当前位置:文档之家› 鲁米诺化学发光体系在药物分析中的应用

鲁米诺化学发光体系在药物分析中的应用

鲁米诺化学发光体系在药物分析中的应用
鲁米诺化学发光体系在药物分析中的应用

鲁米诺电化学发光用于生物分子分析的研究进展

鲁米诺电化学发光用于生物分子分析的研究进展 屠一锋 苏州大学化学化工学院分析化学研究所,215123 本课题组开展电化学发光分析研究工作的主要目标是应用于生物分子分析: 一、对鲁米诺电化学发光行为及机理的理解:文献报道鲁米诺的电化学发光原理类似于其化学发光原理,是基于鲁米诺的两步氧化反应,在第二步氧化开环时生成激发态而产生光辐射,是不可逆过程,我们的研究表明,鲁米诺的电化学发光可能更主要是涉及自由基的过程,其氧化还原过程中形成自由基并在相应的条件下可在未氧化开环的条件下辐射光信号,从而不需要氧化至第二步开环反应,因此鲁米诺分子可以提供可逆的电化学发光反应,从而为研制电化学发光传感器和检测器提供了重要的基础。多种纳米粒子可以促进鲁米诺在低电位下的可逆电化学发光反应。 二、中性介质中鲁米诺的电化学发光行为:绝大部分文献报道均强调鲁米诺的电化学发光必须在强碱性介质中实施,而我们的研究主要瞄准中性介质中鲁米诺的电化学发光,经过长期研究,我们发现完全可以在中性介质中实施其电化学发光分析,这对开展生物分子的分析是十分有利的。研究中采用的主要技术措施是多种增敏技术来提高中性介质中鲁米诺电化学发光的效率,如使用增敏剂和电极表面修饰等。实现中性介质中的电化学发光对生物分子的研究具有重要价值。 三、生物分子分析研究:已探讨了对多种类型生物分子进行分析测定的性能,其主要机理是基于自由基之间的能量转移及自由基湮灭作用等,表现在信号响应上为电化学发光的增强或猝灭,研究对象包括生物小分子如谷胱甘肽、黄酮、维生素、尿酸等,灵敏度高,检测下限可达皮摩尔以下,生物大分子如酶、DNA等,已研究了葡萄糖氧化酶、尿酸氧化酶、谷丙转氨酶等及其催化体系均有响应,对DNA的响应亦已实现,并可用于研究DNA与小分子之间的作用。 四、电化学发光检测与流动分析及分离技术的联用:生物样品大多组成复杂,电化学发光检测池的研制可实现电化学发光检测与分离技术的联用,我们目前已经构建了结构合理、性能优良的电化学发光检测池,与流动分析成功联用,目前正开展毛细管电泳、芯片电泳与电化学发光检测联用的研究。对与毛细管电泳联用的电化学发光检测,主要设计为柱端检测方式,与芯片电泳的联用,则主要设计为全通道检测模式,已完成检测所需的线阵CCD 微弱光检测器的研制。

化学发光试剂鲁米诺的一种特殊合成方法

鲁米诺的一种特殊合成方法 鲁米诺又叫发光氨,CSA号为521-31-3。化学名称为3-氨基-苯二甲酰肼。在常温状态下呈现出黄色粉末,是一种很稳定,研发生产多年人工合成的有机化合物。同时它也是刑侦的一种检测工具,可以在犯罪现场检测血迹,可以让肉眼没办法观察到的血液使其发光,呈现出血迹痕迹,方便于记录与侦查。 目前已公开的制备鲁米诺与异鲁米诺的工艺有多种,但是多种制备方法中要么存在废料污染,不符合绿色环保要求,要么就是工艺繁琐,设备要求高,要么原料成本高,要么存在不必要的人工成本,多多少少存在些问题,不能做到尽善尽美。为适应鲁米诺类试剂的广阔市场需求,一种工艺简洁、成本低、绿色环保的工业化生产方式十分重要。介绍一种最新报道的鲁米诺或异鲁米诺的合成方法。

这种利用一锅法合成鲁米诺或异鲁米诺的方法,具体步骤如下: 步骤一:以3-硝基邻苯二甲酸或4-硝基邻苯二甲酸为起始原料,与尿素在有机溶剂中回流3-10小时,3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与尿素的摩尔比为1:1-3,得到含3-硝基邻苯二甲酰亚胺或4-硝基邻苯二甲酰亚胺的混合产物A; 步骤二:向混合产物A中加入水合肼水溶液,起始原料3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与水合肼的摩尔比为1:1-3,加热回流1-5小时,得到含3-硝基邻苯二甲酰肼或4-硝基邻苯二甲酰肼的混合产物B; 步骤三:向混合产物B中加入催化剂和还原剂,起始原料3-硝基邻苯二甲酸或4-硝基邻苯二甲酸与还原剂的摩尔比为1:1.5-4,在温度为30-50℃下还原反应3-8小时,得到含鲁米诺或异鲁米诺的混合产物C,混合产物C经精制后,得到鲁米诺或异鲁米诺。 这种制备方法将三步反应在同一锅内完成,且中间产物无需进行任何纯化处理,直接得到产物,不仅具有操作方便、工艺简洁的优点,而且得到的鲁米诺以及异鲁米诺的收率和纯度高,能充分满足产品工业化生产的需求以及市场的需求。另外,这种合成方法所需的试剂均为常规试剂,制备过程中使用的设备也都是常规设备,原料成本和设备成本都较低,适合工业化化大生产。

化学发光技术综述

化学发光技术综述 化学发光免疫测定(CLIA)是将抗原与抗体特异性反应与敏感性的化学发光反应相结合而建立的一种免疫检测技术。 (一)原理 化学发光免疫测定(CLIA)属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。 (二)特点 特异性高、敏感性高、分离简便、快速、试剂无毒、安全稳定、可自动化。 (三)分类 1、从反应原理上,化学发光免疫技术主要分为直接化学发光和酶促反应化学发光。 直接化学发光

化学发光剂在发光免疫分析过程中不需酶的催化作用,直接参与发光反应,它们在化学结构上有产生发光的特有基团,可直接标记抗原或抗体。直接化学发光速度快、试剂稳定性好,但灵敏度略低于酶促发光。 代表性的发光剂有:吖啶酯、三联吡啶钌。 吖啶酯 在碱性条件下被H2O2氧化时,发出波长为470nm的光,具有很高的发光效率,其激发态产物N-甲基吖啶酮是该发光反应体系的发光体。 这类化合物的发光为闪光型,加入发光启动试剂后0. 4s 左右发射光强度达到最大,半衰期为左右。 特点: ①发光反应中在形成电子激发态中间体之前,联结于吖啶环上的不发光的取代基部分从吖啶环上脱离开来,即未发光部分与发光部分分离,因而其发光效率基本不受取代基结构的影响。 ②吖啶酯或吖啶磺酰胺类化合物化学发光不需要催化剂,在有H2O2 的稀碱性溶液中即能发光。因此应用于化学发光检测具有许多优越性。 优点主要有: ①背景发光低,信噪比高; ②发光反应干扰因素少;

化学发光法及其应用

化学发光法及其应用 摘要:对近年来化学发光分析法的研究应用最新进展作了评述,包括化学发光体系的类型,化学发光法的新方法,化学发光在无机、药物分析及食品中的应用。 关键字:化学发光法;化学发光体系;应用; 化学发光是在没有光、电、磁、声、热源激发的情况下,由化学反应或生物化学反应产生的一种光辐射。以此为基础的化学发光化学发光(Chemiluminescence ,简称CL)分析法是近30 年来发展起来的一种高灵敏的微量及痕量分析法,由于可以进行发射光子计量,又没有外来激发光源存在时散射光背景的干扰,因而具有很高的灵敏度(检出限可达 10-12-10-21mol),很宽的线性范围(3-6个数量级),同时仪器设备又很简单、廉价、易微型化,在二十世纪的最后十年发展非常迅速。 近来,在改进和完善原有发光试剂和体系的同时,新发光试剂的合成,新体系的开发,与其它技术的联用,尤其是流动注射技术,传感器技术,HPLC 技术及各种固定化试剂技术的联用,更显示出化学发光分析快速,灵敏,简便等优点,也进一步拓宽了化学发光的应用范围。并且,化学发光在多类复杂有机物质,如氨基酸、蛋白质、维生素、核酸、DNA、激素、生物碱及各类药物及毒物的检测,多种生物活性物质的分析,多种抗体和抗原的免疫分析,基因芯片、蛋白质芯片、受体芯片、酶芯片、微流控芯片研究中得到了广泛地应用,而且呈现出上升趋势。为生命科学、环境科学、材料科学的研究提供了许多新的、高灵敏度的、有效的分析手段,推动了这方面科学理论和高新技术的发展;同时,其他相关学科的研究成果也为化学发光和生物发光提供了许多新的技术和手段,出现了许多新的化学发光和生物发光法,如纳米发光、发光成像、发光活体分析,大大促进了化学发光的发展及应用。本文将从以下几个方面论述化学发光分析法。 1 化学发光分析法的原理 化学发光(Chemiluminescence,简称CL) 分析法是分子发光光谱分析法中的一类,是指物质在进行化学反应时,由于吸收了反应时产生的化学能,而使反应产物分子激发至激发态,受激分子由激发态回到基态时,便发出一定波长的光。根据化学发光反应在某一时刻的发光强度或发光总量来确定组分含量的分析方法叫化学发光分析法[1]。 换句话说,化学发光是指吸收了化学反应能的分子由激发态回到基态时所产生的光辐射现象, 广义的化学发光也包括电致化学发光。一个化学反应要产生化学发光现象, 必须满足

嗜血神探浅谈鲁米诺(发光氨)在法医血痕检验技术中的

嗜血神探—浅谈鲁米诺(发光氨)在法医血痕检验技术中的应用 北京大学药学院 陶鹏宇 关键词:法医学,法医物证学,血痕检验技术,鲁米诺,荧光反应 题记:狱事莫重于大辟,大辟莫重于初情,初情莫重于检验。—世界法医学鼻祖:宋慈【南宋】 法医科学的发展历史是一个漫长,复杂而又令人神往的过程。它是一个成功的故事,是人类在弥补法网中的漏洞,防止犯罪分子逃脱惩罚这一永无止境的斗争中所取得的一个又一个的胜利—这些胜利有的非常重大,而有些则小到几乎无法察觉。但是在现代社会,随着大规模战争的消失,犯罪也成为社会不安定的首要因素。因此,谁也无法否认法医学对现代犯罪案件的侦破工作乃至于整个人类社会的安定与发展的不朽贡献。如果没有法医学,如今关在监狱中的无数恶棍就会逍遥法外。电子显微镜,光谱,气体彩色成像,DNA鉴定等高科技手段为法医学的发展描绘了无限光明的蓝图;而在法医学的众多分支学科,如法医病理学,法医物证学..,法医毒理学,法医毒物分析,临床法医学,法医精神病学等高科技手段也有着广泛的应用和渗透,而且高超的科技技术手段也使法医学各学科界限不再明显,学科的交叉和双赢更加繁荣。 提到法医学的重要分支法医物证学,就不得不提到证据。Evidence,means the facts,signs or the subjects that makes you believe something is true.而法医物证学作为法医学一个独立分支学科,则是运用医学,生物学,免疫学,遗传学和其他自然科学的知识和技术研究并解决涉及法律问题的物质证据的检验和鉴定的一门科学。法医物证检验的主要对象是人体的组织器官,分泌物或排泄物。常见的有血液(痕),精液(斑),唾液(斑),尿液(斑),毛发,骨骼,牙齿,呕吐物,粪便,汗液,泪斑等。与痕迹证据等其他物质证据一样,这种生物物证具有一般物证所共有的特征,即客观存在性和与案件的关联性。但这些重要的证据也同时具有另一个特点,即它们是极细小而分布范围不固定的物质和痕迹。有别于其他物证的是,法医物证属于生物性物证,具有生物物证的特殊属性。法医物证中多含蛋白质及核酸等有机大分子成分。保持活性时往往可以反映出一些生理规律,然而法医们常常要面临的问题是这些活性成分会受到各种物理,化学及生物因素的影响,这些不可避免的影响导致的直接结果就是使检验的时机和条件丢失。。正因为要面对工作中特殊复杂的环境和严峻的挑战,科学技术在法医物证学中才更显其神通广大。法医需要高超的技术层面上的支持,才能准确快速的完成取证检验。 在简要介绍了法医学及法医物证学的概论之后,我们要走近这位传说中的嗜血神探鲁米诺。顾名思义,鲁米诺用于取证检验中的血痕检验。首先先介绍一下化学药品鲁米诺。鲁米诺, 化学式C8H7N3O2。(图一为鲁米诺的结构简式)在常 温下是一种黄色晶体或米黄色粉末。是一种比较稳定 的化学试剂。熔点约280摄氏度。碱性条件下可以被 氧化剂氧化,发出蓝绿色荧光,最大波长可达425nm。 据实验测定,多种金属离子,阳离子,和有机物能增 强或抑制鲁米诺化学发光体系的发光。或直接氧化鲁 米诺而发光。这种性质在化学分析中被广泛应用于酸 碱滴定,氧化还原滴定和络合滴定中,鲁米诺已作为 化学发光指示剂,在颜色较深或浑浊的溶液体系中, 具有分辨率好的特点。在生物学中,这种性质已被用于30多种金属离子,氧,卤素,硫化物,氰化物的痕量分析。再有机和临床分析中,已广泛应用于氨基酸,氨基醇类,胆甾醇,有机磷化合物,葡萄糖,血红素,酶等的测定。。由

鲁米诺化学发光体系的应用

鲁米诺化学发光体系的应用 鲁米诺(5-氨基-2,3-二氢-1,4-二杂氮萘二酮,也称3-氨基邻苯二甲酰肼)俗名发光氨luminol,因其结构简单、易合成、水溶性好,以及发光量子效率高等特点,常温下是一种黄色晶体或者米黄色粉末,是一种比较稳定的化学试剂,化学式C8H7N3O2 。鲁米诺是最常用的液相化学发光试剂之一。自从1928年albrecht首次报道了鲁米诺与氧化剂在碱性溶液中的化学发光反应以来,人们对该化学发光体系的研究就一直十分活跃,使得该化学发光体系被应用于许多领域之中。通常用于酶促化学发光实验以及刑侦上的微量血迹检测。由于其结构简单、易合成、发光量子效率高的特点,现也被用于蛋白质印迹试验western blot 中。 鲁米诺化学发光体系的分析应用主要基于以下几个方面。 一、鲁米诺-过氧化氢化学发光体系应用最为广泛。许多过渡金属离子对鲁米诺-过氧化氢化学发光反应具有很好的催化作用。李正平等发现铁蛋白催化,产生很强的化学发光信号,建立简便灵敏的检测铁蛋白的化学发光方法。方法的线性范围为0.5~10μg/l,检出限为0.36μg/l,为铁蛋白作为纳米粒子标记物及直接检测提供一种新的途径。戴路等报道了一种新的测定雌性激素的流动注射化学发光方法。在碱性条件下,金银复合纳米粒子能显著地增强鲁米诺-过氧化氢化学发光,而雌性激素能明显地抑制该体系的化学发光强度,建立了测定天然雌激素(雌酮、雌二醇和雌三醇)的化学发光方法。该方法已用于孕妇尿样中雌激素总量的测定。刘振波等基于人的血清白蛋白对鲁米诺-过氧化氢-叶绿素铜钠化学发光体系的抑制作用,采用流动注射技术建立了一种简单、快速、可连续测定人的血清白蛋白的新方法。 二、

化学发光分析法的应用研究与新进展

化学发光分析法的应用研究与新进展 摘要:化学发光分析法是根据化学反应的发光强度或发光总量确定相应组分含量的一种分析方法。同荧光法相比,化学发光法不需要外来的光源,减少了拉曼散射和瑞利散射,降低了噪音信号的干扰,提高了检测的信噪比,扩大了线性范围。并具通过特定的化学发光可以定性定量的测定微量物质,有操作方便,易于实现自动化,分析快等特点。同时在实践的过程中化学发光分析法与其他方法相比较其灵敏度也较高,此外线性范围宽和仪器简单也是化学发光分析法的特点之一。正是基于这些特点,化学发光分析法在环境化学、临床医学、生物科学等领域得到十分广泛的应用和研究。本文从化学发光分析法的原理、优缺点和应用研究的新进展等方面进行了综述。 关键词:化学发光分析法,化学发光体系,鲁米诺,光泽精 引言 化学发光是化学反应体系中的某些分子或原子中的电子,如反应物、中间体或反应产物吸收了化学反应释放出的化学能后,由基态(较低能级)跃迁到激发态(较高能级),然后再返回到基态,并释放光子所产生的光辐射[2]。化学发光又称为冷光,它是在没有任何光、热或电场等激发的情况下由化学反应而产生的光辐射。由于不需要外源性激发光源,避免了背景光和杂散光的干扰,降低了噪声,大大提高了信噪比。具有灵敏度高,线性范围宽,设备简单,操作方便,易于实现自动化,分析快等特点。在生物工程学,药物学,分子生物学,临床和环境化学等各个领域正显示出它蓬勃的生机。本文主要介绍化学发光分析法的原理、优缺点,常用的化学发光试剂及其体系,和在环境化学、临床医学、生物科学等领域的应用研究和化学发光分析法的近两年的应用新进展。 1 化学发光 1.1化学发光的原理 发光是指分子或原子中的电子吸收能量后,由基态(较低能级)跃迁到激发态(较高能级),然后再返回到基态,并释放光子的过程。根据形成激发态分子

(完整版)荧光和化学发光免疫分析方法

荧光和化学发光免疫分析方法 免疫分析是利用抗原抗体反应进行的检测方法,即利用抗原与抗体的特异性反应,应用制备好的抗原或抗体作为试剂,以检测标本中的相应抗体或抗原。由于免疫的特异性结合,免疫分析方法具有很好的选择性,荧光免疫分析和化学发光免疫分析是其中典型的两种。本文将对这两种免疫分析方法进行详细的介绍。 一、免疫 免疫是指机体免疫系统识别自身与异己物质,并通过免疫应答排除抗原性异物,以维持机体生理平衡的功能。免疫是人体的一种生理功能,人体依靠这种功能识别“自己”和“非己”成分,从而破坏和排斥进入人体的抗原物质,或人体本身所产生的损伤细胞和肿瘤细胞等,以维持人体的健康。 特异性免疫系统,是一个专一性的免疫机制,针对一种抗原所生成的免疫淋巴细胞(浆细胞)分泌的抗体,只能对同一种抗原发挥免疫功能。而对变异或其他抗原毫无作用。 1、抗原 1.1抗原的定义 抗原:是一类能刺激机体免疫系统使之产生特异性免疫应答(免疫原性) ,并能与相应抗体在体内或体外发生特异性结合的物质(免疫反应性)。 抗原一般为大分子物质,其分子量在10kD以上。 1.2抗原的分类 完全抗原:同时具有免疫原性和免疫反应性的抗原,如细菌、病毒、异种动物血清等。

半抗原:仅具有与相应抗原或致敏淋巴细胞结合的免疫反应性,而无免疫原性的物质。如大多数的多糖、类脂及一些简单的化学物质,它们本身不具免疫原性,但当与蛋白质大分子结合后形成复合物,便获得了免疫原性, 1.3抗原的性质 决定簇是指抗原分子表面的基团,它直接决定免疫学反映的特异性。 抗原通过抗原决定簇与相应淋巴细胞表面抗原受体结合,从而激活淋巴细胞,引起免疫应答,抗原也藉此与相应抗体或致敏淋巴细胞发生特异性结合。 因此,抗原决定簇是被免疫细胞识别的靶结构,也是免疫反应具有特异性的物质基础。 2、抗体 2.1抗体的定义 抗体:是机体受抗原刺激后,由淋巴细胞合成的一类能与相应抗原发生特异性结合的球蛋白。 2.2抗体的结构 抗体是机体受抗原刺激后,由淋巴细胞特别是浆细胞合成的一类能与相应抗原发生特异性结合的球蛋白,因其具有免疫活性故又称作免疫球蛋白。 人免疫球蛋白有五类,分别为IgG、IgA、IgM、IgD和IgE。 3、抗原抗体的结合 体外抗原抗体反应又称血清学反应

化学发光剂鲁米诺的合成

化学发光剂─鲁米诺的合成 一、实验目的 学习芳烃硝化反应的基本理论和硝化方法,加深对芳烃亲电取代反应的理解,进一步掌握重结晶操作技术; 了解鲁米诺化学发光原理。 二、实验原理 米诺的原料,经脱水后得到的3-硝基-邻苯二甲酸酐可用于有机合成和醇 类测定。邻苯二甲酸酐经直接硝化,既可获得3-硝基-邻苯二甲酸,同时 也会得到4-硝基-邻苯二甲酸。在3-硝基-邻苯二甲酸分子中,硝基对邻 位羧基影响很大,它和羧酸会形成分子内氢键,加上相邻二羧基之间存在 的分子内氢键,对整个羧酸分子的离解产生显著的抑制作用,从而导致其 水溶性下降。在4-硝基-邻苯二甲酸中,硝基与羧酸之间难形成分子内氢 键,因而,它在水中的离解度相对要大一些,水溶性也好一些。邻苯二甲 酸酐硝化后产生的异构体的分离正是利用它们在水溶性上的差异加以解 决的。 反应式:

许多化学反应都是以热的形式释放能量,也有一些化学反应主要是以光的形式释放能量,鲁米诺(Luminol)在碱性条件下与氧分子的作用就是一个典型的化学发光例子。一般认为,鲁米诺在碱性溶液中转变为二价负离子,后者与氧分子反应生成一种过氧化物,过氧化物不稳定而发生分解,导致形成一种具有发光性能的电子激发态中间体。其过程如下: 现已证实,发光体是3-氨基-邻苯二甲酸盐二价负离子的激发单线态。当激发单线态返回至基态,就会产生荧光。激发态中间体也可将能量传递至激发态能量较低的受体分子,受激发的受体分子再通过发出荧光释放能量恢复到基态。不同受体分子的激发态能量的差异使其发出的荧光各不相同,这些现象在本实验中可观察得到。 三、药品 邻苯二甲酸酐、二缩三乙二醇、10%水合肼、二水合连二亚硫酸钠、二甲亚砜、浓硫酸、发烟硝酸、冰醋酸、10%氢氧化钠、氢氧化钾 四、实验操作 1、3-硝基-邻苯二甲酸的合成 在100mL三口烧瓶上,配置磁力搅拌器、温度计、冷凝管和滴液漏斗,分别加入12ml 浓硫酸和12g邻苯二甲酸酐。加热并开动搅拌器,当反应混合物温度升至80℃停止加热。将10mL发烟硝酸自滴液漏斗慢慢滴入烧瓶中,滴加速度以维持反应混合物温度在100~110℃[1]。 加完硝酸后,继续加热并搅拌1h,温度控制在100℃。然后,让反应液冷却。在通风橱

化学发光及生物发光的原理及其应用(精)

化学发光及生物发光的原理及其应用 第一部分概述 化学发光 (ChemiLuminescence ,简称为 CL) 分析法是分子发光光谱分析法中的一类,它主要是依据化学检测体系中待测物浓度与体系的化学发光强度在一定条件下呈线性定量关系的原理,利用仪器对体系化学发光强度的检测,而确定待测物含量的一种痕量分析方法。化学发光与其它发光分析的本质区别是体系产生发光 ( 光辐射 ) 所吸收的能量来源不同。体系产生化学发光,必须具有一个产生可检信号的光辐射反应和一个可一次提供导致发光现象足够能量的单独反应步骤的化学反应。化学发光体系用化学式表示为: 依据供能反应的特点,可将化学发光分析法分为: 1 )普通化学发光分析法 ( 供能反应为一般化学反 应 ) ; 2 )生物化学发光分析法 ( 供能反应为生物化学反应;简称 BCL) ; 3 )电致化学发光分析法 ( 供能反应为电化学反应,简称 ECL) 等。根据测定方法该法又可分为: 1 )直接测定 CL 分析法; 2 )偶合反应 CL 分析法 ( 通过反应的偶合,测定体系中某一组份; 3) 时间分辨 CL 分析法 ( 即利用多组份对同一化学发光反应影响的时间差实现多组份测定 ) ; 4 )固相、气相、掖相 CL 。分析法; 5 )酵联免疫 CL 分析法等。 化学发光的系统一般可以表示为:

在整个的检测系统中其关键的部分为 PMT ,其直接影响到仪器的检测性能,其最高检测极限为 10 - 22 mol/L 。不同型号的仪器其检测技术不一样,但基本原理都是利用待测组份与体系的化学发光强度呈线性定量关系,而化学发光强度随体系反应进行的速度增强或衰弱。记录仪记录峰形,以峰高定量,也可以峰面积定量。因化学发光多为闪烁式发光 (1—2s 左右 ) ,故进样与记录时差短,分析速度快。 第二部分、化学发光常用的化学试剂及其原理 化学发光是某种物质分子吸收化学能而产生的光辐射。任何一个化学发光反应都包括两个关键步骤,即化学激发和发光。因此,一个化学反应要成为发光反应,必须满足两个条件:第一:反应必须提供足够的能量( 170 ~ 300KJ / mol ),第二,这些化学能必须能被某种物质分子吸收而产生电子激发态,并且有足够的荧光量子产率。到目前为止,所研究的化学发光反应大多为氧化还原反应,且多为液相化学发光反应。 化学发光反应的发光效率是指发光剂在反应中的发光分于数与参加反应的分子数之比。对于一般化学发光反应,值约为 10 - 6 ,较典型的发光剂,如鲁米诺,发光效率可达 0 . 01 ,发光效率大于 0 。 01 的发光反应极少见。现将几种发光效率较高的常用的发光剂及其发光机理归纳如下。 1. 鲁米诺及其衍生物 鲁米诺的衍生物主要有异鲁米诺、 4—氨基已基—N 一乙基异鲁诺及 AHEI 和 ABEI 等。鲁米诺在碱性条件下可被一些氧化剂氧化,发生化学发光反应,辐射出最大发射波长为 425nm 的化学发光。 在通常情况下鲁米诺与过氧化氢的化学发光反应相当缓慢,但当有某些催化剂存在时反应非常迅速。最常用催化剂是金属离子,在很大浓度范围内,金属离子浓度与发光强度成正比,从而可进行某些金属离子的化学发光分析,利用这一反应可以分析那些含有金属离子的有机化合物,达到很高的灵敏度。其次是利用有机化合物对鲁米诺化学发光反应的抑制作用,测定对化学发光反应具有猝灭作用的有机化合物。其三是通过偶合反应间接测定无机或有机化合物。其四是将鲁米诺的衍生物如异鲁米诺 (ABEI) 标记到羧酸和氨类化合物上,经过高效液相色谱 (HPLC) 或液相色谱 (LC) 分离后,再在碱性条件下与过氧化氢-铁氰化钾反应进行化学发光检测。也可以采用其它分离方法,如将新合成的化学发光试剂异硫氰酸异鲁米诺标记到酵母 RNA 后,通过离心和透析分离,然后进行化学发光检测。此外应用的还有 N 2(B2 羧基丙酰基 ) 异鲁米诺,并对其性能进行了研究。

化学发光免疫分析方法的研究及应用

本文由:华夏学术传媒网提供https://www.doczj.com/doc/c014837011.html, 摘要:本文根据各化学发光免疫分析方法所使用标记物质的不同,将化学发光免疫分析方法分为化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法,并对各方法经典标记物质及分析方法原理进行了分析。同时,介绍了化学发光免疫分析方法在医学检验、食品安全及环境科学方面的应用进展情况。 关键词:化学发光免疫分析;分类;研究进展 化学发光是在常温下由化学反应产生的光的发射。其发光机理是:反应体系中的某些物质分子,如反应物、中间体或者荧光物质吸收了反应释放的能量而由基态跃迁到激发态,当中间体由激发态回到基态时会释放等能级的光子,对光子进行测定而实现定量分析[1]。 化学发光免疫分析方法是将化学发光与免疫反应相结合的产物,因化学发光具有荧光的特异性,但与荧光产生需要激发光不同,化学发光由化学反应产生光强度,并不需要激发光,从而避免了荧光分析中激发光杂散光的影响。化学发光免疫分析包含了免疫化学反应和化学发光反应两个部分。免疫分析系统是将化学发光物质或酶标记在抗原或抗体上,经过抗原与抗体特异性反应形成抗原-抗体免疫复合物。化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测。待测物质浓度因为与发光强度成一定的关系而实现检测目的[2]。 一、化学发光免疫分析方法的类别化学发光免疫分析法根据标记物的不同可分为3 大类,即化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法。(一)化学发光免疫分析化学发光免疫分析是用化学发光剂直接标记抗体或抗原的一类免疫测定方法。目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。 1. 鲁米诺类标记的化学发光免疫分析。鲁米诺类物质的发光为氧化反应发光。在碱性溶液中,鲁米诺可被许多氧化剂氧化发光,其中H2O2最为常用。因发光反应速度较慢,需添加某些酶类或无机催化剂。酶类主要是辣根过氧化物酶(HRP),无机类包括O3、卤素及Fe3+、Cu2+、Co2+和它们的配合物。鲁米诺在碱性溶液下可在催化剂作用下,被H2O2等氧化剂氧化成3-氨基邻苯二酸的激发态中间体,当其回到基态时发出光子。鲁米诺的发光光子产率约为0.01,最大发射波长为425 nm。 2. 吖啶酯类标记的化学发光免疫分析 吖啶酯用于化学发光免疫分析方法(ChemiluminescentImmunoassay,CLIA)由于热稳定性不是很好,Klee 等研究合成了更稳定的吖啶酯衍生物。在含有H2O2的碱性条件下,吖啶酯类化合物能生成一个有张力的不稳定的二氧乙烷,此二氧乙烷分解为CO2和电子激发态的N-甲基吖啶酮,当其回到基态时发出一最大波长为430 nm 的光子。吖啶酯类化合物量子产率很高,可达0.05。吖啶酯作为标记物用于免疫分析,发光体系简单、快速,不需要加入催化剂,且标记效率高,本底低。吖啶酯或吖啶磺酰胺类化合物应用于CLIA,通常采用HNO3+H2O2和NaOH 作为发光启动试剂,有些在发光启动试剂中加入Triton X-100,CTAC,Tween-20等表面活性剂以增强发光。(二)化学发光酶免疫分析化学发光酶免疫分析(Chemiluminescent Enzyme Immunoassay,CLEIA)是以酶标记生物活性物质进行免疫反应,免疫反应复合物上的酶再作用于发光底物,在信号试剂作用下发光,用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP)和碱性磷酸酶(ALP),它们有各自的发光底物。HRP 最常用发光底物是鲁米诺及其衍生物。在CLEIA 中,使用过氧化物酶标记抗体,进行免疫反应后,利用鲁米诺作为发光底物,在过氧化物酶和起动发光试剂(NaOH和H2O2)作用下鲁米诺发光,酶免疫反应物中酶的浓度决定了化学发光的强

化学发光剂鲁米诺的合成

化学发光剂鲁米诺的合成 化学发光剂?鲁米诺的合成 一、实验目的 学习芳烃硝化反应的基本理论和硝化方法,加深对芳烃亲电取代反应的理解,进一步掌 握重结晶操作技术; 了解鲁米诺化学发光原理。 二、实验原理 3-硝基-邻苯二甲酸(3-Nitrophthalic Acid)是制备化学发光剂鲁米诺的原料,经脱水后得到的3-硝基-邻苯二甲酸酐可用于有机合成和醇类测定。邻苯二甲酸酐经直接硝化,既可获得3-硝基-邻苯二甲酸,同时也会得到4-硝基-邻苯二甲酸。在3-硝基-邻苯二甲酸分子中,硝基对邻位羧基影响很大,它和羧酸会形成分子内氢键,加上相邻二羧基之间存在的分子内氢键,对整个羧酸分子的离解产生显著的抑制作用,从而导致其水溶性下降。在4-硝基-邻苯二甲酸中,硝基与羧酸之间难形成分子内氢键,因而,它在水中的离解度相对要大一些,水溶性也好一些。邻苯二甲酸酐硝化后产生的异构体的分离正是利用它们在水溶性上的差异加以解决的。

反应式: 许多化学反应都是以热的形式释放能量,也有一些化学反应主要是以光的形式释放能量,鲁米诺(Luminol)在碱性条件下与氧分子的作用就是一个典型的化学发光例子。一般认为,鲁米诺在碱性溶液中转变为二价负离子,后者与氧分子反应生成一种过氧化物,过氧化物不稳定而发生分解,导致形成一种具有发光性能的电子激发态中间体。其过程如下: 现已证实,发光体是3-氨基-邻苯二甲酸盐二价负离子的激发单线态。当激发单线态返回至基态,就会产生荧光。激发态中间体也可将能量传递至激发态能量较低的受体分子,受激发的受体分子再通过发出荧光释放能量恢复到基态。不同受体分子的激发态能量的差异使其发出的荧光各不相同,这些现象在本实验中可观察得到。 三、药品

化学发光技术综述

化学发光技术综述 化学发光免疫测定()是将抗原与抗体特异性反应与敏感性的化学发光反应相结合而建立的一种免疫检测技术。 (一)原理 化学发光免疫测定()属于标记抗体技术的一种,它以化学发光剂、催化发光酶或产物间接参与发光反应的物质等标记抗体或抗原,当标记抗体或标记抗原与相应抗原或抗体结合后,发光底物受发光剂、催化酶或参与产物作用,发生氧化还原反应,反应中释放可见光或者该反应激发荧光物质发光,最后用发光光度计进行检测。 (二)特点 特异性高、敏感性高、分离简便、快速、试剂无毒、安全稳定、可自动化。 (三)分类 1、从反应原理上,化学发光免疫技术主要分为直接化学发光和酶促反应化学发光。 1.1直接化学发光

化学发光剂在发光免疫分析过程中不需酶的催化作用,直接参与发光反应,它们在化学结构上有产生发光的特有基团,可直接标记抗原或抗体。直接化学发光速度快、试剂稳定性好,但灵敏度略低于酶促发光。 代表性的发光剂有:吖啶酯、三联吡啶钌。 1.1.1 吖啶酯 在碱性条件下被H2O2氧化时,发出波长为470的光,具有很高的发光效率,其激发态产物甲基吖啶酮是该发光反应体系的发光体。 这类化合物的发光为闪光型,加入发光启动试剂后0. 4s 左右发射光强度达到最大,半衰期为0.9s左右。 特点: ①发光反应中在形成电子激发态中间体之前,联结于吖啶环上的不发光的取代基部分从吖啶环上脱离开来,即未发光部分与发光部分分离,因而其发光效率基本不受取代基结构的影响。 ②吖啶酯或吖啶磺酰胺类化合物化学发光不需要催化剂,在有H2O2 的稀碱性溶液中即能发光。因此应用于化学发光检测具有许多优越性。

化学发光免疫分析方法

化学发光是在常温下由化学反应产生的光的发射。其发光机理是:反应体系中的某些物质分子,如反应物、中间体或者荧光物质吸收了反应释放的能量而由基态跃迁到激发态,当中间体由激发态回到基态时会释放等能级的光子,对光子进行测定而实现定量分析。 化学发光免疫分析方法是将化学发光与免疫反应相结合的产物,因化学发光具有荧光的特异性,但与荧光产生需要激发光不同,化学发光由化学反应产生光强度,并不需要激发光,从而避免了荧光分析中激发光杂散光的影响。化学发光免疫分析包含了免疫化学反应和化学发光反应两个部分。免疫分析系统是将化学发光物质或酶标记在抗原或抗体上,经过抗原与抗体特异性反应形成抗原-抗体免疫复合物。化学发光分析系统是在免疫反应结束后,加入氧化剂或酶的发光底物,化学发光物质经氧化剂的氧化后,形成一个处于激发态的中间体,会发射光子释放能量以回到稳定的基态,发光强度可以利用发光信号测量仪器进行检测。待测物质浓度因为与发光强度成一定的关系而实现检测目的。 一、化学发光免疫分析方法的类别 化学发光免疫分析法根据标记物的不同可分为 3 大类,即化学发光免疫分析、化学发光酶免疫分析和电化学发光免疫分析法。 (一)化学发光免疫分析化学发光免疫分析是用化学发光剂直接标记抗体或抗原的一类免疫测定方法。目前常见的标记物主要为鲁米诺类和吖啶酯类化学发光剂。 1. 鲁米诺类标记的化学发光免疫分析。 鲁米诺类物质的发光为氧化反应发光。在碱性溶液中,鲁米诺可被许多氧化剂氧化发光,其中H2O2最为常用。因发光反应速度较慢,需添加某些酶类或无机催化剂。酶类主要是辣根过氧化物酶(HRP),无机类包括O3、卤素及Fe3+、Cu2+、Co2+和它们的配合物。鲁米诺在碱性溶液下可在催化剂作用下,被H2O2等氧化剂氧化成3-氨基邻苯二酸的激发态中间体,当其回到基态时发出光子。鲁米诺的发光光子产率约为0.01,最大发射波长为425 nm。 2. 吖啶酯类标记的化学发光免疫分析 吖啶酯用于化学发光免疫分析方法(ChemiluminescentImmunoassay,CLIA)由于热稳定性不是很好,Klee 等研究合成了更稳定的吖啶酯衍生物。在含有H2O2的碱性条件下,吖啶酯类化合物能生成一个有张力的不稳定的二氧乙烷,此二氧乙烷分解为CO2和电子激发态的N-甲基吖啶酮,当其回到基态时发出一最大波长为430 nm 的光子。吖啶酯类化合物量子产率很高,可达0.05。吖啶酯作为标记物用于免疫分析,发光体系简单、快速,不需要加入催化剂,且标记效率高,本底低。吖啶酯或吖啶磺酰胺类化合物应用于CLIA,通常采用HNO3+H2O2和NaOH 作为发光启动试剂,有些在发光启动试剂中加入Triton X-100,CTAC,Tween-20等表面活性剂以增强发光。 (二)化学发光酶免疫分析 化学发光酶免疫分析(Chemiluminescent Enzyme Immunoassay,CLEIA)是以酶标记生物活性物质进行免疫反应,免疫反应复合物上的酶再作用于发光底物,在信号试剂作用下发光,用发光信号测定仪进行发光测定。目前常用的标记酶为辣根过氧化物酶(HRP)和碱性磷酸酶(ALP),它们有各自的发光底物。HRP 最常用发光底物是鲁米诺及其衍生物。在CLEIA 中,使用过氧化物酶标记抗体,进行免疫反应后,利用鲁米诺作为发光底物,在过氧化物酶和起动发光试剂(NaOH和H2O2)作用下鲁米诺发光,酶免疫反应物中酶的浓度决定了化学发光的强度。此传统的化学发光体系(HRP-H2O2-lumi-nol)为几秒内瞬时闪光,存在发光强度低、不易测量等缺点。后来,在发光系统中加入增强发光剂,以增强发光信号,并在较长时间内保持稳定,便于重复测量,从而提高分析灵敏度和准确性。碱性磷酸酶(ALP)已广泛用于酶联免疫分析和核酸杂交分析。 碱性磷酸酶和1,2-二氧环己烷构成的发光体系是目前最重要、最灵敏的化学发光体系。这类体系中具有代表性的是Bronstein 等提出的ALP-AMPPD 发光体系。AMPPD 为1,

化学发光法在药物分析中的应用的综述报告

化学发光法在药物分析中的应用的综述报告化学发光分析法是根据化学反应产生的辐射光的强度来确定物质含量的分析方法,作为一种有效的痕量分析技术,因其具有灵敏度高、线性范围宽、而且分析速度快、重现性好等特点,在分析化学领域得到了迅速发展;但选择性较差如果将其与流动注射、高效液相色谱(HPLC)、毛细电泳(CE)等技术联用,就能较好的克服这一缺点。 化学发光反应体系目前主要使用的有:①鲁米诺、②光泽精、③过氧草酸盐-荧光物质-H2O2等电致发光、④Ce(Ⅳ)、⑤高锰酸钾-还原性有机物等,在医学、生命科学等领域中具有广泛的应用前景。 如果将高效液相色谱(HPLC)、毛细电泳(CE)等技术联用对药物进行分析,是分析化学较为活跃的发展领域,此方法彰示着化学发光法的潜在优势。 下面介绍一些化学发光法的研究成果: 基于碱性介质中敌百虫增强鲁米诺-H2O2体系发光的研究,建立了测定敌百虫的流动注射化学发光分析方法。该法测定敌百虫的线性范围为 1.0×10-8—1.0×10-5g/mL,根据IUPAC建议计算出检出限为3.2×10-9g/mL,相对标准偏差为1.10%(1.0×10-7g/mL的敌百虫,n=11)。对蔬菜中的敌百虫进行固相萃取,有效地除去蔬菜中的干扰物质,并对蔬菜样进行加标测定,回收率范围在88.5%—92.6%之间。 阿莫西林在硫酸溶液中的降解产物与Ce(Ⅳ)在罗丹明6G的增敏作用下可产生化学发光。据此建立了流动注射化学发光测定阿莫西林的新方法。该方法线性范围为0.01~20.0mg·L-1,检出限为

0.008mg·L-1,相对标准偏差(n=11,C=1.0mg·L-1为0.7%。方法用于药物中阿莫西林含量的测定,结果满意。 基于碱性介质中莱克多巴胺对鲁米诺-铁氰化钾体系化学发光的增敏作用,研究了各因素对化学发光的影响。结果表明,在最佳发光条件下,相对发光强度与莱克多巴胺浓度在 4.0×10-9~8.0×10-7 g.mL-1范围内呈良好的线性关系,检出限为2.5×10-9 g.mL-1,相对标准偏差为5.6%。应用该方法成功分析了猪肉和尿样中莱克多巴胺的含量,回收率为69.3%~101.3%,结果令人满意。 在甲醛存在下,高锰酸钾与尿酸能够发生化学发光反应,产生很强的化学发光。据此采用流动注射技术,建立了一种利用高锰酸钾甲醛尿酸化学发光体系测定尿酸的化学发光分析法。方法的检出限为6×10-6 g/L;相对标准偏差为1. 8% (4. 0×10-4 g/L尿酸,n=11 );线性范围为2. 0×10-5 ~5. 0×10-3g/L。本法用于人体尿液中尿酸的测定,结果令人满意。 在碱性条件下,铁氰化钾氧化鲁米诺产生发光,盐酸异丙肾上腺素对该体系有显著的增强作用。基于此并结合流动注射技术建立了测定盐酸异丙肾上腺素的新方法。该方法具有很高的灵敏度,检出限为8.6ng L(IUPAC) ;线性范围为0 .0 5~10 μg L。对1.0 μg L盐酸异丙肾上腺素平行测定11次,其相对标准偏差为3.6 %。 …… 化学发光法的分析对象可分为无机物(无机离子、N的氧化物、含S化合物)有机物、聚合物、活性氧、纳米分子等

电化学发光分析研究进展

电化学发光分析研究进展 电化学发光是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射。电化学发光与化学发光相同之处是二者的发光均由进行能量电子转移反应的组分所产生;而不同之处是电化学发光由电极上施加的电压所引发和控制,化学发光是由试剂的混合所引发和控制。根据电化学发光的发光强度进行分析的方法称为电化学发光分析法。该法不仅具有化学发光分析的灵敏度高、线性范围宽和仪器简单等优点,而且具有电化学分析控制性强、选择性好等优点。近年来,在新电化学发光试剂的合成和应用研究方面取得了比较大的发展,特别是电化学发光在免疫分析中的应用引起人们极大的研究兴趣。 福州大学,长春应用化学研究所,华东师范大学,陕西师范大学等单位在电化学发光分析新体系和新技术研究方面取得一系列的成果,受到国内外同行的关注。国内外对电化学发光分析法的研究均有评述。 本文拟侧重介绍ECL体系及其在临床分析研究中的应用,同时,对我们近年来在电化学发光分析方面的研究工作也作以简要介绍。 1电化学发光体系及其应用 ECL体系按发光试剂的种类可以分为以下两类:(1)金属配合物电化学发光体系; (2)有机化合物的电化学发光体系。 1.1无机化合物的电化学发光体系 无机化合物电化学发光体系中,最典型的电化学发光试剂是钌联吡啶配合物Ru(bpy)32+,该试剂在水溶液和有机溶剂中发光效率高,溶解度好;可进行可逆单电子转移反应,在电化学发光基础理论和分析应用研究中占有重要地位。已报道ECL金属配合物有Ru, Os, Cr, Cd, Pd, Pt, Re, Ir, Mo,Tb, Eu, Cu, Al等的金属配合物[1],其中Ru, Os,Re的金属配合物具有良好的ECL性质。合成高发光效率可标记的ECL金属配合物是电化学发光免疫分析和核酸分析中一个重要的研究方向。Blackburn[12]等合成了可标记的Ru(bpy)32+类物质,建立了地高辛和促甲状腺激素(TSH)等物质的电化学发光免疫分析方法。研究金属配合物与共反应物的ECL反应,不仅可以提高检测金属配合物的灵敏度,而且可以建立测定共反应物的ECL方法,拓宽电化学发光分析的应用范围。董绍俊等人利用金属EDTA螯合物与Ru(bpy)32+产生ECL,建立了测定金属离子的电化学发光分析法[13]。Richter 利用冠醚对金属离子的识别以及与(2, 2′-bipyridine)2Ru-4-(N-aza-18-crown-6-methyl-2,2′-bipyridine)-TPA的电化学发光反应,建立了测定Pb2+, Hg2+, Cu2+和K+的电化学发光分析法[14]。Bard等人利用Na+冠醚对钌联吡啶电化学发光的增强作用,建立了检测Na+离子的电化学发光分析法[15]。Martin等人利用钌联吡啶与辅酶NADH以及酶反应的产物的电化学发光建立了测定葡萄糖、乙醇、二氧化碳、胆固醇和葡萄糖-6-磷酸脱氢酶的电化学发光分析法[16]。我们基于罗丹明B对亚硫酸根在铂电极上弱电化学发光的增敏作用,建立了测定亚硫酸氢钠的能量转移电化学发光新方法,并用于药物VK3和白糖中亚硫酸氢钠的测定[17]。电化学发光分析法已用于测定罂粟,含氨基的生物碱,海洛因,利格鲁卡因,蔗糖,果糖,甘露糖,甘油,柠檬酸,酒石酸,三甲胺,氨基酸,脯氨酸,4-羟基脯氨酸等物质。

纳米材料在鲁米诺体系化学发光分析应用中的研究进展-

文章编号:1001-9731(2015)18-18009-07 纳米材料在鲁米诺体系化学发光分析应用中的研究进展? 徐开恩1,姚曼文1,方湘怡2 (1.同济大学材料科学与工程学院,上海201804;2.西安交通大学理学院,西安710049) 摘一要:一化学发光理论日趋成熟,但化学发光技术推广应用仍然受到发光效率低二选择性差二条件苛刻等缺陷的限制.纳米材料的量子尺寸效应二大比表面积二高表面能等特点,使得纳米材料具有很好的化学活性和生物相容性.纳米材料在作为催化剂二纳米反应平台二离子标记物二能量受体等方面在化学发光分析中都有大量应用.主要阐述了一些基于纳米材料参与的鲁米诺化学发光体系并结合一些现代分离技术和免疫分析技术的研究报道. 关键词:一纳米材料;化学发光;鲁米诺 中图分类号:一O65;TB34文献标识码:A DOI:10.3969/j.issn.1001-9731.2015.18.002 1一引一言 化学发光分析方法具有灵敏度高二测定线性范围宽二仪器设备简单二分析速度快二无放射性污染等优点.它作为一种高灵敏的微量及痕量分析新方法,发展迅猛,具有广泛的应用前景. 鲁米诺作为一种人工合成的最常见的有机化学发光试剂,它的结构简单,性质稳定,且易于合成,水溶性好.鲁米诺化学发光体系是目前研究和应用最广泛的化学发光体系.尽管如此,鲁米诺化学发光的反应速率比较慢,发光效率较低,其量子产量仅有约0.01~0.05.虽然人们常向体系中加入一些无机催化剂或酶来提高反应速率,增强鲁米诺的发光效率,但是其中许多催化剂或增强剂,比如一些蛋白酶,催化条件苛刻,不稳定,容易失活,使得用化学发光技术来检测的应用范围受到很大制约. 近年来,随着纳米技术以及生物分析技术等现代技术的迅猛发展,纳米材料在化学发光分析中得到广泛应用,也使得化学发光分析技术应用范围得到进一步扩大.纳米材料在生物标记免疫分析中的应用取得了突飞猛进的进展.本文就纳米材料的特点以及不同纳米材料应用于鲁米诺化学发光体系中的不同作用,讨论并总结了近年来相关研究成果. 2一纳米材料的特点 当物质被加工到纳米尺寸时,材料就会出现表面效应二小尺寸效应二量子尺寸效应和宏观量子隧道效应.纳米材料在生物学二医学二光学二电子学等领域得到广泛应用就是得益于它的这些特殊的物理化学性质.以零维纳米颗粒为例,微粒随着粒径的下降,其比表面积二表面活性原子数二表面能二表面张力都急剧增加.这使得纳米微粒对周围环境十分敏感,很容易与外界环境发生一些相互作用. 3一纳米材料在化学发光免疫分析中的运用化学发光免疫分析(CLIA)是化学发光法和免疫分析法结合的产物,而随着纳米技术的飞速发展,纳米材料的无机有机自组装复合的研究日趋成熟[1].以纳米材料作为一种新型免疫标记物,结合高效液相色谱分析法二毛细管电泳分析法二分子印迹法等现代分离技术和免疫分析方法,形成了新型高灵敏度二高特异性的纳米材料化学发光免疫分析法.这种免疫分析方法可以用于检测药物二蛋白质二DNA二疾病病原体以及其它有机化合物.纳米标记探针的出现使得人们能够更好地在纳米尺度上对生命体系内的痕量物质进行有效的分析和检测,这对生命活动机理的阐述和疾病的早期诊断具有非常重要的意义. 基于纳米材料参与鲁米诺体系化学发光免疫反应中的作用不同,本文将这些纳米材料按作用具体分为催化增敏型二负载平台型二标记溶出型以及能量受体型等. 3.1一催化增敏型 一些原本不活泼的贵金属例如金二银二铂金等在纳米尺寸下也具有了很好的化学活性,在化学发光体系中表现出很好的催化性能,在免疫反应中也具有很好的生物相容性.早在2005年[2],已经有人报道了纳米金鲁米诺过氧化氢体系中的催化作用.纳米金促进电子的转移和自由基的产生是催化机理的关键所在.此后二纳米银[3,13-15]二纳米金银合金[21]以及纳米铂[23]都对化学发光有一定的催化效果,因为纳米银的氧化还原电位比金二铂低,所以相比纳米金二纳米铂,纳米银具有更好的催化活性[3].纳米颗粒的集聚[18-19]也对化学发光有一定影响. 除了一些贵金属纳米材料外,一些纳米金属氧化 90081 徐开恩等:纳米材料在鲁米诺体系化学发光分析应用中的研究进展 ?基金项目:国家自然科学基金资助项目(81371642) 收到初稿日期:2014-10-13收到修改稿日期:2015-04-10通讯作者:姚曼文,E-mail:y aomw@ton gj i.edu.cn 作者简介:徐开恩一(1990-),男,江苏江阴人,硕士,师承姚曼文老师,从事化学发光研究.

相关主题
文本预览
相关文档 最新文档