当前位置:文档之家› 纤维材料的回潮率,吸湿性的检测方法,纤维吸水性的影响

纤维材料的回潮率,吸湿性的检测方法,纤维吸水性的影响

纤维材料的回潮率,吸湿性的检测方法,纤维吸水性的影响
纤维材料的回潮率,吸湿性的检测方法,纤维吸水性的影响

纤维材料的回潮率,吸湿性的检测方法,纤维吸水性的影响

纤维(美:Fiber;英:Fibre)是指由连续或不连续的细丝组成的物质。在动植物体内,纤维在维系组织方面起到重要作用。纤维用途广泛,可织成细线、线头和麻绳,造纸或织毡时还可以织成纤维层;同时也常用来制造其他物料,及与其他物料共同组成复合材料。

一、吸湿性:

吸水性就是吸湿的能力,吸湿性(moisture absorption)是纤维的物理性能指标之一,通常把纤维材料从气态环境中吸收水分的能力称为吸湿性。它通常用回潮率来表示。纤维的吸水性是指干燥纤维在温度为70℉(相当于21℃),相对湿度为65%的标准条件下的空气中吸收水分的百分数。

易吸水的纤维称为亲水纤维。所有天然动植物纤维和两种人造纤维——粘胶纤维和醋酯纤维是亲水纤维。那些吸水有困难或只能吸收少量水分的纤维称做疏水性纤维。除粘胶纤维、Lyocell纤维和醋酯纤维以外,所有人造纤维都是疏水性纤维。玻璃纤维则根本不吸水,其他纤维通常只有4%或更低的回潮率。

二、吸湿性指标:

1.回潮率与含水率纤维材料中的水分含量,即吸附水的含量,通常用回潮率(Moisture regain)或含水率(Moisture content)表达。前者是指纤维所含水分的质量与干燥纤维质量的百分比,后者是指纤维所含水分质量与纤维实际质量的百分比。

化纤行业一般用回潮率来表示纤维吸湿性的强弱。

2.标准状态下的回潮率与公定回潮率各种纤维的实际回潮率随环境温湿度而变,为了比较各种纤维材料的吸湿能力,将其放在同一的标准大气条件下(20℃、65%相对湿度)一定时间后,使它们的回潮率在“吸湿过程”中达到一个稳定值,这时的回潮率为标准状态下的回潮率。

三、不同材料公定回潮率

应注意的是,各国对纺织材料公定回潮率的规定往往根据自己的实际情况而定,所以并不完全一致。

棉花:公定回潮率:8.5%

涤纶:公定回潮率:0.4%

苎麻:公定回潮率:13%

锦纶:公定回潮率:4.5%

羊毛:公定回潮率:15-16%

维尼纶:公定回潮率:5%

蚕丝:公定回潮率:11%

腈纶:公定回潮率:2%

粘胶:公定回潮率:13%

丙纶:公定回潮率:0%

醋酸:公定回潮率:7%

氯纶:公定回潮率:0%

四、吸湿性的检测方法:

按照吸湿性的测试特点,大致可分为两类:直接测定法和间接测定法。

1、直接测定法是直接获取纤维中水分重量的测定方法,从而计算出含水率或回潮率。

如烘箱法、卤素水分测定仪干燥法、吸湿剂干燥法、真空干燥法等。其中卤素水分测定仪相比烘干法更加快速。

2、间接法测定法是利用纤维材料中含水多少与某些物理性质(如电阻、电容、)密切相关的原理,通过丈量这些性质来推测含水率或回潮率,如电阻测试法、电容测试法,但是二者测

试数据误差大,产品没有精度,得不到业界的认可。只能作为辅佐工具使用。这类方法丈量迅速、不损伤纤维、可在线丈量,但干扰因素较多,结果的稳定性和正确性受到影响。

五、纤维的吸水性影响其许多方面的应用,包括:

1、皮肤舒适性:由于吸水性差,汗液的流动会引起冷而湿的感觉。

2、静电性:伴随着疏水纤维会发生衣服粘着和冒火花等问题,因为几乎没有水分来帮助疏散累积在纤维表面的带电粒子,灰尘也因为静电而被带到纤维上并粘附其上。

3、水洗后尺寸稳定性:水洗后,疏水性纤维比亲水性纤维收缩要小,纤维很少膨胀,这是织物收缩的原因之一。

4、去污性:很容易从亲水性纤维中去除污渍,因为纤维会把清洁剂和水同时吸入。

5、拒水性:亲水性纤维通常要进行较多的拒水耐用后处理,因为这种化学处理可以使这些纤维拒水性更好。

6、褶皱回复性:疏水性纤维通常拥有较好的褶皱回复性,特别是经过洗烫之后,因为它们不吸水、不膨胀并在褶皱状态下干燥。

芯吸作用是指纤维从一处向另一处传递水分的能力。通常,水分沿着纤维的表面传递,但是当液体被纤维吸收的时候也可以穿过纤维。纤维的芯吸倾向常常依赖于外表面的化学和物理组成。光滑的表面会减小芯吸的作用。

膜孔隙率的几种测试方法

膜孔隙率的几种常用测试方法 在薄膜、中空纤维膜等膜材料的应用与研究中,孔隙率是一项常用的重要指标。孔隙率一般被定义为多孔膜中,孔隙的体积占膜的表观体积的百分数,即:ε=V 孔/V 膜外观。 孔隙是流体的输送通道,这里的“孔隙”准确的说应该指“通孔孔隙”。通常研究人员希望采用此参数来评价膜的过滤性能、渗透性能和分离能力。但由于定义以及测试方法限制等原因,造成目前大家经常看到的和并被普遍应用的“孔隙率”这个参数中的“孔隙”,并非指的是“通孔孔隙”,所以,这种定义的孔隙率,与膜的过滤性能、渗透性能、分离能力并不构成正相关性。也就是说,孔隙率大的,过滤性能并不一定好;渗透率为零,孔隙率不一定为零。 对于泡压法原理的贝士德仪器膜孔径分析仪,如果膜上的孔非理想的圆柱形孔,其实是不能用来分析孔隙率的,因为该原理的仪器测试出来的孔径分布是通孔孔喉的尺寸信息。用通孔孔喉尺寸计算得到孔面积,从而依据ε=V 孔/V 膜外观=S 孔/S 膜外观来计算出的孔隙率,这个值在实际中会远小于目前常用方法所 得到的孔隙率。只有当该膜的孔为理想的圆柱孔时,即孔喉和孔口的尺寸相同且无其它凸凹、缝隙结构时,由通孔孔喉尺寸得到的孔隙率才与目前常用方法得到的孔隙率接近(这种情况在实际中几乎不存在)。 下面列举膜孔隙率的几个常用测试方法: 方法一:称重法(湿法、浸液法) 原理:根据膜浸湿某种合适液体(如水等)的前后重量变化,来确定该膜的孔隙体积V 孔;该膜的骨架 体积V 膜骨架可以通过膜原材料密度和干膜重量获得;则该膜的孔隙率: ε=V 孔/V 膜外观=V 孔/(V 孔+V 膜骨架) 方法二:密度法(干法、体积法) 原理:见如下公式推导,所以,只需要膜原材料的密度ρ膜材料和膜的表观密度ρ膜表观,就可计算得到孔 隙率ε。其中表观密度ρ膜表观可由外观体积和质量获得。 ε=V 孔/V 膜外观=(V 膜外观-V 膜骨架)/V 膜外观=(ρ膜表观-ρ膜材料)/ρ膜表观 方法三:气体吸附法 原理:根据低温氮吸附获得孔体积,从而得到孔隙率。该方法只能获得200nm 以下尺寸孔结构的孔体积,无法表征200nm 以上孔的信息,对于大量滤膜不适用。 方法四:压汞法 原理:根据压汞法原理,利用压力将汞压入膜的各种结构的“孔隙”中,根据注入汞的压力、体积来获得膜的孔隙体积及尺寸数据;该方法的缺点是将汞压入微孔需要的压力较大,该方法更适合于分析刚性材料,对于大多数膜材料为弹性材料,在注入汞的过程中容易发生变形或“塌陷”,从而产生较大误差。 3H-2000PB 贝士德仪器泡压法滤膜孔径分析仪,其基本原理为气液排驱技术(泡压法):给膜两侧施加压力差,克服膜孔道内的浸润液的表面张力,驱动浸润液通过孔道,依此获得膜类材料的通孔孔喉的孔径数据,同时该方法也是ASTM 薄膜测定的标准方法。 以上四种膜孔隙率的常用测试方法,所获得孔隙率数据中的“孔隙”都不是“通孔孔隙”,更不是“通孔孔喉孔隙”;若不是“通孔孔隙”,那么,这个“孔隙率”就无法达到研究人员所希望的评价过滤性能、渗透性能和分离能力的目的。举例说明:A 膜通孔为零,表面“凸凹、闭孔、盲孔”等结构形成的孔隙率为40%;B 膜孔隙率为20%且有通孔;那么,我们并不能依据该孔隙率数据对该两种膜的过滤性能做出比较。这点在研究和应用中是需要注意。

碳纤维表面改性

碳纤维表面处理研究现状

碳纤维表面处理研究现状 摘要:综述了碳纤维的应用领域,当前国内外的碳纤维的生产状况,分析了各种碳纤维表面处理的研究现状以及各方法的优缺点。分析结果表明:国外对我国碳纤维生 产进行了技术封锁,我国工业化碳纤维生产与日本等国有较大差距。电化学氧化法对碳纤维表面处理效果较好,处理后碳纤维表面活性基团数量明显增多,生产条件易于控制,该方法很好应用于工业生产。 关键词:碳纤维;表面处理;电化学氧化法; 引言 随着国防科技要求的不断提高,航天航空、军事武器等高科技设备对材料的性能要求的提高,碳纤维复合材料以其耐高温,耐摩擦、导电、导热、耐腐蚀、高比强度等特点被广泛的应用于这些领域。国外碳纤维材料生产研发较早,现今以日本,美国等国家的生产技术领先于世界。 碳纤维按其加工的先驱体不同可以分为:粘胶基碳纤维、沥青基碳纤维、聚丙烯腈基(PAN)碳纤维。碳纤维作为一种增强相与金属、陶瓷、树脂等结合使复合材料的性能得到很大提高。碳纤维表面的活性基团较少,表面光滑,为更好的与基体材料结合,需要在材料复合前对纤维进行一定表面处理。碳纤维表面处理按当前的研究现 状可以分为氧化法和非氧化法。在此对纤维的生产状况做出一些介绍以及纤维表面处理的各种方法做比较。 1碳纤维应用领域及国内外生产状况 碳纤维复合材料具有卓越的物化性能,被广泛应用于航天航空、国防军事、体育用品、风能发电、石油开采以及医疗器械⑴。 碳纤维被用于制造飞机、航天器、卫星等,因碳纤维的轻质、高强度等特点,飞行器的噪音小,飞行所需的燃料消耗降低。据有关报道,飞行器每降低1kg的质量,运载飞行器的火箭可以减轻500kg。航天航空领域碳纤维的使用量从2008年的8200t, 到2010年的1万t,预计今年将达到1.3万t。在飞机的制造中,纤维复合材料应用比例都

常用纺织纤维的主要特性

常用纺织纤维的主要特性 腈纶概况:腈纶的为聚丙烯腈纤维,它是用85以上的丙烯腈和少量第二、第三单体共聚,通过湿法或干法纺丝而制得的。腈纶于1950年在美国开始工业化生产,是目前主要的合成纤维品种之一。由于腈纶的性质类似羊毛,所以它又称为“合成羊毛”。腈纶生产以短纤维为主,它可以纯纺,也可以与羊毛或其他纤维混纺,制成衣着用织物,毛线、毛毯和针织品,特别适用于作窗帘。腈也可制长丝束,供加工成腈纶膨体纱。此外,腈纶还是生产碳纤维的主要原料。腈纶的主要物理和化学性 质 1.形态腈纶的纵面或有少量沟槽,截面随纺丝方法不同而异,干法纺丝的纤维截面呈哑铃形,湿法纺丝的则为圆形。 2.强伸性和弹性腈纶的强度为17.6~30.8cN/tex,比涤纶和锦纶都低,其断裂伸长率为25~46,与涤纶、锦纶相仿。腈纶蓬松、卷曲而柔软,弹性较好,但多次拉伸的剩余变形较大,因此腈纶针织的袖口、领口等易变形。 3.吸湿性和染色性腈纶结构紧密,吸湿性低,一般大气条件下回潮率为2左右。此外,腈纶的染色性不够好,但现在可采用阳离子染料染成各种鲜艳的色泽。 4.耐光性腈纶耐光性和耐气候性特别优良,在常见纺织纤维中最好。腈纶放在室外曝晒一年,其强力只下降20,因此腈纶最适宜做室外用织物。 5.耐酸碱性腈纶具有较好的化学稳定性,耐酸、耐弱碱、耐氧化剂和有机溶剂。但腈纶在碱液中会发黄,大分子发生断裂。 6.其他性质腈纶的准结晶结构使纤维具有热弹性,所以腈纶可制成各种膨体纱。此外,腈纶耐热性好,不发霉,不怕虫蛀,但耐磨性差,尺寸稳定性差。腈纶相对密度较小。涤纶的染色性差,一般应采用高温高压染色。 4.其他性质涤纶的耐热性很强,耐光性仅次于腈纶,导电性差,易产生静电,织物易吸尘沾污。涤纶具有良好的化学稳定性,且不易发霉和虫蛀。 氨纶概况:氨纶是聚氨基甲酸酯弹性纤维在我国的商品名称。氨纶于1959年开始工业化生产,它主要编制有弹性的织物,通常将氨纶丝与其他纤维纺成包芯纱后,供织造使用。它可用于制造各种内衣、游泳衣、紧身衣、牛仔裤、运动服、带类的弹性部分等。氨纶制成的服装,穿着舒适,能适应身体各部分变形的需要,并能减轻服装对身体的束缚感。氨纶的主要物理和化学性质 1.形态聚酯型弹性纤维的截面呈蚕豆状,聚醚型弹性纤维的截面呈三角形。 2.强伸性和弹性氨纶的强度很低,其长丝的断裂强度约4~9cN/tex,但氨纶的伸长很大,断裂伸长率达450~800,并且弹性很好。因此高伸长、高弹性是氨纶的最大特点。 3.吸湿性和染色性氨纶吸湿性较差,在一般大气条件下回潮率为0.8~1左右。但其染色性能较好。 4.其他性质氨纶的密度较好,仅为1~1.3g/cm3。此外,氨纶的耐酸碱性、耐溶剂性、耐光性、耐磨性都较好。 丙纶概况:丙纶是聚丙烯纤维的商品名称,它是由丙烯作原料经聚合、熔体纺丝制得的纤维。丙纶于1957年正式开始工业化生产,是合成纤维中的后起之秀。由于丙纶具有生产工艺简单,产品价廉,强度高,相对密度轻等优点,所以丙纶发展得很快。目前丙纶是合成纤维的第四大品种。丙纶的生产包括短纤维、长丝和裂膜纤维等。丙纶膜纤维是将聚丙烯先制成薄膜,然后对薄膜进行拉伸,使它分裂成原纤结成的网状而制得的。丙纶大量用于制造工业用织物、非织造织物等。如地毯、工业滤布、绳索、渔网、建筑增强材料、吸油毯以及装饰布等。在民用方面,丙纶可以纯纺或与羊毛、棉或粘纤等混纺来制作各种衣料。此外,丙纶膜纤维可用作包装材料。丙纶的主要物理和化学性质 1.形态丙纶的纵面平直光滑,截面呈圆形。 2.密度丙纶最大的优点是质地轻,其密度仅为0.91g/cm3是常见化学纤维中密度最轻的品种,所以同样重量的丙纶可比其他纤维得到的较高的覆盖面积。 3.强伸性丙纶的强度高,伸长大,初始模量较高,弹性优良。所以丙纶耐磨性好。此外,丙纶的湿强基本等于干强,所以它是制作渔网、缆绳的理想材料。 4.吸湿性和染色性丙纶的吸湿性很小,几乎不吸湿,一般大气条件下的回潮率接近于零。但它有芯吸作用,能通过织物中的毛细管传递水蒸气,但本身不起任何吸收作用。丙纶的染色性较差,色谱不全,但可以采用原液着色的方法来弥补不足。 5.耐酸耐碱性丙纶有较好的耐化学腐蚀性,除了浓硝酸,浓的苛性钠外,丙纶对酸和碱抵抗性能良好,所以适于用作过滤材料和包装材料。 6.耐光性等丙纶耐光性较差,热稳定性也较差,易老化,不耐熨烫。但可

孔隙率的测定

孔隙率的测定 镀层的孔隙是指镀层表面直至基体金属的细小孔道。镀层孔隙率反映了镀层表面的致密程度,孔隙率大小直接影响防护镀层的防护能力(主要是阴极性镀层)。作为特殊性能要求的镀层(如防渗碳、氮化等),孔隙率测量也极为重要,它是衡量镀层质量的重要指标。国家标准GB 5935规定了测定镀层孔隙的方法有贴滤纸法、涂膏法、浸渍法、阳极电介测镀层孔隙率法、气相试验法等。电镀专业最新国家标准中,孔隙率试验的标准为:GB/T l7721—1999 金属覆盖层孔隙率试验:铁试剂试验,GB/T l8179--2000 金属覆盖层孔隙率试验:潮湿硫(硫化)试验。 一、贴滤纸法 将浸有测试溶液的润湿滤纸贴于经预处理的被测试样表面,滤纸上的相应试液渗入镀层孔隙中与中间镀层或基体金属作用,生成具有特征颜色的斑点在滤纸上显示。然后以滤纸上有色斑点的多少来评定镀层孔隙率。 本法适用于测定钢和铜合金基体上的铜、镍、铬、镍/铬、铜/镍、铜/镍/铬、锡等单层或多层镀层的孔隙率。 1.试液成分试液由腐蚀剂和指示剂组成。腐蚀剂要求只与基体金属或中间镀层作用而不腐蚀表面镀 层,一般采用氯化物等;指示剂则要求与被腐蚀的金属离子产生特征显色作用,常用铁氰化钾等。试液的选择应按被测试样基体金属(或中间镀层)种类及镀层性质而定,如表l0—1—16 所列。配制时所用试剂均为化学纯,溶剂为蒸馏水。 表10—1—16 贴滤纸法各类试液成分 2.检验方法 (1)试样表面用有机溶剂或氧化镁膏仔细除净油污,经蒸馏水清洗后用滤纸吸干。如试 样在镀后立即检验,可不必除油。 (2)将浸润相应试液的滤纸紧贴在被测试样表面上,滤纸与试样间不得有气泡残留。至 规定时间后,揭下滤纸,用蒸馏水小心冲洗,置于洁净的玻璃板上晾干。 (3)为显示直至铜或黄铜基体上的孔隙,可在带有孔隙斑点的滤纸上滴加 4%的亚铁氰 化钾溶液,这时滤纸上原已显示试液与镍层作用的黄色斑点消失,剩下至钢铁基体的蓝色斑

碳纤维表面改性开题报告

南昌航空大学科技学院 毕业设计(论文)开题报告 题目碳纤维表面改性研究进展 专业名称高分子材料与工程 班级学号088102121 学生姓名刘强 指导教师万里鹰 填表日期2012 年 3 月16 日

碳纤维的表面改性研究进展 一.选题的依据及意义: 1.碳纤维简介 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热传导性高、热膨胀系数低、光穿透性高,非磁体但有电磁屏蔽性等。但未经表面处理的碳纤维表面惰性大,缺乏具有化学活性的官能团,与基体的黏结性差,界面中存在较多的缺陷,限制了碳纤维高性能的发挥。因此,国内外对碳纤维的表面改性研究非常活跃。碳纤维的表面改性主要通过提高碳纤维表面活性,强化碳纤维与基体树脂之间界面性能,达到提高复合材料层间剪切强度的目的。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 2 碳纤维表面结构与性能 碳纤维一般是用分解温度低于熔融点温度的纤维状聚合物通过千度以上固相热解而制成的,在热裂解过程中排出其它元素,形成石墨晶格结构。通过在氧气等离子气体中用腐蚀方法研究碳纤维的结构发现,石墨微晶在整个纤维中的分布是不均匀的,碳纤维由外皮层和芯层两部分组成,外皮层和芯层之间是连续的过渡层。延直径测量,皮层约占14%,芯层约占39%。皮层的微晶尺寸较大,排列较整齐有序。由皮层到芯层,微晶尺寸减小,排列逐渐变得紊乱,结构的不均匀性越来越显著,称之为过渡区。碳纤维表面的粗糙度、微晶大小、官能团的种类和数量对碳纤维与基体的结合性能有很大的影响。增加表面粗糙度有利于碳纤维与基体树脂的机械嵌合,增强锚锭效应;石墨微晶越大,处于碳纤维表面棱角和边缘位置的不饱和碳原子数目越少,表面活性越低,相反,微晶越小,活性碳原子的数目就越多,越有利于纤维与树脂的粘合;碳纤维表面的官能团如- OH、-NH2等能与基体

第七章 纺织材料的吸湿性

第六章纺织材料的吸湿性 一. 名词解释 1. 吸湿积分热 2. 吸湿微分热 3. 标准重量(公定重量) 4. 回潮率 5. 含水率 6. 吸湿性 9. 实际回潮率 10. 平衡回潮率 11. 标准回潮率 12. 公定回潮率 13. 标准状态 14. 吸湿等温线 15. 吸湿等湿线 16. 吸湿滞后性 17. 直接吸着水 18. 间接吸着水 19. 吸湿膨胀 20. 吸湿放热 21. 吸湿平衡 22. 调湿 23. 予调湿 24. 箱内热称 25. 箱外热称 26. 箱外冷称 二. 填空题 1. 测定吸湿性能的方法通常分为__________和_________两大类。 2. 纺织材料在单位时间内吸收的水分与放出的水分基本相等时, 称为___________。 3. 试样在标准大气下, 经调湿平衡后测得的回潮率叫______________。 4. 纤维高聚物中的基水基团常见的有__________、_________、_________、___________等。 5. 在纤维极性基团直接吸着的水分子上, 再积聚的水分子称为__________。 6. 吸湿主要发生在纤维内部结构中的_____________区。 7. 在同样结晶度下, 一般说来, 晶粒小的吸湿性_____________。 8. 棉经丝光后, 结晶度比丝光前___________, 吸湿量比丝光前_________。 9. 纤维大分子的取向度对吸湿性影响______________。 10. 纤维愈细, 比表面积愈大, 吸湿性______________。 11. 达到吸湿平衡时的回潮率称为_____________。 12. 干燥的纤维放在一般大气中后, 其吸湿速度表现为开始_________, 以后__________。 13. 吸湿等温线是指在一定大气压力和温度下, 纺织材料的_____________和

电化学处理对碳纤维表面改性的研究

电化学处理对碳纤维表面改性的研究 摘要:简要介绍了碳纤维表面电化学处理的作用和工艺,分析了电化学处理效 果的影响因素,及其对纤维力学性能和层间剪切强度的影响。 关键词:电化学处理;电解;层剪;刻蚀 引言 碳纤维表面经过电化学处理,可以提升其与树脂基体的结合牢固性,但同时会牺牲一定 的力学性能。 1 电化学处理的作用 纤维经过高温炭化工序后,表面缺少活性基团,导致其与树脂的结合效果差,表现为层 间剪切强度(以下简称“层剪”)低。当纤维-树脂复合材料受力时,由于纤维与树脂结合力弱,外力并不能很好地从树脂传递到纤维上,使得整体承载能力降低。经电化学处理后,纤维表 面发生氧化反应,生成羰基、羧基等不饱和含氧官能团,增强了纤维与树脂之间的化学键合力,使两者结合得更牢固。另外,电化学处理对纤维表面有刻蚀作用,增加了粗糙度,从物 理方面增强了纤维与树脂的结合性。 2 电化学处理的原理 电化学处理过程实际上是一个将电能转化为化学能的过程,利用碳纤维的导电性,将其 作为阳极,发生氧化反应,在纤维与阴极之间充满电解液,然后通入直流电构成完整回路。 在电压作用下,水或OH-在纤维表面放电(酸性和中性电解液主要是水,碱性电解液主要是OH-),产生活性氧对纤维表面进行氧化,最终生成所需的含氧官能团。 3 影响电化学处理的因素 影响电化学处理效果的因素有很多,如电解质的种类、浓度、温度,处理时间和电流密 度等。其中处理时间可通过走丝速度来调节,各纤维生产商工艺定型后走丝速度一般就已固定,不再做调整,因此处理时间在此不再讨论。 3.1 电解质种类 不同种类电解质对纤维表面的电化学处理效果有较大差异,即使浓度相同,电导率不同,则电流密度不同;另外,酸/碱度不同,则氧化效果不同,一般酸性电解质的氧化效果强于碱性电解质。 3.2 电解液温度 电解液温度会影响电化学反应的难易程度和反应速度,且温度越高,反应越容易发生, 反应速度越快。经研究发现,温度的升高会使水的析氧、析氢反应更早、更快地发生,单位 时间产生出更多的活性氧,使得纤维表面的氧化反应更为剧烈。 3.3 电解液浓度 电解液浓度会影响电化学反应的速度,且浓度越大,反应速度越快,但不会影响其发生 的难易程度。经研究发现,浓度越高,电解液的析氧、析氢反应越剧烈,单位时间产生的活 性氧越多,表现为氧化反应的速度快。 3.4 电解液电流密度 3.4.1 电流密度对纤维表面含氧官能团的影响 经研究发现,未经电化学处理的纤维表面O的存在形式主要是C-O;而经过电化学处理 的纤维表面碳环被打开,C-C先被氧化成C-O,再被氧化成C=O和-O-C=O,生成羰基、羧基 等含氧官能团,即C-O的数量先增加后减少,C=O的数量持续在增加。我们可用C-O和C=O 的比例来判断纤维表面的氧化程度,也可用来评估电解质的氧化能力。 需要注意的是,随着电流密度增加,酸性电解液单位时间在纤维表面生成的C=O和-O- C=O等不饱和官能团多于碱性电解液,即酸性电解质的氧化效果强于碱性电解质。纤维厂商 往往根据自身产品特点选用合适的电解质,如石墨纤维因表面质地紧密,需采用NH4H2P04 等酸性电解质提供更强的氧化效果,而普通碳纤维则采用NH4HC03等弱碱性电解质即可。 3.4.2 电流密度对纤维表面刻蚀的影响 若采用碱性电解液,氧在较低的电流密度作用下即可析出,OH-在纤维表面产生大量的活

孔隙率定义及算法-电池隔膜行业

用语的定义 孔隙率:隔膜中孔隙率按以下方法计算. 隔膜中的孔隙率(%) = (总孔隙率的体积/ 隔膜的体积) X 100 4.0 业务顺序 4.1孔隙率测试准备物品 4.1.1 测试样品 4.1.2 样品裁切机 4.1.3 镊子 4.1.4 Emveco厚度测试仪 4.1.5 PC 及Excel软件 4.2 孔隙率测试方法 4.2.1 准备测试样品 1) 用样品裁切机将样品裁切成10cmX10cm大小。(参考以下照片)注意 刀割伤。 4.2.2. 检测试料重量 1) 裁切成10X10cm的试料,上下各折一遍成1/4大小。是为检测重量减 少误差。 2) 确认天平水平状态。如天平水平不符调节天平下部调节钮。 3) 关闭侧面及上面滑动玻璃,按TARE设定0点。 4) 打开侧面滑动玻璃用镊子摆放到秤中心位置。. 5) 投入试料后电子称画面的数字读取到小数点后4为后直接记录在试料 上 6) 准备好的所有试料反复3)~5)顺序. 4.2.3 试料的厚度测试 1) 对测试厚度的试料展开成原来大小,用测厚仪测试两端1cm的4点,记 录试料的测定值。详细厚度检测方法参考厚度检测标准书。 照片 1. 10X10 Punch 照片2-1. 裁切前 照片2-1. 裁切后

2) 准备的所有试料按1)方法测试厚度. 4.2.4 孔隙率计算方法 1) 对测定的试料和重量和厚度值(4Point)输入到Excel软件中计算孔隙率 值。孔隙率计算方法如下。 10cmX10cm的宽度和平均厚度算出体积(cm3)后重量÷体积得出密度. 试料密度(g/cm3) = 重量(g) / [10cm*10cm*(厚度(um)/1000)] (2) 试料的孔隙率计算方法如下 . 孔隙率(%) = 1- 试料密度(g/cm3)/0.95 参考) 我公司Polyethylene(聚乙烯)的密度指定为0.95g/cm3.

碳纤维表面改性研究进展(1).pdf

2015年3月化学研究111第26卷第2期 CHEM ICAL RESEARCH http ://hxya cbpt. cnki. net. 碳纤维表面改性研究进展 刘保英1,2,王孝军3,杨杰1,3倡,丁涛2倡(1.四川大学高分子科学与工程学院,四川成都610065;2.河南大学化学化工学院,河南开封4750 04;3.四川大学分析测试中心,四川成都610064) 摘要:碳纤维因其优异的综合性能常被用作树脂基体的增强材料.然而由于碳纤维与树脂基体之间的界面结合性能较差,其增强的复合材料的力学性能往往与理论值相差甚远,因此必须对碳纤维进行表面改性,以提高其与聚合物基体的界面粘结性能.本文作者综述了国内外关于碳纤维表面改性技术的研究进展,概述了涂层法、氧化法、高能辐射法等改性方法对碳纤维增强复合材料界面强度的改性效果. 关键词:碳纤维;表面改性;研究进展 中图分类号:O64文献标志码:A文章编号:1008-1011(2015)02-0111-10Research progress of surface modification of carbon fiber LIU Baoying1,2 , WANG Xiaojun3 , YANG Jie1,3倡 , DING Tao2倡 ( 1 . Colle ge o f Poly mer Science & Engineering , Sichuan Universit y , Cheng du 610065 , Sichuan , China ; 2 . Colle ge o f Che m istr y and Che m ical Engineering , H enan University , K ai f eng 475004 , H enan , China ; 3 . A naly tical & Testing Center , Sichuan University , Cheng du 610064 , Sichuan , China) Abstract : Carbon fiber (CF) has been widely used as a reinforcement of polymer composite due to its excellent comprehensive performance .However ,the strength of CF reinforced resin ma‐ trix composite is always much lower than the theoretically predicted value due to smooth sur ‐face and chemical inertness of carbon fiber w hich lead to a poor interface between CF and res ‐ ins .Thus ,the research on surface modification of carbon fiber is very important in the compos ‐ ites applications .This article presents an overview of some surface modification methods of CF ,such as coating method ,oxidation process and high‐energy radiation treatment ,and intro‐ duces the modified effect of each method on the interfacial strength of carbon fiber reinforced polymer composite . Keywords :carbon fiber ;surface modification ;research progress 碳纤维(CF)以其高比强度、高比模量、小的线膨胀系数、低密度、耐高温、抗腐蚀、优异的热及电传导性等特点,被称为新材料之王,常用作高性能树脂基复合材料的增强材料,广泛应用于飞机制造、国防军工、汽车、医疗器械、体育器材等方面[1-2].工业化 收稿日期:2014-09-15. 基金项目:河南省教育厅科学技术研究重点项目(14A430042).作者简介:刘保英(1986-),女,讲师,研究方向为聚合物基复合材料改性研究倡通讯联系人 E mail ppsf scu edu cn .,‐ :@..,dingtao @ henu edu. cn..生产的碳纤维按前驱体原料的不同可以分为:聚丙烯腈基(PAN‐based)、黏胶基、沥青基碳纤维和气相生长碳纤维[2-6].与另外3种碳纤维相比,PAN基 碳纤维生产工艺简单,产品力学性能优异,产量约占全球碳纤维总产量的90%以上[5].自1962年问世以来,PAN基碳纤维取得了长足的发展,成为碳纤维工业生产的主流[7]. 由于碳纤维原丝表面由大量惰性石墨微晶堆砌而成,所以原丝表面呈非极性[8-9],表面能小,与树脂基体的浸润性差,界面结合性能差.此外,高性能 DOI :1014002/.j hxya.2015.02.001.|化学研究,2015,26(2):111-120

第六章 纺织纤维的吸湿性

第六章纺织纤维的吸湿性 1、名词解释: 回潮率:湿重对干重之差与干重的百分率 含水率:含水率是水重占纤维湿重的百分率 平衡回潮率: 公定回潮率: 标准回潮率: 公定重量: 吸湿平衡: 吸湿等温线:在大气压力和温度一定且不变的条件下,材料的吸湿平衡回潮率随相对湿度变化的曲线 吸湿等湿线:相对湿度一定时,平衡回潮率随温度变化的曲线 吸湿滞后性:在同一空气条件下,纺织材料吸湿平衡回潮率比放湿平衡回潮率小的现象叫吸湿滞后性 标准大气条件: 吸湿积分热: 吸湿微分热: 4、为什么平衡回潮率的值是一个范围值? 由于纺织材料的吸湿滞后性,使得从不同状态到达平衡状态时的回潮率不尽一致,所以是一个范围值,即在一定范围内的变化。 5、试述纺织材料的吸湿机理。 (一)亲水基团及其作用: 纤维大分子上是否存在亲水性基团,是决定纤维吸湿性能的决定性因素。极性基团的多少、极性的强弱、结构状态等综合影响吸湿性, (二)结晶度(结晶区与非结晶区的比例) 实验证明:纤维的吸湿作用主要发生在非结晶区,这是肯定的,水分能否进入结晶区,目前尚有争议,但水分进入结晶区的量是很少的。 除结晶度影响纤维的吸湿性以外,在相同的结晶度条件下,晶型和晶粒的大小对吸湿也有影响,一般来说,晶粒小,吸湿性大。 (三)比表面积: 单位体积的纤维所具有的表面积。比表面积越大,吸湿能力愈强。 (四)伴生物的性质和含量 6、影响纤维吸湿的内外因素各有哪些?一般的影响规律如何? 影响吸湿性的外界因素: 一、吸湿平衡与平衡回潮率(时间): 吸湿平衡是动态的,其稳定性很差,而且是自动进行的,外界条件一变,平衡就立即遭到破坏,而且要达到新的平衡需一定的时间。 二、吸湿等温线(温度): 在大气压力和温度一定且不变的条件下,材料的吸湿平衡回潮率随相对湿度变化的曲线。各种纤维的平衡回潮率在相同的湿度条件下是不同的,这是材料本身的差异造成的。不同的纤维具有不同的吸湿等温线,但我们可以看到它们的曲线形状都呈反S形,反S形的明显程度是有一些差异,但它们的吸湿机理应当说在本质上基本一致的。 在开始阶段,自由的极性基团较多,以化学吸附为主,随着相对湿度的提高,化学吸着水迅速增加而后趋于稳定。

棉纤维的吸湿性能

(一)棉纤维的吸湿性能 棉纤维是一种多孔性物质,由于纤维素大分子上存在很多的游离亲水性基团(羟基),所以能从潮湿空气中吸收水分和向干燥空气放出水分,这种现象称为棉纤维的吸湿性。棉纤维的吸湿性,对其他各项物理性能都有影响。如棉纤维吸湿后,重量增加,密度先增大后减小,强伸度增加,导电性能增强,纤维膨胀等。因此,在籽棉加工、农商交接、纤维性能测试以及纺织生产等过程中,都要规定并控制棉纤维的吸湿量。 棉纤维的吸湿是比较复杂的物理化学现象。棉纤维含水的原因,主要有纤维本身结构以及大气温度和相对湿度等。 1.影响棉纤维吸湿的内部因素 亲水基因:棉纤维的主要成分是纤维素。纤维素大分子上每个葡萄糖剩基上有3个羟基,它们属于亲水基因,对水分子有相当的亲和力,所以棉纤维分子结构中的自由羟基的数目越多,棉纤维的吸湿能力就越大。 棉纤维内的纤维素大分子上除羟基直接吸附水分以外,已被吸附的水分子,由于它本身也具有极性,帮也可吸附其他水分子,使后来吸附的水分子积聚在上面,称为间接吸附的水分,这些水分子排列不定,结合力也比较弱,存在于纤维内部的微小间隙成为微毛细水;当温度很高时,这种间接吸收的水分可以填充到纤维内部较大的间隙中,成为大毛细水。随着微毛细水和大毛细水的增加,棉纤维发生溶胀可以拆开分子间的一些联结点,使得更多的自由羟基与水分子结合。 分子排列:棉纤维中纤维素分子链相互间排列不匀,存在着结晶区和非结晶区。在结晶区,纤维素分子链排列整齐,分子间距较大,仅在少数点联结,结合力弱,是一种松弛的网状结构,大多数自由羟基都向水分子开放,水分子很容易进入,所以棉纤维的吸湿主要发生在非结晶区。因此棉纤维的结晶度越低,吸湿能力越强。对单根棉纤维来说,初生层的非结晶区比次生层的多,不成熟的棉纤维非结晶区所占的比例比成熟棉纤维的大。因此,不成熟的低级棉常含有较高的水分。 除了结晶度影响纤维的吸湿性外,在同样的结晶度下,微晶体的大小对吸湿性也有影响。一般说来,晶体小的吸湿性较大。另外,大分子的取向度一般对吸湿性的影响较小,但聚合度有时对纤维的吸湿能力有一定的影响。 表面吸附:棉纤维暴露在大气中,就会在纤维表面吸附一定量的水汽和其他气体,这一般称为物理吸附。表面吸附能力的大小与纤维比表面积有一定的关系。单位体积的棉纤维所具有的表面积,叫棉纤维的比表面积。棉纤维愈细,棉纤维中缝隙孔洞愈多,比表面积愈大,吸湿性也要大一些。所以棉纤维的比表面积的大小,也是影响吸湿性的一个因素。例如,在同样条件下,成熟差的棉纤维比成熟好的棉纤维比表面积大,其吸湿性也较大。 纤维素伴生物:棉纤维除主要成分是纤维素外,还有少量的果胶、蛋白质、多缩戊糖、脂肪和蜡质、以及某些无机盐类等伴生物。脂肪和蜡质是疏水物质,能保护棉纤维不易受潮。果胶、蛋白质、多缩戊糖,以及无机盐类中的氧化铁、氧化镁、氧化钙等是亲水物质,能使棉纤维的吸湿性增强。因此,棉纤维中纤维素伴生物的性质和含量,也影响棉纤维的吸湿程度。另外,棉纤维在采集和初加工过程中还保留一定数量的杂质,这些杂质往往具有较高的吸湿能力。因此,棉纤维中含杂的多少,对棉纤维的吸湿性也有一定的影响。 2.影响棉纤维吸湿的外部因素 与棉纤维含水有关的外部因素有大气压力、温度和相对湿度。由于地球表面上大气压力的变化不大,这里主要讨论空气温度和相对湿度对棉纤维吸湿能力的影响。

纺织材料学于伟东中国纺织出版社课后答案

第一章纤维的分类及发展 2、棉,麻,丝,毛纤维的主要特性是什么?试述理由及应该进行的评价。 棉纤维的主要特性:细长柔软,吸湿性好(多层状带中腔结构,有天然扭转),耐强碱,耐有机溶剂,耐漂白剂以及隔热耐热(带有果胶和蜡质,分布于表皮初生层);弹性和弹性恢复性较差,不耐强无机酸,易发霉,易燃。 麻纤维的主要特性:麻纤维比棉纤维粗硬,吸湿性好,强度高,变形能力好,纤维以挺爽为特征,麻的细度和均匀性是其特性的主要指标。(结构成分和棉相似单细胞物质。) 丝纤维的特性:具有高强伸度,纤维细而柔软,平滑有弹性,吸湿性好,织物有光泽,有独特“丝鸣”感,不耐酸碱(主要成分为蛋白质) 毛纤维的特性:高弹性(有天然卷曲),吸湿性好,易染色,不易沾污,耐酸不耐碱(角蛋白分子侧基多样性),有毡化性(表面鳞片排列的方向性和纤维有高弹性)。 3、试述再生纤维与天然纤维和与合成纤维的区别,其在结构和性能上有何异同?在命名上如何区分? 答:一、命名 再生纤维:“原料名称+浆+纤维”或“原料名称+黏胶”。 天然纤维:直接根据纤维来源命名,丝纤维是根据“植物名+蚕丝”构成。 合成纤维:以化学组成为主,并形成学名及缩写代码,商用名为辅,形成商品名或俗称名。 二、区别 再生纤维:已天然高聚物为原材料制成浆液,其化学组成基本不变并高纯净化后的纤维。 天然纤维:天然纤维是取自植物、动物、矿物中的纤维。其中植物纤维主要组成物质为纤维素,并含有少量木质素、半纤维素等。动物纤维主要组成物质为蛋 白质,但蛋白质的化学组成由较大差异。矿物纤维有SiO2 、Al2O3、Fe2O3、

MgO。 合成纤维:以石油、煤、天然气及一些农副产品为原料制成单体,经化学合成为高聚物,纺制的纤维 7、试述高性能纤维与功能纤维的区别依据及给出理由。 高性能纤维(HPF)主要指高强、高模、耐高温和耐化学作用纤维,是高承载能力和高耐久性的功能纤维。 功能纤维是满足某种特殊要求和用途的纤维,即纤维具有某特定的物理和化学性质。 其中功能纤维有抗静电和导电纤维、蓄热纤维、远红外纤维、防紫外线纤维、阻燃纤维、光导纤维、弹性纤维、抗菌防臭纤维、变色纤维、香味纤维、变色纤维等,均具有相应的特殊用途。高性能化纤维有对位间位芳纶、PBO纤维、PEEK纤维、聚四氟乙烯纤维、碳纤维等,具有高强、高模、耐高温和耐化学作用等性质。 功能化纤维是以高感知性、高吸湿性、高防水性、高透湿行、发光、发电、导电、导光、生物相容性、高吸波、高分离、高吸附、产生负离子、能量转换、自适应和自行修复等功能实现为目的,而高性能化纤维则以从高强、高模、耐高温发展为超高强、超高模量、超耐高温、耐化学作用为目的。 9、你所认为的纤维未来应如何发展?你所感觉的纤维发展及未来最主要的问题是什么? 1.在天然纤维方面。积极寻求和开发新的和可持续发展的天然纤维资源是极为重要的。 2.在再生纤维方面。依靠天然生长的纤维在纤维长度、细度、和性能上较难控制,有 时无法用于纺纱。而且天然纤维素、蛋白质物质,并非能直接满足纺用纤维的要求,加上废弃的纤维及其制品,人们极有必要解决这些物质的再生利用。 3.在合成纤维方面。仿生化、功能化、高性能化纤维将是今后的发展方向。 最主要的问题: 由于人口膨胀、环境的污染和恶化,自然资源与能源的匮乏,人类对物质量的需求提高,人类穿、用消耗的资源---纤维将成为未来发展中必须直面的问题。在纤维未来的发

碳纤维表面改性及其在尼龙复合材料中的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第47卷,第7期2019年7月 V ol.47,No.7Jul. 2019 141 doi:10.3969/j.issn.1001-3539.2019.07.026 碳纤维表面改性及其在尼龙复合材料中的应用研究进展 张顶顶1,张福华1,杨吉祥1,李晓峰1,李彦希2,曾骥1 (1.上海海事大学海洋科学与工程学院,上海 201306; 2.浙江四兄绳业有限公司,浙江台州 317016) 摘要:对近几年碳纤维(CF)表面改性及其在CF 增强尼龙(CFRPA)复合材料中的应用研究情况进行了综述,将CF 表面改性方法划分为干法改性、湿法改性和纳米材料多尺度改性三大类。其中干法改性包括气相氧化法、等离子体氧化法和辐照处理;湿法改性包括液相氧化法、阳极电解氧化法和上浆处理法;纳米材料多尺度改性包括石墨烯、碳纳米管等纳米材料改性。比较了各种表面改性方法的优缺点,并对CFRPA 复合材料中CF 表面改性技术的发展进行了展望。 关键词: 碳纤维;尼龙;复合材料;界面结合;表面改性中图分类号:TQ327.3 文献标识码:A 文章编号:1001-3539(2019)07-0141-06 Research Progress on Surface Modification of Carbon Fiber and Its Application in Polyamide Composites Zhang Dingding 1, Zhang Fuhua 1, Yang Jixiang 1, Li Xiaofeng 1, Li Yanxi 2, Zeng Ji 1 (1. College of Ocean Science and Engineering , Shanghai Maritime University , Shanghai 201306, China ; 2. Zhejiang Four Brothers Rope Co. Ltd., Taizhou 317016, China) Abstract :Research situations of surface modification of carbon fiber (CF) and its application in CF reinforced polyamide (CFRPA) composites in recent years were reviewed. Accordingly ,the surface modi ?cation of CF can be classi ?ed into dry modi ?ca-tion methods ,wet modi ?cation methods and nanomaterials multi-scale modi ?cation methods. The dry modi ?cation methods include gas phase oxidation ,plasma oxidation and irradiation treatment ,the wet modi ?cation methods include liquid phase oxidation ,anodic electrolytic oxidation and sizing treatment , the nanomaterials multi-scale modi ?cation methods include graphene modi ?cation and carbon nanotube modi ?cation. The advantages and disadvantages of various surface modi ?cation methods were compared ,and the development of CF surface modi ?cation technology in CFRPA composites was prospected. Keywords :carbon ?ber ;polyamide ;composite ;interfacial bonding ;surface modi ?cation 碳纤维(CF)增强热塑性树脂复合材料具有轻质高强,耐腐蚀和出色的热稳定性等优点,已广泛应用于航空航天、汽车、建筑等行业[1–6]。尼龙(PA)作为一类典型的热塑性树脂与CF 形成的复合材料具有优异的综合性能。CF 增强PA (CFRPA)复合材料与热固性复合材料相比具有可回收性、易于加工、成型时间短、抗冲击性好等优点[7–9]。CFRPA 复合材料的力学性能首先取决于CF 和PA 树脂基体自身性质。同时,纤维与基体之间的界面粘结性很大程度上决定了复合材料的最终力学性能。 然而,未经任何处理CF 表面是非极性的[10–11],表面活性官能团极少、化学惰性较强,但PA 树脂基体因含有大量的 酰胺键通常表现为极性,造成了CF 与PA 树脂基体之间浸润性较差,界面粘结力较弱,限制了CFRPA 复合材料在更多领域的应用。因此,要想扩大CFRPA 复合材料应用范围,获得力学性能更为优异的CFRPA 复合材料就必须对CF 表面进行改性。通过对CF 表面改性可以有效增大CF 表面的粗糙度,同时在其表面引进大量的活性官能团,改善纤维与基体之间的浸润性,进而提高纤维表面与基体之间的机械嵌锁力和化学键合力,使得所受应力在纤维与基体界面之间得到有效传递。 基于PA 复合材料的CF 表面改性方法可以分为以下三大类:干法改性、湿法改性和纳米材料多尺度改性。干法 基金项目:上海市自然科学基金项目(15ZR1420500) 通讯作者:张福华,博士,副教授,主要从事复合材料应用基础研究 E-mail :fhzhang@https://www.doczj.com/doc/c018141327.html, 收稿日期:2019-03-12 引用格式:张顶顶,张福华,杨吉祥,等.碳纤维表面改性及其在尼龙复合材料中的应用研究进展[J].工程塑料应用,2019,47(7):141–146. Zhang Dingding ,Zhang Fuhua ,Yang Jixiang ,et al. Research progress on surface modification of carbon fiber and its application in polyamide composites[J]. Engineering Plastics Application ,2019,47(7):141–146.

孔隙率检测报告

一、概述 ******有限公司拟对****尾矿库工程初期坝堆石工程采用附近采区排岩场地的碎石进行堆石筑坝,委托我公司对该工程孔隙率进行检测。 二、工程概况 **********尾矿库初期坝堆石工程采用附近采区排岩场地的碎石为材料,对坝体标高677.50米至709.60米进行堆石筑坝。堆石高度32.10米。 三、任务要求 主要对初期坝堆石孔隙率进行检测,检测孔隙率实测值是否满足设计要求,是否满足国家规程、规范要求,为尾矿库技改工程整体验收提供真实、可靠的技术参数。 四、检测依据 ①、检测合同; ②、《岩土工程勘察规范》GB50021-2001(2009版); ③、《尾矿库安全技术规程》AQ2006-2005; ④、《尾矿设施施工及验收规范》(YS54718-95); ⑤、《建筑地基基础工程质量验收规范》(GB50202-2002); ⑥、《土工试验方法标准》(GB/T50123-1999)。 五、技术要求 根据《岩土工程勘察规范》GB50021-2001(2009版)及相应规程规范要求,经与建设单位、设计单位、监理单位共同协商,并根据该工程具体情况,共布置检测点325个(其中:8个检测点孔隙率数据结果在31.6 %~33.1 %之间。大于30%,不符合设计要求,现场要求施工单位对该检测点重新碾压

后进行补测,检测结果均已合格)。本着客观、准确、真实、全面的原则,由建设单位及监理单位现场随机抽取检测点,从高程677.50米开始~高程709.60米结束。高程677.50~681.7米每增高0.50~0.80米高程抽取5个检测点进行检测,高程682.50~700.00米每增高0.60~0.80米高程抽取9个检测点进行检测,高程700.80~704.80米每增高0.80米高程抽取6个检测点进行检测,高程705.6~709.60米每增高0.80米高程抽取5个检测点进行检测。 六、检测进程 2012年12月22日开始至2014年01月10日结束 七、检测方法 孔隙率检测采用现场灌水法。 7.1、孔隙率的物理意义 孔隙率n=V V∕V=土中孔隙体积∕土的总体积 7.2、本实验所用主要仪器设备 标准量杯:1L、2L、5L; 台秤:称量50公斤,最小分度值10g; 储水桶:直径均匀,附有刻度及出水管; 量尺:国家标准钢尺 水平尺:国家标准 铁环:直径1.1285m,圆度均匀,铁环自身直径均匀,且在同一平面。 塑料薄膜:软薄膜易于铺设,且要结实不易划碎。 7.3、现场操作步骤

相关主题
文本预览
相关文档 最新文档