线确定一个平面。 公理三:如果两个平面有一个公共点,那么它们还有公共点,这些公共点的集合是一条直线(两个平面的交线)。 ㈡空间图形的位置关系 1 直线与直线的位置关系(相交、平行、异面) 1.1 平行线的传递公理:平行于同一直线的两条直线相互平行。 即:a∥b,b∥c a∥c 1.2 异面直线 定义:不在任何一个平面内的两条直线称为异面直线。 1.3 异面直线所成的角 ⑴异面直线成角的范围:(0°,90°]. ⑵作异面直线成角的方法:平移法。 注意:找异面直线所成角时,经常把一条异面直线平移到另一条异面直线的特殊点(如中点、端点等),形成异面直线所成的角。 2 直线与平面的位置关系(直线在平面内、相交、平行) 3 平面与平面的位置关系(平行、斜交、垂直) ㈢平行关系(包括线面平行和面面平行) 1 线面平行 1.1 线面平行的定义:平面外的直线与平面无公共点,则称为直线和平面平行。 1.2 判定定理: 1.3 性质定理:

2 线面角: 2.1 直线与平面所成的角(简称线面角):若直线与平面斜 交,则平面的斜线与该斜线在平面内射影的夹角θ。 2.2 线面角的范围:θ∈[0°,90°] 3 面面平行 3.1 面面平行的定义:空间两个平面没有公共点,则称为两平面平行。 3.2 面面平行的判定定理: ⑴ 判定定理1:如果一个平面内的两条相交直线都平行于另一个平面,那么两个平面相互平行。 即: 推论:一个平面内的两条相交直线分别平行于另一个 平面的两条线段,那么这两个平面平行。即: ⑵ 判定定理2:垂直于同一条直线的两平面互相平 行。即: 3.3 面面平行的性质定理 ⑴ (面面平行 线面平行) ⑵ ⑶ 夹在两个平行平面间的平行线段相等。 ㈣ 垂直关系(包括线面垂直和面面垂直) 1 线面垂直 1.1 线面垂直的定义:若一条直线垂直于平面内的任意一条直线,则这条直线垂直于平面。 1.2 线面垂直的判定定理: 图2-3 线面角 图2-5 判定1推论 图2-6 判定2

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

高二数学立体几何试题及答案(完整资料).doc

【最新整理,下载后即可编辑】 【模拟试题】 一. 选择题(每小题5分,共60分) 1. 给出四个命题: ①各侧面都是正方形的棱柱一定是正棱柱; ②各对角面是全等矩形的平行六面体一定是长方体; ③有两个侧面垂直于底面的棱柱一定是直棱柱; ④长方体一定是正四棱柱。 其中正确命题的个数是() A. 0 B. 1 C. 2 D. 3 2. 下列四个命题: ①各侧面是全等的等腰三角形的四棱锥是正四棱锥; ②底面是正多边形的棱锥是正棱锥; ③棱锥的所有面可能都是直角三角形; ④四棱锥中侧面最多有四个直角三角形。 正确的命题有________个 A. 1 B. 2 C. 3 D. 4 3. 长方体的一个顶点处的三条棱长之比为1:2:3,它的表面积为88,则它的对角线长为() A. 12 B. 24 C. 214 D. 414 4. 湖面上漂着一个球,湖结冰后将球取出,冰面上留下一个面直径为24cm,深为8cm的空穴,则该球的半径是() A. 8cm B. 12cm C. 13cm D. 82cm 5. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积为侧面积的比是() A. 12 2 +π π B. 14 4 +π π C. 12 +π π D. 14 2 +π π 6. 已知直线l m ⊥? 平面,直线平面 αβ,有下面四个命题: ①αβ//?⊥l m;②αβ⊥?l m //;③l m //?⊥ αβ;④l m⊥?αβ//。 其中正确的两个命题是() A. ①② B. ③④ C. ②④ D. ①③

7. 若干毫升水倒入底面半径为2cm 的圆柱形器皿中,量得水面的高度为6cm ,若将这些水倒入轴截面是正三角形的倒圆锥形器皿中,则水面的高度是( ) A. 63cm B. 6cm C. 2182 D. 3123 8. 设正方体的全面积为242cm ,一个球内切于该正方体,那么这个球的体积是( ) A. 63πcm B. 32 3 3 πcm C. 8 3 3 πcm D. 4 3 3 πcm 9. 对于直线m 、n 和平面αβ、能得出αβ⊥的一个条件是( ) A. m n m n ⊥,,////αβ B. m n m n ⊥=?,,αβα C. m n n m //,,⊥?βα D. m n m n //,,⊥⊥αβ 10. 如果直线l 、m 与平面αβγ、、满足: l l m m =?⊥βγααγ ,,,//,那么必有( ) A. αγ⊥⊥和l m B. αγβ////,和m C. m l m //β,且⊥ D. αγαβ⊥⊥且 11. 已知正方体的八个顶点中,有四个点恰好为正四面体的顶点,则该正四面体的体积与正方体的体积之比为( ) A. 13: B. 12: C. 2:3 D. 1:3 12. 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形状是( ) 二. 填空题(每小题4分,共16分) 13. 正方体的全面积是a 2,它的顶点都在球面上,这个球的表面积是__________。 14. 正四棱台的斜高与上、下底面边长之比为5:2:8,体积为143cm ,则棱台的高为____________。 15. 正三棱柱的底面边长为a ,过它的一条侧棱上相距为b 的

高中数学必修二__空间几何体知识点汇总

空间几何体 一、空间几何体结构 1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。 2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。(图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。 侧面:棱柱中除底面的各个面. 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。如:六棱柱表示为ABCDEF-A’B’C’D’E’F’ 3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥. (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥--- 4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱O’O 注:棱柱与圆柱统称为柱体 5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO 注:棱锥与圆锥统称为锥体 6.棱台和圆台的结构特征 (1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台. 下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

高中数学立体几何习题

1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 A E D 1 C B 1 D A A H G F E D C B A E D B C

4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 6、正方体''''ABCD A B C D -中, 求证:(1)''AC B D DB ⊥平面; (2)''BD ACB ⊥平面. S D C B A D 1 O D B A C 1 B 1 A 1 C

N M P C B A 7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2 2 EF AC = , 90BDC ∠=o ,求证:BD ⊥平面ACD 9、如图P 是ABC ?所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点, 3AN NB = (1)求证:MN AB ⊥; (2)当90APB ∠=o ,24AB BC ==时,求MN 的长。 A A B 1 C 1 C D G E F

高中立体几何证明方法及例题

1. 空间角与空间距离 在高考的立体几何试题中,求角与距离是必考查的问题,其中最主要的是求线线角、线面角、面面角、点到面的距离,求角或距离的步骤是“一作、二证、三算”,即在添置必要的辅助线或辅助面后,通过推理论证某个角或线段就是所求空间角或空间距离的相关量,最后再计算。 2. 立体几体的探索性问题 立体几何的探索性问题在近年高考命题中经常出现,这种题型有利于考查学生归纳、判断等方面的能力,也有利于创新意识的培养。近几年立体几何探索题考查的类型主要有:(1)探索条件,即探索能使结论成立的条件是什么?(2)探索结论,即在给定的条件下命题的结论是什么。 对命题条件的探索常采用以下三种方法:(1)先观察,尝试给出条件再证明;(2)先通过命题成立的必要条件探索出命题成立的条件,再证明充分性;(3)把几何问题转化为代数问题,探索出命题成立的条件。 对命题结论的探索,常从条件出发,再根据所学知识,探索出要求的结论是什么,另外还有探索结论是否存在,常假设结论存在,再寻找与条件相容还是矛盾。 (一)平行与垂直关系的论证 由判定定理和性质定理构成一套完整的定理体系,在应用中:低一级位置关系判定高一级位置关系;高一级位置关系推出低一级位置关系,前者是判定定理,后者是性质定理。 1. 线线、线面、面面平行关系的转化: ?a c //) αβ αγβγ //,// ==???? a b a b 面面平行性质 线面平行性质 a a b a b ////αβαβ?=???? ? ? 面面平行性质1 αβαβ ////a a ??? ? ? 面面平行性质 αγβγαβ //////?? ?? 2. 线线、线面、面面垂直关系的转化:

高中数学空间几何体知识点总结

高中数学必修2知识点总结01 空间几何体几何学是研究现实世界中物体的形状、大小与位置关系的数学学科,而空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。教材要求:从空间几何体的整体观察入手,研究空间几何体的结构特征、三视图和直观图,了解简单几何体的表面积与体积的计算方法。 一、空间几何体的结构特征 课标要求: 1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构; 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图; 3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式; 要点精讲: 1.柱、锥、台、球的结构特征 由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:

相关主题
文本预览
相关文档 最新文档