当前位置:文档之家› 基于3次谐波无源注入法的谐波抑制技术

基于3次谐波无源注入法的谐波抑制技术

基于3次谐波无源注入法的谐波抑制技术
基于3次谐波无源注入法的谐波抑制技术

基于3次谐波无源注入法的谐波抑制技术

李小青,陈国柱

(浙江大学电气工程学院,浙江省杭州市310027)

摘要:介绍了3次谐波注入抑制不可控整流电路进线电流谐波畸变的无源实现方法。采用Y 接法电容器代替接地变压器作为3次谐波注入电路,并采用串联谐振电路提高3次注入电流的发生效率。分析了注入电路抑制进线电流谐波畸变的基本原理和谐波源的获得,研究了注入电路的基本特性,包括最佳注入条件、参数偏离谐振点的影响,以及固定注入电路参数条件下负载的动态变化范围等。实验结果表明,该方法具有比无源滤波更好的谐波抑制效果、比有源滤波更简单可靠的优点,应用前景较好。

关键词:3次谐波注入;谐波抑制;注入电流;三相不可控整流桥中图分类号:TM 761

收稿日期:2006 12 25;修回日期:2007 03 10。

国家自然科学基金资助项目(50577058);台达电力电子科教

发展基金资助项目(DR EG 2005011)。

0 引言

为了治理谐波,目前常见的方法是无源滤波[1]、

有源滤波[2]或混合有源滤波[3]

等,但这些方法都存在各自的缺点,由此带来应用限制。利用整流电路内部3次电压脉动给输入侧注入一定的3次谐波电流,可以有效地改善非线性三相整流电路的输入电流波形,降低其总谐波畸变率(TH D)[4 6]。该方法比无源滤波方法的效果更为显著,且具有对电路元件参数变化的适应性更好的优点;与有源电力滤波器(APF)相比,由于只采用无源元器件,因而具有电路简单、成本低和高可靠性等优点。但之前应用这

种方法的研究中一般均采用了变压器[7 14]

或者开关

电路[15 16]

来实现3次谐波注入,存在损耗高、体积较大、制作困难、可靠性较差等缺点。

本文提出的方案采用Y 接法注入电容器代替接地变压器,以避免变压器的较大损耗和占地面积;同时采用串联3次谐振技术,使注入电路对3倍工频呈低阻抗,提高3次谐波电流的注入效率。研究表明,注入电路的元件参数也具有一定的可变化范围。另外,即使负载有一定的变化范围,其谐波抑制效果也很明显。

1 3次谐波环流抑制输入电流谐波的原理

1 1 电路结构

图1是应用3次谐波注入法抑制谐波的三相不可控整流电路原理图。虚线框外是作为典型功率接

口的三相不可控整流电路;虚线框内是用于抑制输入电流谐波的3次注入电流产生及控制电路。其中:C d 1和C d2是整流电路原有直流平波电容的分裂;电感L 和电阻R 的作用是控制注入电流的幅值和相位;3个等值的Y 接法的电容C a ,C b 和C c 将注入电流合理地分配到三相输入端中;i x 为等分后注入的相电流,记为i xa ,i xb 和i xc ;i M 和i N 为桥路正负母线电流;i o 和i y 分别为负载电流和注入谐波电流。

图1 应用3次谐波注入法的三相不可控整流电路Fig.1 Three phase diode bridge rectifier with proposed third harmonic current injection circuit

1 2 3次谐波脉动源

假设整流器的三相输入电压为:

v a =V m cos 0t

v b =V m co s 0t -2

3 v c =V m cos 0t -43

(1)式中:V m 为对称三相系统相电压幅值。设整流器输出端D 点和F 点的对地电压分别为v d ,v f ,则输出

直流中点E 对地电压为[8]

:

v e =v d +v f

2

(2)

61

第31卷 第14期

2007年7月25日

V ol.31 N o.14July 25,2007

根据对二极管整流电路的分析,容易得出v d 和v f 的傅里叶表达式分别为:

v d =33V m

12

+

n=1

(-1)n +19n -1

cos 3n 0t v f =33V m -1

2

+

n=1

1

9n 2

-1

cos 3n 0t

(3)

由式(3)可知,v d 和v f 包含直流量和交流量,但直流量不进入注入网络。当n 为奇数时,v d 和v f 各次的电压幅值相等、相位相同;当n 为偶数时,v d 和v f 各次的电压幅值相等、相位相反。故E 点瞬时合成电位的偶次波动为0。

将式(3)代入式(2)得: v e =

338 V m co s 3 0t +33

80

V m cos 9 0t +!(4) 由式(4)可知,E 点电位v e 中只含有3的奇数倍次谐波量,且9次及以上谐波幅值很小(可以忽略),故该电位是一个较为理想的3次谐波源,并可被用做注入到输入端的3次谐波环流的脉动源。1 3 3次谐波环流注入的消谐原理

由不可控整流电路的工作原理和图1可知,输入电流(以A 相为例)在上管导通、下管导通、上下管都截止的情况下,电流的取值可以表示成:

i sa =-i x ( 0t) 截止

i M ( 0t)-i x ( 0t)上管导通-i N ( 0t)-i x ( 0t)下管导通

(5)

i x ,i M ,i N 可用i o 和i y 表示。因此,输入电流可以由i o 和i y 来表示:

i sa =-13

i y 截止I +16i y +i n

上管导通-I +1

6

i y +i n 下管导通

(6)

式中:i y =-kI o sin (3 0t +!);i n 表示电容桥电流i d (见图1)的偶次谐波电流成分,为了分析方便,这里忽略其影响,即i n =0;k 为注入电流幅值与负载电流的比值;!为注入电流相对于注入电压v e 的相位偏移角。

取恰当的k 和!可以使输入电流的波形接近正弦波[10]

,从而抑制了输入电流的谐波畸变。

利用开关函数[8]并通过特征值计算得到更直观的输入电流表达式如下:

i sa =(0.096I y +1.07I o )sin 0t +(0.243I y -

0.252I o )sin 5 0t +(0.13I y -0.14I o )?sin 7 0t+(-0 057I y +0 075I

o )sin 11 0t+(0 042I y -0.057I o )sin 13

0t+!(7)

式中:I y 为注入谐波电流i y 的有效值。由式(7)可以看出,只要选择适当的注入谐波电流i y ,就可以尽可能地减小各次谐波幅值,达到抑制谐波的效果。

2 3次谐波无源注入电路特性

2 1 最佳注入点

利用三相整流桥路中的内部3次谐波环流可以实现对输入电流畸变的有效改善。然而,要达到较好的谐波抑制效果,3次注入电流的幅值和相位都需满足一定的条件。图2和图3是仿真研究结果。

图2 注入电流幅值对输入电流THD 的影响Fig.2 Input current #s THD versus the amplitude of

injected current

图3 注入电流相位对输入电流THD 的影响Fig.3 Input current #s THD versus the phase of

injected current

图2是注入电流幅值对输入电流TH D 的影响曲线图。可以看出,当注入电流幅值与负载电流比值k =1 5时,输入电流的T H D 最低。

图3是注入电流相位对输入电流TH D 的影响曲线图。可以看出,当注入电流相位偏移角!=0?,即无相位差时,输入电流的畸变将得到最大程度的抑制。

由此得出了最佳注入的2个条件:%注入电流幅值为负载电流的1 5倍;&注入电流相位相对于3次谐波脉动源的偏移角为0?。2.2 偶次谐波的影响及对策

由式(3)和式(4)可见,图1所示整流电路的输出端D 点与E 点之间以及F 点与E 点之间的电压为3的偶数倍次谐波电压,从而在该支路中存在偶次谐波电流成分,用i n 表示。同时,式(6)表明了i n 对输入电流波形的影响,要使输入电流波形最接近正弦波,则i n 必须得到尽可能的抑制。在研究中采用增大阻抗的方法来抑制i n ,因此注入电路的3次

62

2007,31(14)

环流等效电路将如图4

所示。

图4 具有偶次谐波抑制能力的3次谐波注入等效电路Fig.4 Equivalent circuit of injected network with the

ability of even harmonics #suppression

其中,图1中的电感L 由2个等值并联的电感L 1和L 2实现,从而增大了D 点和F 点至E 点之间的支路阻抗,i n 得到了抑制。而采用2个电感并联,单个电感体积下降,不增大电路总体积。2 3 谐振点的偏移影响分析

新型3次谐波无源注入法利用3次串联谐振电路提高注入电流的发生效率。由图4可知注入电路的总阻抗为:

Z =R +j L -1 C

(8)

式中:L 和C 分别为图4中总电感值和总电容值,且

C d1=C d2,C a =C b =C c ,L 1=L 2(9)

当电路工作在基波的3次频率时,电路发生串联谐振,能获得最大的无相位偏移的3次谐波电流。但由图2和图3可以看出,在一定的工程应用要求下(例如TH D 在10%以下),注入电流的幅值和相位允许有一定的变化范围。从而式(8)所示的总阻抗允许有一定的变化范围,即串联谐振点可以有一定的偏移量。只要在这个范围内,整个系统的谐波抑制效果能够满足一定的要求。

考虑实际电路参数,如电感量和电容值的制造误差、老化误差或温度漂移等因素,将导致注入电路参数偏离谐振点,也就是注入电路偏离了最佳注入条件。本文为了更好地说明这种偏离对输入电流的谐波抑制效果的影响程度等问题,夸大了这种误差并进行了研究。

图5(a)给出了元件参数设置在理想状态下的输入电流仿真波形(输入电压V m =220V),图5(b)给出了元件参数比较大地偏离理想情况时的输入电流仿真波形(具体的误差为电感和电容分别偏离谐振点?20%,且不满足式(9)的条件)。

由图5可知,相比于传统的无源滤波方法,本文方法中的谐振点偏移影响更小,电路适应性更好。工程实际中,?20%的电路参数值偏移是少见的,电感、电容误差同时出现则更少,因此输入波

形的TH D 改善会好于图5(b)所示的结果。

图5 电路参数误差对谐波抑制效果的影响Fig.5 Harmonic suppression performance affected

by circuit parameters #error

2 4 最佳注入点的负载动态范围

根据对最佳注入条件的分析,在固定的注入参数下,当负载变化时,注入电流将不再符合最佳注入条件,从而引起输入电流TH D 的增大。

图6给出了380V 线电压输入、一组负载条件下(电流介于20A ~35A 之间),为了达到一定的T H D(如10%)抑制要求,所允许的负载变化范围,即最佳静态注入点的负载动态变化范围曲线。以20A 为例,在该输入条件和T H D 需在10%以内的要求下,负载具有从A 点到B 点的变化范围。最佳

静态注入点的负载动态范围分析表明,即使在固定注入电路参数的条件下,负载仍允许有一定的动态变化范围,同时具有较为满意的谐波抑制效果。

图6 不同静态工作点的最佳注入条件下

负载的动态范围

Fig.6 Allowed load #s various range with optimal injecting condition and different operation points

2 5 注入回路基波相移限制

本文采用Y 接法电容器代替传统的接地变压器,在电路损耗、体积、成本和实现上带来很多优势。但是,注入电容的引入在一定程度上会引起原整流电路的基波相移。为研究该问题,可采用图7所示的基波等效电路。

图8给出了不同电容取值条件下引入的输入电流基波无功相移,从而引起的功率因数变化情况。可以看出,为了减小增加的注入回路电容对原有整流桥路基波分流作用,Y 接法电容器(C a ,C b 和C c )

63

?研制与开发? 李小青,等 基于3次谐波无源注入法的谐波抑制技术

取值越小越好。然而图8也表明,工程实践中,该电容有较大的选择范围,对引起的输入电流功率因数

下降可以忽略不计。

图7 注入电路基波等效电路

Fig.7 Fundamental equivalent circuit of

current

injection

图8 注入电路电容取值与引起的相移功率因数变化Fig.8 Power factor versus diff erent injected capacitance

3 实验结果

为了验证本文方案的可行性和观察谐波抑制效果,进行了模型验证实验。三相整流器采用二极管不可控整流电路,输出功率为1kW,基波频率为50H z 。注入电路元器件参数选择满足最佳注入条件,即电感电容工作在3次串联谐振状态,电阻的取值使注入电流满足最佳注入的幅值条件。

图9(a)和(b)分别为补偿前后的输入电流实验波形。由图9可见,采用本文的无源3次谐波电流注入方法,不可控整流桥的输入电流T H D 由原来的约30%下降到5%左右,可以达到相关国际、国内

标准的要求。

图9 3次环流谐波抑制方法的实验波形

Fig .9 Experim ental waveforms of input current without and with third harmonic current injection

实验同时验证了当注入电路的电感、电容偏离谐振点时对谐波抑制效果的影响。本文采取改变注入电路电感值的方法来验证。图10(a)是电感值偏离谐振点-10%时的输入电流波形,其T H D 值约为8%;图10(b)为电感值偏离谐振点+10%时的输入电流波形,其TH D 值约为10%

图10 改变电感值(谐振点)对THD 影响的实验波形Fig.10 Experimental waveforms of input current with ?10%deviation of inductance f rom optimal

value (resonant point)

由图10的实验结果可知,即使构成谐振电路的电感量较大地偏离谐振点,输入电流仍具有一定的谐波抑制效果,较传统的无源滤波方法具有更好的参数变化适应性。

参考文献

[1]李心广,赖声礼,杨杰.电网无功及不平衡补偿中的谐波抑制.电

力系统自动化,2002,26(20):45 46.

LI Xingu ang,LAI Shengli,YANG Jie.H armonic elimin ation in compensation of reactive pow er and unbalancin g pow er system.Autom ation of Electric Power System s,2002,26(20):45 46.[2]李承,邹云屏.有源电力滤波器的抑制谐波的机理分析.电力系

统自动化,2003,27(20):31 34.

LI Cheng,ZOU Yu nping.Active pow er filter to suppr ess harmonic cau sed by nonlin ear load.Automation of Electric Pow er S ystems ,2003,27(20):31 34.

[3]周柯,罗安,唐杰,等.一种高电能质量综合补偿系统的研究及工

程应用.电力系统自动化,2006,30(15):56 60.

ZH OU Ke,L UO An,TANG Jie,et al.Study and ap plication of a high pow er quality com bined comp ensation system.Autom ation of Electric Power System s,2006,30(15):56 60.[4]BIRD B M ,M ARSH J F.H arm on ic reduction in mu ltiplex

converters

by

triple

fr equen cy

cu rrent

in jection.

IEE

Pr oceedings,1969,116(10):1730 1734.

[5]AM ET ANI A.Gener aliz ed method of harmonic redu ction in ac

dc converters by harmonic current injection.IE E Proceedings ,1972,119(7):857 864.

[6]姚大伟,陈柏超.抑制大功率整流电路谐波的三次谐波电流注入

64

2007,31(14)

法.电网技术,2002,26(10):33 36.

YAO Daw ei,CH EN Baichao.Restrain harmonics in high pow er rectification circu it by in jectin g third harm onic current.Pow er Sys tem Techn ology,2002,26(10):33 36.[7]LAW RANCE W B,

M IELCZARSKI W ,

NAYAR C V.

H arm onic cu rrent reduction in a th ree p has e diode b ridge rectifier.IEEE T rans on In dustrial Electronics,1992,39(6):571 576.

[8]KIM S,EN JETI P,PACKEBU SH P,et al.A new approach to

impr ove pow er factor and reduce harmonics in a th ree ph as e diode rectifier typ e utility interface.IE EE T rans on Industry Applications ,1994,30(6):1557 1564.

[9]PEJOVIC P,JANDA Z.A novel harmonic free th ree ph as e

diode bridge rectifier applying current in jection//Pr oceedings of the 1999

Fourteenth

An nual Applied

Pow er Electronics

Conference an d Ex position,M ar 14 18,1999,Dallas,T X,US A.Piscataway,NJ,USA:IEEE,1999:241 247.

[10]PEJOVIC P,ZARKO J.An analysis of three phase low

harmonic rectifiers applying

the third harmonic cur rent

injection.IEEE T ran s on Pow er Electr onics,1999,14(3):

397 407.

[11]PEJOVIC P,JANDA Z.Letters to the editor:an im proved

cu rrent in jection netw ork for th ree ph as e h igh pow er factor rectifiers that ap ply the third harmonic curr ent in jection.IEEE T ran s on Indus trial Electronics,2000,47(2):497 499.[12]PEJOVIC P.Tw o th ree ph ase h igh pow er factor rectifiers th at

apply th e third h arm on ic cu rrent in jection and pass ive

resistance emulation.IEE E T ans on Pow er Electronics,2000,

15(6):1228 1240.

[13]M ASWOOD A.

Optimal h arm on ic injection in thyristor

rectifier for pow er factor correction.IEE Proceedings :Electric Pow er Application s,2003,150(5):615 622.

[14]BOZOVIC P,PEJOVIC P.A n ovel control method for three

phase diode b ridge rectifier that applies current injection //Pr oceedings of the 2004Second International C on feren ce on Pow er Electronics,M achines and Drives:Vol 2,M ar 31 Ap r 2,2004,E dinburgh,U K.Stevenage,UK:IEE,2004:510 514.

[15]韩琳,陈柏超,陈晓国.三相整流电路谐波注入滤波方法.高电

压技术,2003,29(7):24 25,53.

HAN Lin,CH EN Baichao,CH EN Xiaoguo.T he realization of a new m ethod of h arm on ic curren t injection.H igh Voltage Engineering,2003,29(7):24 25,53.

[16]陈晓国,陈柏超.基于电力电子开关的三相整流电路谐波注入

滤波方法.电力自动化设备,2003,23(2):68 69.CHE N Xiaoguo,

CH EN Baichao.A meth od of harmonic

current injection in three phase rectifier bas ed on pow er electronic sw itch.Electric Pow er Automation Equipment,2003,23(2):68 69.

李小青(1983(),女,硕士研究生,研究方向为电力电

子电能质量控制技术。E mail:becky630@https://www.doczj.com/doc/c018357956.html, 陈国柱(1967(),男,教授,博士生导师,IEEE 会员,从事电力电子技术装置及其数字控制、电力电子在电力系统中的应用、较大功率和较特殊电力电子变换技术等方面的研究。E mail:g zchen@https://www.doczj.com/doc/c018357956.html,

An Approach to Harmonic Suppression Based on Triple Harmonics Injection with Passive Circuit

L I X i aoqing ,CH EN Guoz hu

(Zhejiang U niver sity,H ang zho u 310027,China)

Abstract:A new passive approach to reducing the input cur rent )s harmo nics of a thr ee phase diode rectifier based on the injection o f the third har monic curr ent is pr oposed in this paper.I n co ntrast t o pr evio us appro aches,the st ar connected capacitor is ado pted to substitute fo r a tr ansfo rmer as the injection circuit,which o per ates in the ser ial r eso nant state at third har monic frequency t o enhance the circulating harmonic curr ent in amplitude.T he principle o f harmonic suppr essio n and the implement ation of t he thir d injection current ar e described first.T hen,the character istics of the circuit including the co ndition for optimal inject ion,the effects of component parameters )deviat ion,the load var ying r ang e as w ell as component parameters )erro r ar e analyzed in deta il.Ex perimental r esults show that the new appr oach has better har monic suppr ession per formance than passive filt ratio n while simpler and mor e reliable than activ e filtration,w hich g ives it br oad pro spects for futur e application.

T his w or k is jo int ly suppo rted by Nat ional N atural Science Fo undation of China (N o.50577058)and D elta S&T Educat ional Dev elo pment Pr og ram (No.DR EG 2005011).

Key words:t hird ha rmonic curr ent injection;harmo nic suppr ession;injection cur rent;harmo nics;three phase diode rectifier

65

?研制与开发? 李小青,等 基于3次谐波无源注入法的谐波抑制技术

10KVPT含3次谐波

10kV系统的电压谐波分析 南京供电公司计量中心曹根发 摘要:本文对10kV小电流接地系统的电压谐波,由于10kV电压互感器中 性点的消谐电阻,及接地变一侧的灭弧线圈等原因,而造成的错误测试结果,进行了分析,并针对这种现象提出改进的测试方法。 1.前言 由于生产发展的需要和国家电力总公司及江苏省公司的要求,我市公司对所辖范围内的电网,配网电能质量,(电压谐波占有率)进行了一次普测、普查。 由于10kV配网系统采用了小电流接地的运行方式,10KV配网的电压互感器接线方式如图1所示。在PT的一次侧中性点到地串接一只电阻,称消谐电阻。此电阻一般由氧化锌阀片构成,在正常运行方式下,无电流通过此电阻。一次侧中心点与地等电位。近似与Y/Y型接法。而主变接线方式则是Y/Δ型接法。所以在10kV母线上并一只接地变,采用Y/Y型接法。在变一侧中心点串一只电抗器,俗称灭弧线圈。在10kV系统形成中心点接地的运行方式。 国标规定电压失谐率是相电压的谐波百分比含量做为判别限值的标准。从而规范了测试信号是相电压,与之相应的测试设备的接线方式是“Y”型接法。若取线电压为取样信号。测试设备需按“△”接法,结果将造成取样信号中的3n次谐波被抵消,抵消量大小,与3n次谐波电压与同相的基波电压相位及相电压的不平衡度有关。 在普查进程中,我们发现有6座110kV变电站中的9条10kV母线严重超标。共同特征是3次电压畸变率是造成超标的最主要因素。其余各次谐波含量不大。且占比例极低。同时所有电压谐波超标的10kV母线,电压三相不平衡度也接近或超过国标值。(国标Σu <2%) 切除变电站10kV侧的补偿电容器组,仅五次谐波有所下降,三次谐波下降量不大总畸变率仍居高不下。在10kV电源侧110KV测得,3次电压谐波仅有1%左右。而在这9条母线供电范围内,并无大型工矿企业,和大型非线性生产用户。

电力系统谐波及其抑制方法

电力系统谐波及其抑制方法 发表时间:2019-01-09T10:01:01.477Z 来源:《电力设备》2018年第24期作者:潘国英[导读] 摘要:20世纪80年代以来,随着电力电子技术的发,电力系统的发展及电力市场的开放,各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重,电能质量问题越来越引起广泛关注。 (佛山禅城供电局广东佛山 528000) 摘要:20世纪80年代以来,随着电力电子技术的发,电力系统的发展及电力市场的开放,各种非线性负载(谐波源)应用普及,产生的谐波对电网的污染日益严重,电能质量问题越来越引起广泛关注。因此,谐波及其抑制技术已成为国内外广泛关注的课题。从对六脉冲整流装置进行了 Matlab仿真,并对某商业企业用电设备谐波及无功进行了现场测试,得出了实际无功损耗和谐波含有量。从而更加清楚的分析了该企业谐波分布及供电系统存在的问题。最后依据测试数据及企业实际情况提出了改造方案,放弃投资较大的有源滤波器,设计使用以无源滤波器为基础的HTEQ系列高速动态消谐无功补偿设备进行无功补偿和谐波消除,通过对方案的可行性验证,验证了该动态补偿装置具有良好的电流跟进性能和补偿性能,在有限的投入下获得最大的效益,很好的解决了企业内谐波及无功的影响。关键词:整流装置;谐波抑制;动态无功补偿;Matlab仿真 一、前言 本文以佛山东方广场翡翠城用户电房谐波产生和处理方案为例,首先简单分析了电力系统无功功率及谐波的产生原因和危害,介绍了当前电力系统谐波抑制的方法,并对各种谐波抑制方法的优点和缺点做了简要的评述。本文采用HTEQ系列高速动态消谐无功补偿设备能够对商业性质用户设备进行高速跟踪无功补偿与谐波抑制,通过对负荷配电系统和运行状况实测结果进行分析计算,确定了无功补偿和谐波治理需求,在此基础上提出了动态消谐无功补偿的技术方案。 二、正文 1、东方广场翡翠城用户电房用电概况。 1.1用电情况简介 根据日常巡视数据得知,翡翠城0.4KV配电房3#变压器,额定容量为1000kV A,主要负载为商业西餐厅用电、广场音响、LED灯等;变压器低压侧配1套低压纯电容无功补偿装置,总安装容量为300kvar,电容器型号为450-30-3,投切器件为接触器,共10条支路;补偿柜投入一路30kvar;整个补偿柜的主刀熔开关为600A。 1.2目前设备概况 存在问题:补偿柜内部器件有导线及元件烧坏而且电容器衰减比较快,无法正常投运。目前,变压器最大负荷电流150A左右,只有一家西餐厅用电较大,偶尔有广场音响及灯;当运行电流为41~125A A时,补偿功率因数为.89~0.94,且补偿柜只投1条支路。 针对导线及元件烧坏及电容器衰减比较快现象进行信息采集,了解低压用配电系统的电能质量情况。 2、测量当前电能质量 1、测试地点:#3变压器低压总开关 2、测试仪器:CA8332电能质量分析仪 3、执行标准: 电能质量公用电网谐波 GB/T 14549 电能质量电压波动和闪变 GB/T 12326 广东鹰视能效科技有限公司 4、变压器总开关出线端电能质量测试数据如下: 变压器总开关测试时其用电情况为:运行电流41~125A,电压395V,视在功率45~58kV A;有功功率56kW;无功功率12kvar;功率因数0.89~0.94;谐波电流畸变率8.6~22.7%,谐波电压畸变率1.2%;主要谐波频谱为3次和5次; 变压器总开关出线端测试数据: 图1:电流值41~125A左右图2:电流谐波总畸变率8.6~22.7% 图3:电压值395V左右图4:电压谐波总畸变率1.2%左右

电网谐波及其抑制

电网谐波及其抑制

电网谐波及其抑制 ㈠电网谐波的有关概念 ⒈电网谐波的含义及其计算 谐波(harmonic),是指对周期性非正弦交流量进行傅里叶级数(Fourier series)分析所得到的大于基波频率整数倍的各次分量,通常称为高次谐波。而基波是指其频率与工频(50Hz)相同的分量。 向公用电网注入谐波电流或在公用电网中产生谐波电压的电气设备,称为谐波源(harmonic source)。 就电力系统中的三相交流发电机发出的电压来说,可认为其波形基本上是正弦量,即电压波形中基本上无直流和谐波分量。但是由于电力系统中存在着各种各样的“谐波源”,特别是随着大型变流设备和电弧炉等的广泛应用,使得高次谐波的干扰成了当前电力系统中影响电能质量的一大“公害”,亟待采取对策。 按GB/T14549-93《电能质量·公用电网谐波》规定,第h次谐波电压含有率

(HRU h)按下公式计算: HRU h=U h / U1× 100% 式中,U h为第h次谐波电压(方均根值);U1为基波电压(方均根值)。 第h次谐波电流含有率(HRI h)按下式计算: HRI h=I h / I1× 100% 式中,I h为第h次谐波电流(方均根值);I1为基波电流(方均根值)。 谐波电压总含量(U H)按下式计算: 谐波电流总含量(I H)按下式计算: 电压总谐波畸变率(THD u)按下式计算: THD u =U H / U1× 100% 电流总谐波畸变率(THD i)按下式计算:

THD i= I H / I1× 100% ⒉谐波的产生与危害 电网谐波的产生,主要在于电力系统中存在的各种非线性元件。因此,即使电力系统中电源的电压为正弦波,但由于非线性元件的存在,结果在电网中总有谐波电流或电压存在。产生谐波的元件很多。例如荧光灯和高压汞灯等气体放电灯、感应电动机、电焊机、变压器和感应电炉等,都要产生谐波电流或电压。最为严重的是大型的晶闸管变流设备和大型电弧炉,他们产生的谐波电流最为突出,是造成电网谐波的主要因素。 谐波对电气设备的危害很大。谐波电流通过变压器,可使变压器的铁心损耗明显增加,从而使变压器出现过热,缩短使用寿命。谐波电流通过交流电动机,不仅会使电动机的铁心损耗明显增加,而且还要使电动机转子发生振动现象,严重影响机械加工的产品质量。谐波对电容器的影响更为突出,谐波电压加在电容器两端时,由于电容器对谐波的阻抗很小,因此电容器很容易发生过负荷甚至造成

电力电子装置的谐波危害及抑制

随着电力电子技术的快速发展,电力电子装置越来越多地应用于冶金、化工、煤炭和运输等诸多领域,已成为实现生产自动化的重要基础设备。然而,随着这些电力电子装置的广泛应用,将大量的谐波和无功功率注入电网,使电网的电能质量下降,引起“电网污染”问题,这已成为阻碍电力电子技术发展的重大障碍之一。因此,认识和分析电力电子装置谐波产生的原因及其危害,探讨综合治理的方法,抑制谐波污染,提高电网功率因数已成为电力电子技术中的一个重大研究课题。 谐波的危害 电网中日益严重的谐波污染常常对设备的工作产生严重的影响,其危害一般表现为: 1)谐波电流使输电电缆损耗增大,输电能力降低,绝缘加速老化,泄漏电流增大,严重的甚至引起放电击穿。 2)使电动机损耗增大,发热增加,过载能力、寿命和效率降低,甚至造成设备损坏。 3)容易使电网与用作补偿电网无功功率的并联电容器发生谐振,造成过电压或过电流,使电容器绝缘老化甚至烧坏。 4)谐波电流流过变压器绕组,增大附加损耗,使绕组发热,加速绝缘老化,并发出噪声。 5)使大功率电动机的励磁系统受到干扰而影响正常工作。 6)影响电子设备的正常工作,如:使某些电气测量仪表受谐波的影响而造成误差,导致继电保护和自动装置误动作,对邻近的通信系统产生干扰,非整数和超低频谐波会使一些视听设备受到影响,使计算机自动控制设备受到干扰而造成程序运行不正常等。 电力电子装置中的谐波产生 电网中的谐波主要是由各种大容量功率变换器以及其他非线性负载产生的,其中主要的谐波源是各种电力电子装置,如整流装置、交流调压装置等,这其中,整流装置所占的比例最大,它几乎都是采用带电容滤波的二极管不控整流或晶闸管相控整流,它们产生的谐波污染和消耗的无功功率是众所周知的;除整流装置外,斩波和逆变装置的应用也很多,而其输入直流电源也来自整流装置,因此其谐波问题也很严重,尤其是由直流电压源供电的斩波和逆变装置,其直流电压源大多是由二极管不控整流后经电容滤波得到的,这类装置对电网的谐波污染日益突出。 谐波的抑制 为了抑制电网中的谐波,减小谐波的危害,在加强科学化、法制化管理的同

基于三次谐波注入法的逆变器控制设计

龙源期刊网 https://www.doczj.com/doc/c018357956.html, 基于三次谐波注入法的逆变器控制设计 作者:曹钰 来源:《电子技术与软件工程》2016年第15期 摘要本论文为了提高三相逆变器的直流电压利用率,采用了用三次谐波注入的逆变器,其次本论文对基于三次谐波注入法的逆变器进行了系统建模,设计了输入输出电压电流的采样调理电路,以及精密整流电路,双T滤波电路和峰值保持电路等等。最后根据样机的性能要求对逆变器主功率电路、控制电路、驱动电路、保护电路进行了详细的设计。针对输入电压:250-280Vdc;输出功率为6kVA/400Hz;输出电压为三相115V/400Hz;电源参数指标符合GJB181A;并对三相逆变器进行了仿真和实验验证。 【关键词】航空静止变流器三相逆变器三次谐波注入保护电路控制电路 1 三次谐波注入法逆变电源控制方案 在采取常规的SPWM调制时,相电压的峰值可以达到直流母线电压的一半,即ud ?2,其输出线电压的峰值为ud ?2,所以说SPWM 的直流电压利用率仅有86.6%。提高电压利用率的基本做法就是通过各种变换方式,使相电压的基波峰值超过ud ?2。如果能够利用现有的直流 电压,通过调制波变换的方法得到更高的输出电流电压,则可大大提高系统稳定输出的能力,于是,就有了优化PWM方法-三次谐波注入法。一般情况下,利用三次谐波注入法,可使直 流电源电压的利用率提高到1.2左右。 1.1 三次谐波注入法的原理 采用三次谐波注入法后,其三个桥臂的调制波表达式分别为: 式中,m为调制比,k为三次谐波系数,且0.15≤k≤0.2,在实际应用中,为了兼顾其对输出电压谐波和直流电压利用率的影响,通常取k为0.18。 1.2 逆变器控制保护原理 本文中对逆变器的控制保护部分进行了详细设计并提出了控制保护电路功能及方案,此外还研究了几种常用电压电流的采样方法,用到了霍尔传感器中的LA—55P和LV—28P,它们分别负责电压和电流的采样。然后通过调理电路和逻辑电路,来控制逆变器六个开关管的通断。 2 调理电路设计 2.1 电流采样调理电路设计

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要 求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功 率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 P WM 控制原理………………………………………… 4.2.2.2滞环比较控制方

UPS供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。 接入低压供电系统的非线性设备产生的谐波电流可分为稳定的谐波和变化的谐波两大类。所谓稳定的谐波电流是指由这种谐波的幅度不随时间变化,如视频显示设备和测试仪表等产生的谐波,这类设备对电网来说表现为恒定的负载。由激光打印机、复印机、微波炉等产生的各次谐波的幅值随时间变化,称之为波动的谐波,这类设备对电网来说是一个随时间

供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 发布者:admin 发布时间:2006-6-27 15:48:56 来自:互联网浏览统计:20 减小字体增大字体一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。

HVDC谐波分析

基于新型换流变压器HVDC谐波分析与仿真计算 李季,罗隆福,许加柱,李勇,刘福生 (湖南大学电气与信息工程学院,湖南长沙410082) 摘要:在构成高压直流输电系统一系列关键技术中,滤波装置占据十分重要的地位。本文提出了一种具有内部三角形绕组新颖的自耦补偿与谐波屏蔽换流变压器,将传统交流滤波装置移至绕组内部即在换流变压器副方公共绕组串接5、7、11、13次滤波支路的接线方案,让谐波源无法流窜到高压网络中,有效的抑制了直流输电系统中的谐波成分。最后以新型换流变压器及相关的直流系统技术参数为依据,结合滤波装置为新型换流变压器的自补滤波提供谐波通道及满足换流器无功需求的特点,对基于新型换流变压器的直流输电系统中绕组及滤波支路谐波电流进行了详细的分析和仿真计算,仿真结果表明,本文提出的新兴换流变压器原理正确,参数选择合理,滤波效果好,总谐波含量低,具有良好的应用前景。 关键词:高压直流输电;换流变压器;滤波装置;谐波屏蔽;自耦补偿 1引言 在高压直流输电系统(HVDC)中,由于换流器的非线性特征,在交流系统和直流系统中不可避免的产生大量的谐波电压和谐波电流,对系统本身和用户都会造成影响和危害。对于交流系统的滤波来说,传统的滤波方式一般是在换流变压器网侧的母线上并联滤波器装置,兼作无功补偿设备。该种方式虽能较好的解决交流系统的谐波抑制和无功补偿问题,但并未克服通过换流变压器的无功和谐波对变压器本身所带来的影响;并且在现有的直流输电工程运行中仍然大量出现交直流侧谐波超标的现象,因此有必要采取更加有效的滤波设计[1-2]。 自耦补偿与谐波屏蔽换流变压器通过特有的绕组连接方式,辅之以必要的滤波装置,不仅能满足交流系统的滤波及无功需求,而且能解决上述传统换流变压器以及直流输电系统中存在的问题,较之传统换流变压器及无源滤波装置有诸多优点。本文以新型换流变压器原理机及相关换流直流系统的技术参数为依据,对基新型换流变压器的HVDC 交流侧的滤波装置进行分析设计,各次谐波泄露量均能达到谐波国家标准,从而达到理想的综合补偿效果。2新型换流变压器工作机理 2.1接线方案 与传统换流变压器相比,新型换流变压器副边绕组有抽头引出接辅助滤波装置,这势必改变绕组间的电磁关系。图1所示为用于12脉动HVDC的新型换流变压器绕组接线与辅助滤波兼无功补偿设备布置图。由图可知,新型换流变压器副方采用延边三角形连接,中间引出抽头接辅助滤波装置,这在接线方式上相当于将传统变压器原方网侧的无源滤波装置移到副方绕组的中部,以利发挥自补滤波的作用,改善与消除传统滤波与无功补偿的不足]3[。 新型换流变压器要满足12脉波换相要求时,I 桥和II桥相电压分别左移15 ,右移15 。设变压器网侧,阀侧线电压比为1。原边匝数为1p.u;参考电压相量图2所示,根据正弦定理,可计算求得 8966 .0 1 2= = W W k c (1) 5176 .0 1 3= = W W k e (2) 其中, 1 W、 2 W和 3 W分别为变压器网侧绕组,延 边绕组和公共绕组的匝数; c k和 e k分别为延边绕组与网侧绕组、公共绕组与网侧绕组之间的匝比。 f f 图1新型换流变压器接线方案

电力系统谐波分析及抑制技术研究

电力系统谐波分析及抑制技术研究 发表时间:2018-04-11T09:51:58.123Z 来源:《电力设备》2017年第32期作者:杜占科杨正张彬[导读] 摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。 (国网新疆电力公司阿克苏供电公司新疆阿克苏市 843000)摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。因此,如何抑制电网谐波引起了广泛的讨论。本文论述了当前电力系统谐波的产生的主要原因,并分析了电力谐波的危害,提出了几种电力谐波的抑制技术,为电力系统谐波问题提供帮助。 关键词:电力系统;谐波;危害;滤波器;抑制在电力系统用电,输电,发电等过程中,谐波已成为不可避免的问题,其已危及电力产生和输送以及用电方的安全运行。鉴此,分析谐波并最大限度地抑制谐波成为电力系统工作的重要课题。下面,就电力系统谐波及其危害进行详细分析,并提出有效的抑制谐波措施。 1.电力系统的谐波 (1)用电技术方面。在现代电力系统中,随着人们节能意识的加强以及电力电子技术的发展,众多通过电力电子开关、以非正弦电流方式高效用电的新型非线性负载得到了广泛的应用。这些以非正弦电流方式用电的新型非线性负载已经成为当今电力负载中最主要的谐波源。1992年,日本电气学会对其国内产生谐波的行业按比例进行了一个统计,除楼宇中的部分照明电源、冶金行业的电弧炉外,其他行业的谐波源大多来自电力电子装置,根据日本电气学会的统计,其比例高达90%。从表中还可以看出,来自楼宇的谐波源所占比例高达40.6%,其谐波主要由办公及家用电器等产生。可见,谐波畸变不再是工业设备所特有的现象,如今谐波现象已经蔓延到电力升降机、不间断电源、电视机、个人计算机等商业和居民用电设施中的电子设备。 (2)发电技术方面。由于当今社会对常规化石能源的需求日益增加,能源耗尽的危机日益严重,人们开始追求对清洁、无污染的新能源的开发利用。在电力生产中,许多利用清洁无污染的可再生能源发电的发电方式,如风能发电、太阳能发电、燃料电池发电等发电方式得到了越来越广泛的应用。这些新型电源大多以非正弦、非工频的方式供电,而传统公用电网是以三相电压、电流的对称正弦要求为发电与用电的品质指标。传统公用电网为了接纳非正弦、非工频的新型电源,一般通过电力电子电能转换装置将非正弦、非工频的电源转换为正弦、工频的交流电源,从而实现不同频率的电源或电网的同步运行。比如在输送风电的过程中,一般采用变频装置将风电接入电网,在此过程中,变频装置将会向电网注入一定数量的谐波,使得电网谐波来源更加复杂。 (3)输电技术方面。为了提高电压质量和系统的稳定性以及解决大容量远距离输电等问题,柔性交流输电技术和高压直流输电技术得到极大的发展和应用。柔性交流输电技术和高压直流输电技术以电力电子技术为支撑,通过电力电子装置实现对电网运行方式的灵活控制、调节,以实现对电能的安全、高效、经济输送。这些电力电子装置主要包括:用于提供无功功率补偿以改进电网电压控制和系统稳定性的静态无功补偿器(SVC);用于提高输电线路输电容量和改善线路运行情况的可控串联补偿装置(TCSC);用于电网潮流控制的统一潮流控制器(UPFC)以及用于高压直流输电技术的高压直流换流器等。上述电力电子装置大多数具有一个共同特性,就是产生谐波。因此,在使用这些装置对输电技术进行改造时,对其产生的谐波不得不进行一个详细的评估。 2.谐波的危害 谐波注入电力系统将会严重恶化电网的电气运行环境,危害电力系统的安全、稳定运行,同时,还会对电网电气设备以及用户用电设备的安全造成危害。 首先,对整个电网来说,谐波的产生与输送,将在输电网中增大网损,降低电能传输的效率;谐波电流在线路中引起畸变压降,降低了电网的电压质量;新型非线性负载的间断性用电方式降低了电源电压的工作效能;谐波电流恶化交流电能传输中的电气环境,易引发系统崩溃。 其次,对电网中的电气设备而言,因为电网中的电气设备是按工频、正弦电流工作方式设计的,谐波电流流过将会影响其最佳工作状态。例如:谐波电流会对电机、变压器等电磁设备的绕组及铁芯引起额外发热,使损耗增加,降低电磁设备的使用寿命;谐波电流会影响功率处理器、互感器的测量精度,引起电力测量的误差;谐波电流有可能造成继电保护装置、自动控制装置的工作紊乱;谐波电流的存在还可能会降低断路器、熔断器等设备的开断能力。 此外,随着工业控制技术的发展,工业生产中许多精密仪器、复杂的控制系统等对电能质量的要求也越来越高。谐波电流对其造成的影响,有可能会使工业生产造成巨大的经济损失。 3.电力系统的谐波抑制技术 如前文所述,电力系统谐波造成低劣的供电电能质量,严重危害电力系统的安全稳定运行和电网电气设备、用户用电设备的安全。在现有的技术水平下,为避免谐波的危害,保障电网及用户的利益,对电力系统的谐波抑制,已经成为电气工程学科的一个热门研究领域。目前对电力系统谐波抑制的方法主要可以分为预防性电力谐波抑制技术和补救性电力谐波抑制技术两种方法。 3.1预防性电力谐波抑制技术 预防性电力谐波抑制技术是指在设计构建系统或设备的过程中,通过选取合理的线路结构及元件参数,避免产生谐波或减少谐波。常见的预防性电力谐波抑制技术有如下几种:(1)利用设备的电气特性。该方法主要是对电气设备采用有效的接线方法或结构形式来减少或消除接入电力系统的设备所产生的谐波。比如对于变压器来说,其绕组采用三角形的接线方式能隔断3倍频谐波电流的流通。 (2)配电网重构。对多个谐波源同时接入电网的情况,可通过对配电网重构的方法,实现降低公共连接点总的谐波限值。这种方法是通过对配电网中的负荷进行再分配,限制负荷中非线性负荷的比例,控制非线性负荷产生的谐波电流在一定的范围内,使公用母线上的谐波电流限值不超过电力部门制定的标准。该方法只是达到降低谐波限值的目的,并没有达到谐波隔离的效果,谐波电流仍会注入电网中,有可能对电网及其他用户造成损害。显然,这并不是一种合理的谐波抑制的方法。(3)多脉波整流技术和高功率因数PWM整流技术。多脉波整流技术是将两个或更多个相同结构的整流电路按一定的规律组合,将整流电路进行移相多重联结,利用各整流负载的谐波电流相位差,使其相互叠加后可削弱或抵消电源输入端的部分谐波电流。例如12脉波整流技术可以有效削弱5次和7次谐波,24脉波整流技术可以有效消除11次和13次谐波。随着技术的发展,多脉波整流技术的脉波数可以达到一个很高的值,但同时也使系统结构更为复杂,需要对其可靠性、经济性等因素进行全面衡量。

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法 2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置 (1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。

电力谐波的产生原因及其抑制方法

电力谐波的产生原因及其抑制方法 随着工业的快速发展,在电力系统中,非线性负荷大量增加。这样的非线性负荷在电网中产生的干扰越来越严重,也越来越复杂化,使得电网的供电质量越来越差,对同一电网的其他用电设备和小型用户的影响越来越大。在电力系统中,谐波污染与电磁干扰、功率因数降低成为了三大公害。 一、谐波产生的原因 谐波是指一个电气量的正弦波分量.其频率为基波频率的整数倍,不同频率的谐波对不同的电气设备会有不同的影响。谐波主要由谐波电流源产生,当正弦波(基波)电压施加到非线性负载上时,负载吸收的电流与其上施加的电压波形不一至,其电流发生了畸变。由于负载与整个网络相连接,这样畸变电流就可以流人到电网中,这样的负载就成了电力系统中的谐波源。 二、谐波源的种类 在电力系统中产生谐波的主要谐波源有两种。 1.含有半导体等非线性电气元件的用电设备。比如工业中常见的各种整流电气装置、大容量变频器、大型交直流变换装置以及其他的电力、电子装置。 2.含有电弧和铁磁材料等的非线性材料的用电设备,比如电弧炉、变压器、发电机组等电气设备。 三、谐波的危害 1.使供电线路和用电设备的热损耗增加。 (1) 谐波对线路的影响 对供电线路来说,由于集肤效应和邻近效应,线路电阻随着频率的增加会很快增加,在线路中会有很大的电能浪费。另外,在电力系统中,由于中性线电流都很小,所以其线径一般都很细,当大量的谐波电流流过中性线时,会在其上产生大量的热量,不仅会破坏绝缘,严重时还会造成短路,甚至引起火灾。 而当谐波频率与网络谐振频率相近或相同时,会在线路中产生很高的谐振电压。严重时会使电力系统或用电设备的绝缘击穿,造成恶性事故。 (2) 对电力变压器的影响 谐波电琏的存在增加了电力变压器的磁滞损耗、涡流损耗及铜损,对带有不对称负荷的变压器来说,会大大增加励磁电流的谐波分量。 (3)对电力电容器的影响 由于电容器对谐波的阻抗很小,谐波电流叠加到基波电流上,会使电力电容器中流过的电流有很大的增加,使电力电容器的温升增高,引起电容器过负荷甚至爆炸。同时,谐波还可能与电容器一起在电网中形成谐振,并又施加到电网中。 (4)对电机的影响 谐波会使电机的附加损耗增加,也会产生机械震动,产生甚至引起谐波过电压.使得电机绝缘损坏。 2.对继电保护和自动装置的影响 对于电磁式继电器来说,电力谐波常会引起继电保护以及自动装置的误动作或拒动,造成整个保护系统的可靠性降低.容易引起系统故障或使系统故障扩大。 3.对通信线路产生干扰。 在电力线路上流过幅度较大的奇次低频谐波电流时,通过电磁耦合,会在邻近电力线路

电力系统谐波及其抑制技术

电力系统谐波及其抑制技术 [摘要]随着电力市场的广泛开放以及电力系统的不断发展,人们越来越多的关注电能的质量问题。由于非线性荷载在电力系统中的广泛应用,因而所产生的谐波对电网造成越来越多的污染。本文主要分析了一些谐波产生的危害以及抑制谐波的各种措施,并针对目前电力系统治理谐波所存在的问题提出了自己的合理化建议,供大家参考、学习。 【关键词】谐波;谐波抑制;谐波治理 一、谐波产生的原因 电力系统是一个密不可分的整体,我们可以分析电力系统谐波产生的原因主要有: 1、电源本身质量不高而产生谐波:由于发电机三相绕组在制作上很难达到绝缘对称,铁心也很难达到绝对平均抑制,同步发电机所产生的谐波电动势是定子和转子之间的空气隙中的磁场非正弦分布所产生的。在发电机实际的运行中,气隙磁场不是严格的正弦波,只是含有一定的谐波成分。因此,在发电机的输出电压中,其本身就存在一定的谐波,而这其中的频率和谐波电压都是发电机本身的结构和工作状态。 2、输电系统产生的谐波:现在国家电网公司大力推行特高压电网,在特高压电网系统中广泛采用交流-直流-交流输电方式,两个交流系统采用直流系统连接(比如青藏联网工程)。当两个隔离的交流系统标称频率相同(或多或少会有一个频率差),用直流互联,这个很小的频率差在直流电压下被晶闸管投切到另一端变流器所调制,会和基波频率产生频拍,引起闪变电流流通,并可能激发机械谐振。 二、谐波的危害 谐波的存在对电网是一种污染,它使电力设备所处环境变化,也对周围的通信系统和公用电网以外的设备带来损害,其危害主要有: 1、变压器各类损耗增加。谐波会造成变压器的铜耗增大,其中包括对电阻、导体中的涡流、导体外部因漏通而形成的损耗1131。铁耗也随之增加,对于带不对称负载的变压器而言,其负载电流如果含有直流分量,则会引起变压器磁路饱和,因此会使交流励磁电流的谐波分量大大增加。 2、引起换流装置非正常工作。一旦换流装置的容量比例刚刚等于电网容量比例的1/3-1/2或超过的时候,在某些时刻虽然还没达到以上数值但电网参数则会造成较低次谐波次数的谐波谐振,常规控制角在交流电网电压畸变的情况下会形成触发脉冲间隔不等,系统的电压畸变会通过正反馈而被放大,从而影响整流器工作环境的稳定性,逆变器很可能因此发生连续的换相失败最终无法工作。 3、造成通信系统的非正常工作。电力线路上流过的幅值(3、5、7、ll)较大的奇次低频谐波电流通过磁场耦合,与相邻近电力线间的通信线路会产生干扰电压,造成通信系统的非正常工作,对通信线路中通话的清晰度,当处在谐波跟基波的共同影响之下,会触发电话铃声响起,更严重的情况下会损坏通信设备并威胁人员的安全。此外,高压直流换流站换相工程中所产生的电磁噪声会影响电力载波通信正常的工作状况,还会影响到基于载波工作的闭锁和继电保护装置的失效,从而威胁整个电网的安全。

高频开关变换器中EMI产生的机理及其抑制方法

高频开关变换器中EMI产生的机理及其抑制方法 1 前言 开关电源具有体积小、重量轻、效率高等特点,广泛用于通信、自动控制、家用电器、计算机等电子设备中。但是,其缺点是开关电源在高频条件下工作,产生非常强的电磁干扰(Electromagnet ic Inte rf erence,EMI),经传导和辐射会污染周围电磁环境,对电子设备造成影响。本文从开关电源的电路结构、器件进行分析,探讨了电磁干扰产生的机理及其抑制方法。 2 开关电源电磁干扰(EMI)产生的机理 开关电源的电磁干扰,按耦合途径来分,可分为传导干扰和辐射干扰。按噪声干扰源可分为两大类:一类是外部噪声,例如通过电网传输过来的共模和差模干扰、外部电磁辐射对开关电源控制电路的干扰等;另一类是开关电源自身产生的电磁干扰,如开关管、整流管的电流尖峰产生的谐波及电磁辐射干扰。 其中外部噪声产生的影响可以通过电源滤波器进行衰减,本文不做讨论,仅讨论开关电源自身产生的电磁噪声。 常规交流输入的开关电源主要结构可以分为四大部分,其框图如图1所示。 其中输入与整流滤波部分、高频逆变部分、输出整流与滤波部分是产生电磁干扰的主要来源。以下将通过对各部分电压、电流波形的分析,阐明电磁噪声产生的原因。 2.1 工频整流器引起的电磁噪声 一般开关电源为容式滤波,在输入与整流滤波部分电磁噪声主要是由整流过程中造成的电流尖峰、电压波动所引起的。正弦波电源经过电源滤波器进行差模、共模信号衰减后,由整流桥整流、电解电容滤波,得到的电压作为高频逆变部分的输入电压。由于滤波电容的存在,使整流器不象纯整流那样一组开通半个周期,而是只在正弦电压高于电容电压时才导通,造成电流波形非常陡峭,同时电压波形变得平缓。电流、电压的波形如图2所示。 根据Fourier级数,图中的电流、电压波形可分解为直流分量和一系列频率为基波频率整数倍的正弦交流分量之和。通过电磁场理论以及试验结果表明,谐波(特别是高次谐波)会产生传导干扰和辐射干扰。通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰,在空间产生电场、磁场向外辐射产生的干扰称之为辐射干扰。 2.2 变压器与开关管引起的电磁噪声 逆变部分是开关稳压电源的核心,用以实现变压、变频以及完成输出电压的调整,主要有开关管和高频变压器组成。电磁噪声主要是由于变压器的漏感、分布电容以及开关管的开通、关断造成。开关电源中的高频变压器用作隔离和变压,变压器在理论分析时,通常认为是理想变压器,但是在实际应用中变压器存在漏感,而且在高频的情况下,还要考虑变压器层间的分布电容。高频变压器的等效电路模型如图3所示。

谐波抑制的方法及其特点

电力系统谐波抑制方法及其特点分析 随着电力电子技术的发展,接入电网的整流、换流设备和其他各种非线性负荷设备日益增加,这些电气设备产生大量的谐波电流注入电网,危及电力设备、用户设备和电力系统的安全运行。必须采取措施,抓紧治理,抑制电力系统谐波,把电网中的谐波含量控制在允许范围之内[1]。 电力系统谐波抑制是改善电能质量、净化电网的一个重要方面。对谐波抑制的方法主要有三种途径:第一种是在谐波源上采取措施,从改进电力电子装置入手,使注入电网的谐波电流减少,也就是最大限度地避免谐波的产生;第二种是在电力电子装置的交流侧利用LC无源滤波器和电力有源滤波器对谐波电流分别提供频域谐波补偿和时域谐波补偿。这类方法属于对已产生的谐波进行有效抑制的方法;第三种就是改善供电环境[2]。 1、降低谐波源的谐波含量 降低谐波源的谐波含量也就是在谐波源上采取措施,最大限度地避免谐波的产生。这种方法比较积极,能够提高电网质量,可大大节省因消除谐波影响而支出的费用,并避免因加装消谐装置而引发的其它负面影响。具体方法有: 1.1 增加换流装置的脉动数 换流装置是电网中的主要谐波源之一,其产生的谐波主要集中在特征谐波,非特征谐波含量通常很少,特征频谱为:n=kp士1,则可知脉动数p增加,n也相应增大,而工n、工l/n,故谐波电流将减少。因此,增加整流脉动数,可平滑波形,减少谐波。例如:当脉动数由6增加到12时,可有效的消除幅值较大的低频项,从而使谐波电流的有效值大大降低。 1.2 利用脉宽调制(PWM)技术 PWM技术,就是在所需的频率周期内,通过半导体器件的导通和关断把直流电压调制成等幅不等宽的系列交流电压脉冲,可达到抑制谐波的目的。若要消除某次特定谐波,可在控制PWM输出波形的各个转换时刻,保证四分之一波形的对称性,根据输出波形的傅里叶级数展开式,使需要消除的谐波幅值为零,基波幅值为给定量,组成非线性超越方程组计算各个开关通断时刻,达到消除指定谐波和控制基波幅值的目的。PwM技术的优点是在载波频率高时,输出中所含低次谐波分量很小,从而提供了功率因数。目前被采用的PWM技术有最优脉宽调制(OPWM)、改进正弦脉宽调制、△调制、跟踪型PWM和自适应PWM控制等。 1.3 三相整流变压器采用Y,d(Y/△)或D,y(△/Y)的接线方式 这种接线方式可抑制3的倍数次的高次谐波,也可作为隔离变压器使用。以△/Y形接线方式为例:当高次谐波电流从晶闸管反串到变压器副边绕组内时,其中3的倍数次高次谐波电流无路可通,所以自然就被抑制而不存在。但将导致铁心内出现3的倍数次高次谐波磁通(三相相位一致),而该磁通将在变压器原边绕组内产生3的倍数次高次谐波电动势,从而产生3的倍数次的高次谐波电流。因为它们相位一致,只能在三角形绕组内产生环流,将能量消耗在绕组的电阻中,故原边绕组端子上不会出现3的倍数次的高次谐波电动势,不致使谐波注入公共电网。作为隔离变压器使用时,可使3N次谐波电流与配电系统相隔离。这种接线形式的优点是可以自然消除3的整数倍次的谐波。 1.4 采用多电平变流技术 也称整流电路的多重化,即将多个方波叠加,以消除次数较低的谐波,从而

相关主题
文本预览
相关文档 最新文档