当前位置:文档之家› [软土,路基,地基]软土地基的路基稳定性验算

[软土,路基,地基]软土地基的路基稳定性验算

[软土,路基,地基]软土地基的路基稳定性验算
[软土,路基,地基]软土地基的路基稳定性验算

软土地基的路基稳定性验算

【摘要】路基敷设于天然地基上,自身荷载较大,要求地基应具有足够的承载能力,以保持地基稳定。而软土地基其自身的工程性质差,填土后受压可能产生测向滑动,或有较大的沉降,从而导致路基路面的破坏,一般要求采取适当的稳定措施。软土地基的稳定性验算是近年来高速公路设计中的一个关键环节,本文详细阐述了软土地基路基稳定性验算的几种方法:总应力法、有效固结应力法、有效应力法等。

【关键词】软土地基;路基稳定性;验算

【Abstract】Highway subgrade should have sufficient capacity to maintain the s tability of the foundation , because it has the greater loads laid on the nat ural foundation . The soft clay ground of their own poor nature of the works m ay occur due to slide or larger depression after filling , resulting in the d estruction of the road embankment and pavement , while it has to take appropr iate measures to meet the general requirements of the stability. Checking the stability of soft clay ground in highway design is a key element, in this pap er elaborated on several ways about checking the stability of the soft soil su bgrade:stress method, the effective consolidation stress method, effective stress method etc.

【Keywords】Soft clay ground; Atability of subgrade; Checking

1.引言

软土是指滨海、湖沼、谷地、河滩沉积的天然含水量高、孔隙比大、压缩性高、抗剪强度低的细粒土。在这种细粒土软弱地基上修筑路基,往往会发生路基失稳或过量沉陷,导致公路破坏或不能正常使用的情况,大大降低公路的使用效果。我国公路行业规范对软土地基未作定义。日本高等级公路设计规范将其定义为:主要由粘土和粉土等细微颗粒含量多的松软土、孔隙大的有机质土、泥炭以及松散砂等土层构成。地下水位高,其上的填方及构造物稳定性差且发生沉降的地基。

2.临界高度的计算

软土地基的临界高度Hc,是指天然地基状态下,不采取任何加固措施,所容许的路基最大填土高度。

2.1 均质薄层软土地基

3.路基稳定性的计算方法

软土地基的路堤滑动成圆弧滑动面,稳定性验算方法采用圆弧条分法,根据计算过程中参数选择不同,可分为总应力法、有效固结应力法、有效应力法等。

3.1 总应力法

当采用总应力法时,地基的抗剪强度采用总强度,或采用直剪快剪指标的、值,而路

堤填料的抗剪强度则用直剪快剪指标,如图2-2,此时安全系数的表达式为:

总应力法中的抗剪强度指标可由十字板原位测定,也可从静力初探的换算取得。在不少

地区有经验公式可供参考。总应力法计算的值主要是为快速施工瞬时加载情况下提供的

安全系数,而从未考虑在路堤荷载作用下,土层固结所导致的土层总强度的增长。

3.2 有效固结应力法

有效固结应力法可以求固结过程中任意时刻已知固结度的安全系数,但它本身不计算固结度,只是把固结度作为已知条件。在路堤荷载作用下,达到某一固结度时,滑裂面上某一土条底面所出土层的软土抗剪强度有两部分组成,其一为未加荷前的土层天然强度,其

二为路堤填筑后,固结过程所增加的强度。此时安全系数的计算如下式:

在上述计算公式中,是一个土基在路堤自重作用下,固结过程中土基强度虽路堤附加有

效固结应力增长的增长率,因而可以采用固结快剪(直剪)指标。此时的安全系数是考虑了固结作用,但是属于瞬时破坏的情况;也可以有效抗剪指标,但此时的安全系数表示

考虑固结,且破坏是缓慢发生的(滑裂时有剪切引起的孔隙水压力能消散)。用有效抗剪强度指标比固结快剪指标所算得的安全系数应大一些。

值得注意的事,当固结度较小时,用有效固结应力法计算的安全系数不一定比用快剪指标的总应力法计算的安全系数大。

3.3 有效应力法(准毕肖普法)

毕肖普假定条件切向分力为零(即土条间合力方向为水平),我国学者对毕肖普法求安全系数的公式进行了改进后,提出的准毕肖普法,其公式为:

准毕肖普法的优点:不需要事先知道孔隙水压力,符合有效应力原理,同时也考虑了地

下水位对的影响,但必须对每层土做三轴试验,在公路工程中要获得有效指标和需做

大量的试验。此时可用固结快剪指标代入准毕肖普法中进行计算,一般固结快剪指标稍低于有效剪切指标,据它来设计是偏于安全的。

结语:

对于薄层软土,原则上应清除换土;软土层较厚时,如果填土高度超过软土所容许的填

筑临界高度,换土量较大,应采取加固措施。软土地基的加固方法很多,对于路基而言,由于填筑面积较大,要根据需要和可能,选择技术经济条件许可的最佳方案,择优而定。比较简易的加固方法是铺筑砂石垫层、修建反压护道、采用柴排等;必要时也可以考虑设置砂、石灰桩、水泥搅拌桩等加固措施。

基坑稳定性验算

第4章基坑的稳定性验算 4.1概述 在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。所以在进行支护设计时,需要验算基坑稳定性,必要时应采取适当的加强防范措施,使地基的稳定性具有一定的安全度。 4.2 验算内容 对有支护的基坑全面地进行基坑稳定性分析和验算,是基坑工程设计的重要环节之一。目前,对基坑稳定性验算主要有如下内容: ①基坑整体稳定性验算 ②基坑的抗隆起稳定验算 ③基坑底抗渗流稳定性验算 4.3 验算方法及计算过程 4.3.1基坑的整体抗滑稳定性验算 根据《简明深基坑工程设计施工手册》采用圆弧滑动面验算板式支护结构和地基的整体稳定抗滑动稳定性时,应注意支护结构一般有内支撑或外拉锚杆结构、墙面垂直的特点。不同于边坡稳定验算的圆弧滑动,滑动面的圆心一般在挡墙上方,基坑内侧附近。通过试算确定最危险的滑动面和最小安全系数。考虑内支撑或者锚拉力的作用时,通常不会发生整体稳定破坏,因此,对支护结构,当设置外拉锚杆时可不做基坑的整体抗滑移稳定性验算。 4.3.3基坑抗隆起稳定性验算

图4.1 基坑抗隆起稳定性验算计算简图 采用同时考虑c 、φ的计算方法验算抗隆起稳定性。 ()q D H cN DN K c q s +++=12γγ 式中 D —— 墙体插入深度; H —— 基坑开挖深度; q —— 地面超载; 1γ—— 坑外地表至墙底,各土层天然重度的加强平均值; 2γ—— 坑内开挖面以下至墙底,各土层天然重度的加强平均值; q N 、c N —— 地基极限承载力的计算系数; c 、?—— 为墙体底端的土体参数值; 用普郎特尔公式,q N 、c N 分别为: ?π?tan 2245tan e N q ??? ? ?+=? ()? tan 11-=q c N N 其中 D=2.22m q=10kpa H=7m ?= 240 4.1879.29.1821.181.2181=?+?+?= γ 5.181 7.03.183.09.182=?+?=γ 6.9)22445(tan 24tan 14.302=+ =?e Nq 32.1924 tan 1)16.9(tan 1)1(0=-=-=?Nq Nc 则 Ks=(18.5×2.22×9.6+10×19.32)/18.4(7+2.22)+10=3.27>1.2 符合要求 4.3.4抗渗流(或管涌)稳定性验算 (1)概述

挡土墙稳定性验算

附件1 滑坡稳定性及挡土墙稳定性验算 1、滑坡体工况1稳定性计算 计算项目:土层滑坡稳定性计算-自重工况 ------------------------------------------------------------------------ [计算简图] [控制参数]: 采用规范: 通用方法 计算目标: 安全系数计算 滑裂面形状: 圆弧滑动法 不考虑地震 [坡面信息] 坡面线段数10 坡面线号水平投影(m) 竖直投影(m) 超载数 1 0.000 2.320 0 2 9.340 1.780 0

3 3.710 4.880 0 4 3.030 0.700 0 5 3.620 2.000 0 6 3.330 1.000 0 7 0.590 0.800 0 8 2.830 0.200 0 9 3.080 1.000 0 10 9.780 4.000 0 [土层信息] 坡面节点数11 编号X(m) Y(m) 0 0.000 0.000 -1 0.000 2.320 -2 9.340 4.100 -3 13.050 8.980 -4 16.080 9.680 -5 19.700 11.680 -6 23.030 12.680 -7 23.620 13.480 -8 26.450 13.680 -9 29.530 14.680 -10 39.310 18.680 附加节点数8 编号X(m) Y(m) 1 0.000 -0.870 2 7.970 0.000 3 27.620 6.400 4 39.310 8.080 5 4.470 -4.200 6 39.310 0.860 7 6.540 -4.200

稳定性验算

承载能力极限状态 1)根据JTJ250-98《港口工程地基规范》的5.3.2规定,土坡和地基的稳定性验算,其危险滑弧应满足以下承载能力极限状态设计表达式: /Sd Rk R M M γ≤ 式中:Sd M 、Rk M ——分别为作用于危险滑弧面上滑动力矩的设计值和抗滑力矩的标准值; R γ为抗力分项系数。 2)采用简单条分法验算边坡和地基稳定,其抗滑力矩标准值和滑动力矩设计值按下式计算: ()cos tan ()sin Rk ki i ki i ki i ki Sd s ki i ki i M R C L q b W M R q b W α?γα??=+ +?? ??=+?? ∑∑∑ 式中:R ——滑弧半径(m ); s γ——综合分项系数,取1.0; ki W ——永久作用为第i 土条的重力标准值(KN/m ),取均值,零压线以 下用浮重度计算; ki q ——第i 土条顶面作用的可变作用的标准值(kPa ); i b ——第 i 土条宽度(m ); i α——第i 土条滑弧中点切线与水平线的夹角(°); ki ?、ki C ——分别为第i 土条滑动面上的内摩擦角(°)和粘聚力(kPa ) 标准值,取均值; i L ——第 i 土条对应弧长(m )。 3)地基稳定性计算步骤 (1) 确定可能的滑弧圆心范围。通过边坡的中点作垂直线和法线,以坡面中点为圆心,分别以1/4坡长和5/4坡长为半径画同心圆,最危险滑弧圆心即在该4条线所包含的范围内。

(2) 作滑动滑弧。选定某些滑动圆心,作圆与软弱层相切,则与防波堤及土层相交的圆弧即为滑弧。 (3) 进行条分。对滑弧内的土层等进行条分,选择土条的宽度,并且对土条进行编号。 (4) 计算各个土条的自重力。利用公式ki i i i W h b γ=计算各个土条的自重力。 (5) 计算滑弧中点切线与水平线的夹角。作滑弧的中点切线,读出它与水平线之间的夹角,注意滑弧滑动的方向,确定夹角的正负。 (6) 确定土条内滑弧的内摩擦角与粘聚力。对于不同的土层,内摩擦角与粘聚力取均值。 (7) 计算危险弧面上的滑动力矩与抗滑力矩。利用公式计算抗滑力 矩 和 滑 动 力 矩。 抗滑力矩为 ( )c o R k k i i k i i k i i k i M R C L q b W α???= ++ ?? ∑ ∑;而滑动力矩为()sin Sd s ki i ki i M R q b W γα??=+??∑。 确定是否满足要求。利用承载能力极限状态设计表达式/Sd Rk R M M γ≤判断是否满足稳定性的要求。

地基稳定性分析评价内容

地基稳定性分析评价内容 影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对如下建(构)筑物进行地基稳定性评价:经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等。通常涉及到岩土工程方面主要的内容有: (1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况; (2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。 按照《岩土工程勘察规范》(GB50021-2001)(2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB50011-2010)规定,通常需要分析评价的内容总结如下: 1、地基承载力计算与验算 验算地基稳定性实质上就是验算地基极限承载能力是否满 足要求。应严格按照《建筑地基基础设计规范》(GB50007-2011) 5.2和《高层建筑岩土工程勘察规程》(JGJ72-2004)8.2.6~8等条款执行。 2、变形验算

建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB50007-2011)5.3、(JGJ72-2004)8.2.9~12和《建筑地基处理技术规范》(JGJ79-2012)有关条款计算。 3、基础埋置深度的确定 对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或或筏形基础埋置深度不宜小于1/15H;桩箱或桩筏基础不宜小于1/18H,H为建筑物高度。 4、位于稳定土坡坡顶上的建筑 应根据建(构)筑物基础形式,按照(GB50007-2011)5. 4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB50330-2002) 5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。 5、受水平力作用的建(构)筑物 ①山区应防止平整场地时大挖大填引起滑坡; ②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。

地基稳定性分析

建筑地基的稳定性分析和评价 《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。 一、地基稳定性 地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。 二、地基稳定性分析评价内容 影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。 通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下: 1、地基承载力计算与验算 验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。应严格按照《建筑地基基础设计规范》(GB 50007-2011) 5.2和《高层建筑岩土工程勘察规程》(JGJ 72-2004)8.2.6~8等条款执行。 2、变形验算 建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变形参数,供上部结构计算条件具备时按照(GB 50007-2011) 5.3、(JGJ 72-2004) 8.2.9~12和《建筑地基处理技术规范》(JGJ 79-2002)有关条款计算。 3、基础埋置深度的确定 对高层建筑和高耸构筑物基础的埋置深度,应满足地基承载力、变形和稳定性要求。位于岩石地基上的高层建筑,其基础埋深应满足抗滑稳定性要求。天然地基上的箱形或或筏形基础埋置深度不宜小于1/ H;桩箱或桩筏基础不宜小于1/18H,H为建筑物高度。 15 4、位于稳定土坡坡顶上的建筑 应根据建(构)筑物基础形式,按照(GB 50007-2011) 5.4.1~2有关规定确定基础距坡顶边缘的距离和基础埋深。需要时,还应按照《建筑边坡工程技术规范》(GB 50330-2002)5.1~3有关规定验算坡体的稳定性。验算方法对均质土可采用圆弧滑动条分法,发育软弱结构面、软弱夹层及层状膨胀岩土时,应按最不利的滑动面验算。当坡体中分布膨胀岩土时应考虑坡体含水量变化的影响;具有胀缩裂缝和地裂缝的膨胀土边坡,应进行沿裂缝滑动的验算。 5、受水平力作用的建(构)筑物 ①山区应防止平整场地时大挖大填引起滑坡; ②岸边工程应考虑冲刷、因建筑物兴建及堆载引起地基失稳。 6、土岩组合地基 该类地基下卧基岩面为单向倾斜时,应描述岩面坡度、基底下的土层厚度、岩土界面上是否存在软弱层(如泥化带)。

地基稳定性分析

地基稳定性分析

建筑地基的稳定性分析和评价 《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,由于该部分内容在规范中较分散,各位同行在岩土工程勘察报告编写时,往往感到无从下笔,现归纳如下,供参考,不当之处望不吝赐教。 一、地基稳定性 地基稳定性是指主要受力层的岩土体在外部荷载作用下沉降变形、深层滑动等对工程建设安全稳定的影响程度,避免由此地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。按照(GB 50021-2001) (2009年版) 14.1.3、14.1.4规定,岩土体的变形、强度和稳定应在定性分析的基础上进行定量分析。评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。 二、地基稳定性分析评价内容 影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。一般情况下,需要对经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等建(构)筑物进行地基稳定性评价。 通常情况下,涉及到主要的内容有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、地面沉降、地震液化、震陷、活动断裂、岸边河流冲刷等。按照《岩土工程勘察规范》(GB 50021-2001) (2009年版)、《高层建筑岩土工程勘察规程》(JGJ72-2004)和《建筑抗震设计规范》(GB 50011-2010)规定,对山东地区该问题常见的几种情况罗列如下: 1、地基承载力计算与验算 验算地基稳定性实质上就是验算地基极限承载能力是否满足要求。应严格按照《建筑地基基础设计规范》(GB 50007-2011) 5.2和《高层建筑岩土工程勘察规程》(JGJ 72-2004)8.2.6~8等条款执行。 2、变形验算 建筑物的地基变形计算值,不应大于建筑物地基允许变形值。在勘察阶段往往建筑物特征参数不明确,一味要求勘察报告中能有准确的结论也勉为其难,但在岩土工程勘察报告中应提供符合规范要求的岩土变

建筑场地和地基的稳定性评价

摘要:场地和地基的稳定性分析评价是现行规范、规程强条规定的内容,本文从地质环境条件和岩土工程条件两方面对需要进行稳定性分析评价的内容进行了论述。 关键词:场地稳定性;地基稳定性;地质环境条件;岩土工程条件 在《岩土工程勘察规范》(GB 50021-2001) (2009年版) 4.1.11第3款规定应“分析和评价地基的稳定性……”,14.3.3,第9款规定进行“场地稳定性和适宜性评价”;《高层建筑岩土工程勘察规程》(JGJ 72-2004)8.2“天然地基评价”中规定应分析评价的内容包括“场地、地基稳定性和处理措施的建议”;《房屋建筑和市政基础设施工程勘察文件编制深度规定》(2010年版)4.6.2第1款“场地稳定性评价”,对“地基稳定性评价”提及很少。各位同行在编写岩土工程勘察报告时,往往感到需要论证的内容不是太多就是无从下笔。本人根据多年来的工作实践,对这一问题在济南地区常见的几种情况进行了总结归纳。由于我国地域广阔,新型的建构筑物、岩土工程地质条件和环境条件多样,该文观点和阐述仅是一管之见,不当之处,望不吝赐教。 一场地稳定性评价 场地稳定性评价主要是指对各种不良地质作用,包括:断裂、地裂缝、滑坡、崩塌、岩溶、土洞塌陷、建筑边坡等影响场地整体稳定性的岩土工程问题进行评价。 场地稳定性评价是岩土工程勘察可行性研究阶段的基本任务,是初勘阶段的主要任务,详勘阶段应进行“地基稳定性”分析评价。在(GB 50021-2001) (2009年版)论述较笼统,但在《高层建筑岩土工程勘察规程》(JGJ 72-2004)“8岩土工程评价”中明确了分析评价的内容。 场地稳定性评价内容主要包括以下几个方面的岩土工程问题: 1 区域地质构造稳定性。针对拟建场地及附近是否存在活动性断裂; 2 场地地震效应,主要针对场地所处的基本地震烈度区划,划分出场地地段; 3 是否发育直接危害场地稳定的不良地质作用,包括:岩溶、滑坡、危岩和崩塌、泥石流、采空区、地面沉降和活动断裂等。 4 建筑边坡稳定稳定性的影响等。 按照(GB 50021-2001) (2009年版) 14.1.3规定,可仅作定性分析,确定场地稳定性、工程建设的适宜性,必要时应建议进行地震安全性评价或地质灾害危险性评估,由此影响到地基稳定性的工程要进行地基稳定性分析评价。 二地基稳定性评价 地基稳定性主要是指由于地形、地貌、设计方案造成建筑地基侧限削弱或不均衡,而可能导致基础整体失稳;或软弱地基、局部软弱地基,如暗浜、暗塘等,超过承载能力极限状态的地基失稳。其含义包含以下几个方面: 1 地基在外部荷载(包括基础重量在内的建筑物所有的荷载)作用下抵抗剪切破坏的稳定安全程度——承载力特征值的确定; 2 各类工程在施工和使用过程中,地基承受荷载的稳定程度——变形验算; 3 与地基岩土体在承受建筑荷载条件下的沉降变形、深层滑动等对工程建设安全稳定的影响程度——与岩土工程条件和地质环境条件的关联度。 评价的目的是为了避免由于建(构)筑物的兴建可能引起地基产生过大的变形、侧向破坏、滑移造成地基破坏从而影响正常使用。按照(GB 50021-2001) (2009年版) 14.1.3规定,应在定性分析的基础上进行定量分析,评价地基稳定性问题时按承载力极限状态计算,评价岩土体的变形时按正常使用极限状态的要求进行验算。 三地基稳定性评价内容 影响地基稳定性的因素,主要的是场地的岩土工程条件、地质环境条件、建(构)筑物特征等。 一般情况下,需要对以下建(构)筑物进行地基稳定性评价:经常受水平力或倾覆力矩的高层建筑、高耸结构、高压线塔、锚拉基础、挡墙、水坝、堤坝和桥台等。 通常涉及到岩土工程方面的内容主要有:(1)岩土工程条件包括组成地基的岩、土物理力学性质,地层结构。特别是有特殊性岩土,隐伏的破碎或断裂带,地下水渗流等特殊情况;(2)地质环境条件包括是否建造在斜坡上、边坡附近、山区地基上,建(构)筑物与不良地质作用、特殊地貌的关联度和可能引起地基破坏失稳的各种自然因素或组合。如岩溶、滑坡、崩塌、采空区、 建筑场地和地基的稳定性评价 济南市建设工程勘察设计质量监督站郜宪存

挡土墙稳定性验算

中铁五局沪昆铁路客运专线云南段(TJ1标)项目经理部 临建挡土墙类型的确定及稳定性验算 一、挡土墙类型选择 从经济使用的角度出发,结合当地的实际情况,初步确定用于本施工管段内的临建及便道挡土墙类型为石砌重力式挡土墙。其特点是○1依靠墙身自重抵抗土压力的作用;○2形式简单,取材容易,施工简易。 挡墙根据墙背的倾斜方向,墙身断面形式可分为仰斜、垂直、俯斜、凸形折线和衡重式几种。在其他条件相同时,仰斜墙背所承受的土压力比俯斜式小,故其墙身断面亦较俯斜墙背经济。同时,由于仰斜式墙背的倾斜方向与开挖面边坡方向一致,故开挖量和回填量均比俯斜式墙背小。综合考虑,在此确定挡墙类型为重力式(仰斜式)挡土墙。其墙身断面形式如下图所示: 重力式挡土墙断面图(扩大基础) 重力式挡土墙断面图 图中,m=n,且m值宜为0.05~0.30,H=2.0~6.0m,B≥0.5m当地基承载力不足且墙趾处地形平坦时,为减小地基应力和增加抗倾覆稳定性,常采用扩基础。扩大基础是将墙趾或墙蹱部分加宽成台阶,也可以同时将两侧加宽,以在、增大承压面积,减小基底压力。台阶宽度一般不小于0.2m。台阶高度按加宽部分的抗剪、抗弯和基础材料的扩散角要求确定,高宽比可采用3:2或2:1。

挡墙基础埋置深度:为保证挡土墙的稳定性,必须根据地基的条件,将挡土墙基础埋入地面以下适当深度。基础埋置深度需满足:○1设置在土质地基上的挡墙,基底埋置深度一般应在天然地面以下1.0m ;受水冲刷时,应在冲刷线以下1.0m 。○2 设置在石质地基上的挡土墙,应清除表面风化层,当风化层厚难于清除时,可根据风化程度及允许地基承载力,将基础埋置在风化层中,并保证有一定的襟边宽度。 二、 挡土墙稳定性验算 挡土墙的设计方法有容许应力法和极限状态法两种。容许应力法是把结 构材料视为理想的弹性体,在荷载的作用下产生的应力和应变不超过规定的容许值。极限状态法是根据结构在荷载作用下的工作特征,在容许应力法基础上发展形成的一种方法。但由于极限状态法在工程实践中的应用尚不充分,目前挡墙的设计仍按容许应力法。 本路段内表层土体大部分属于西南地区碳酸盐类岩层的残积红土,参照《公路桥涵地基与基础设计规范》(JTJ 024-85)第2.1.2条和第2.1.3条的相关规定,地基容许承载力0[]σ取值如下表: 残积粘性土的容许承载力0[]σ 本设计填料重度3 18/KN m γ=,地基土重度3 119/KN m γ=,圬工砌体按M7.5 砂浆砌25号片石计,重度 3 23/k KN m γ=。根据相关资料显示,云南省曲靖市富 源县地表对基土西南地区碳酸盐类岩层的残积红土,其土体的压缩模量 S E =4MPa ,其对应的地基容许承载力0180kPa σ=。重力式挡土墙高H=4m ,未加 宽基底宽B=0.6m ,基底摩阻系数f=0.45,基础内土体间的摩阻系数μ=0.3填

6 结构稳定性的验算与控制

6 结构稳定性的验算与控制 A 控制意义: 对结构稳定性的控制,避免建筑在地震时发生倾覆. 当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。 B 规范条文 规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。 规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件. 高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。 高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。计算时,质量偏心较大的裙楼与主楼可分开考虑。 C 计算方法及程序实现 重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。一般只考虑第(2)种,第(1)种对结构影响很小。 当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。 在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。 对于多层结构P-Δ效应影响很小。 对于大多数高层结构,P-Δ效应影响将在5%~10%之间。 对于超高层结构,P-Δ效应影响将在10%以上。 所以在分析超高层结构时,应该考虑P-Δ效应影响。 (P-Δ效应对高层建筑结构的影响规律:中间大两端小) 框架为剪切型变形,按每层的刚重比验算结构的整体稳定 剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定 整体抗倾覆的控制??基础底部零应力区控制 D 注意事项 >>结构的整体稳定的调整 当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。 当整体稳定不满足要求时,必须调整结构方案,减少结构的高宽比。 对一些特殊的工业建筑物,在没有特殊要求的情况下,也应满足整体稳定的要求。 >>结构大震下的稳定

地基计算及处理设计

8 地基计算及处理设计 8.1 一般规定 8.1.1 水闸地基计算应根据地基情况,结构特点及施工条件进行,其内容应包括: 1 地基渗流稳定性验算; 2 地基整体稳定计算; 3 地基沉降计算; 在各种运用情况下,水闸地基应能满足承载力,稳定和变形的要求. 8.1.2 岩石可按其坚硬程度分类.碎石土可按砾的含量分类. 土可按颗粒级配及塑性指数分类,砂土也可按砂粒含量分类,粘性土也可参照塑性图分类.岩石,碎石土和土的分类见附录F. 8.1.3 对于土质地基,初步划分松软地基和坚实地基的特性指标见附录G. 8.1.4 土质地基的计算应根据地基土和填料土的物理力学性质试验指标进行.地基土的专门试验项目(如地基土对混凝土板的抗滑强度试验,砂砾石地基的管涌试验等)应根据工程具体情况确定. 8.1.5 地基土的剪切试验方法可按表8.1.5的规定选用.室内试验应尽量减少取样和试验操作过程中可能造成的误差,试验指标的取值宜采用小值平均值. 8.1.6 岩基物理力学性指标的试验方法可按国家现行的DL 5006-92《水利水电工程岩石试验规程》的规定选用. 8.1.7 地基计算的荷载组合可按本规范表7.2.11的规定采用. 8.1.8 地基渗流稳定性验算应按本规范6.0.4~6.0.6条的规定进行.

8.1.9 凡属下列情况之一者,可不进行地基沉降计算: 表8.1.5 剪切试验适用条件 注:1.重要的大型水闸的粘性土地基应同时采用相应排水条件的三轴剪切试验方法验证; 2.软粘土地基可辅以采用野外十字板剪切试验方法; 3.回填土可采用饱和快剪试验方法. 1 岩石地基; 2 砾石,卵石地基; 3 中砂,粗砂地基; 4 大型水闸标准贯入击数大于15击的粉砂,细砂,砂壤土,壤土及粘土地基; 5 中,小型水闸标准贯入击数大于10击的壤土及粘土地基.

冻土地基上基础的稳定性验算

冻土地基上基础的稳定性验算 C.1 裸露的建筑物基础 C.1.1 切向冻胀力作用下,基础稳定性验算应符合下列规定: 1 桩、墩基础应按下式计算: Στdik Aτi≤0.9G K+R t a (C.1.1–1) 式中:τdik——第i层土中单位切向冻胀力的标准值(KPa),应按实 测资料取用,如缺少试验资料时可按表C.1.1取值, 在同一冻胀类别内,含水量高者取大值; Aτi——与第i层土冻结在一起的桩、墩侧表面积(m2); G K——作用于基础上永久荷载的标准值(KN),包括基础自 重的部分(砌体、素混凝土基础)或全部(配抗拉钢筋 的桩基础),基础在地下水中时取浮重度; R t a——桩和墩基础伸入冻胀土层之下,地基土所产生锚固 力的特征值(对素混凝土和砌体结构基础,不考虑 该力) (KN)。 表C.1.1 切向冻胀力的标准值τdik(KPa) 注:表列数值以正常施工的混凝土预制桩为准,其表面粗糙程度系数ψτ取1.0,当基础表面粗糙时其表面粗糙程度系数ψτ取1.1~ 1.3。 2桩、墩基础侧表面与不冻土之间的锚固力R t a(为摩阻力),应按下式计算: R t a= Σ(0.5 ·q sik A qi)(C.1.1–2) 式中:q sik——在第i层内土与桩、墩基侧表面的单位摩阻力, 极限标准值(KPa),按桩基受压状态的情况取值在 缺少试验资料时可按现行行业标准《建筑桩基技

术规范》JGJ94的规定确定。 A qi —— 第i 层土内桩、墩基础的侧表面积(m2); 3 在计算条形基础切向冻胀力时,不计入条形基础的实际埋深。应按设计冻深计算。 C.1.2 法向冻胀力作用下基础最小埋深(d min )的计算应符合下列规定: 1 应力系数(αd )应按下式计算: αd =fh 0 σ р(C.1.2–1) 式中:αd —— 在冻结界与基础中心线交点处双层地基的应力系 数; fh σ —— 土的冻胀应力(KPa),即在冻结界处单位面积上产 生的向上冻胀力,应以实测数据为准;当缺少试验 资料(黏性土)时可按图C.1.2–1查取; p 0 —— 基础底面处的平均附加压力(KPa),计算时取0.9倍 的附加荷载值(0.9Gk)。 2 根据应力系数(αd )与基础尺寸b 、a 或d (b 为条形基的宽度、a 为方形基础的边长,d 为圆形基础的直径)在图C.1.2-2、图C.1.2-3或图C.1.2-4中找出相应两坐标交点所对应的h 值(h 为基础底面之下冻土层的厚度),此h 值就是基础底面之下允许的冻土层厚度(m)。 土的平均冻胀率η(%) 图C.1.2–1 土的平均冻胀率与冻胀应力关系曲线 注:① 平均冻胀率η为最大地面冻胀量与设计冻深之比;

基坑稳定性分析之隆起验算

基坑稳定性分析之抗隆起验算 在基坑开挖时,由于坑内土体挖出后,使地基的应力场和变形场发生变化,可能导致地基的失稳,例如地基的滑坡、坑底隆起及涌砂等。所以在进行支护设计(包括排桩支护与地下连续墙支护等)时,需要验算基坑稳定性,必要时应采取一定的防范措施使地基的稳定性具有一定的安全度。在基础施工过程中基坑有时会失去稳定而发生破坏,这种破坏可能是缓慢的发生,也可能是突然的发生。这种现象有的有明显的触发因素,诸如振动、暴雨、外荷或其它的人为因素;有的却没有这些触发因素,则主要是由于设计时安全度不够或施工不当造成的。基坑的稳定性验算主要包括边坡的稳定性验算、基坑的抗渗流验算、基坑抗承压水验算和基坑抗隆起验算。 由于地基的隆起常常是发生在深厚软土层中,当开挖深度较大时,则作用在坑外侧的坑底水平面上的荷载相应增大,此时需要验算坑底软土的承载力,如果承载力不足将导致坑底土的隆起。 对于坑底土抗隆起稳定验算的方法很多,下面介绍四种方法。 1. 太沙基—派克方法 太沙基研究了坑底的稳定条件,设粘土的内磨擦角φ =0,滑动面为圆筒面与平面组成,如图1所示。太沙基认为,对于基坑底部的水平断面来说,基坑两侧的土就如作用在该断面上的均布荷载,这个荷载有趋向坑底发生隆起的现象。当考虑dd1面上的凝聚力c 后,c1d1面上的全荷载P 为: cH rH 2B P -= (1-1) 式中 r —土的湿容重; B —基坑宽度; c —土的内聚力; H —基坑开挖深度。 其荷载强度p r 为: cH B r 2H P r -= (1-2)

太沙基认为, 若荷载强度超过地基的极限承载力就会产生基坑隆起。以粘聚力c 表达的粘土地基极限承载力q d 为: c q d 7.5= (1-3) 则隆起的安全系数K 为: B cH rH c p q K r 2 7.5d -== (1-4) 太沙基建议K 不小于1.5。 图1抗隆起计算的太沙基和派克法 太沙基和派克的方法适用于一般的基坑开挖过程,这种方法没有考虑刚度很大且有一定的插入深度的地下墙对于抗隆起的有利作用。 2. 柯克和克里泽尔方法 如果基坑挡墙的插入深度不够,即使在无水的情况下,基坑底面也有隆起的危险。这种隆起现象如图2所示。坑底通过沿着象图中的ACB 那样的曲线滑动,造成抬高现象。设以墙底底水平面为基准面,非开挖侧A 点上的竖向应力为: q 1=rh 在开挖过程侧的竖向应力为: q 2=rD 根据滑动线理论,可推导得: φπφπφ tan 2tan 221)2 45(tan e k q e q q p =+= 即

相关主题
文本预览
相关文档 最新文档