当前位置:文档之家› 非正弦周期信号及其分解

非正弦周期信号及其分解

非正弦周期信号剖析

第十三章非正弦周期电流电路和信号的频谱 重点: 1. 非正弦周期电流电路的电流、电压的有效值、平均值; 2. 非正弦周期电流电路的平均功率 3. 非正弦周期电流电路的计算方法 难点: 1. 叠加定理在非正弦周期电流电路中的应用 2. 非正弦周期电流电路功率的计算 章与其它章节的联系: 三相电路可以看成是三个同频率正弦电源作用下的正弦电流电路,对它的计算,第九章正弦电流电路中所阐述的方法完全适用。 §13.1 非正弦周期信号 生产实际中不完全是正弦电路,经常会遇到非正弦周期电流电路。在电子技术、自动控制、计算机和无线电技术等方面,电压和电流往往都是周期性的非正弦波形。 非正弦周期交流信号的特点: 1) 不是正弦波 2) 按周期规律变化,满足:(k=0,1,2…..) 式中T 为周期。图 13.1 为一些典型的非正弦周期信号。 图13.1(a)半波整流波形(b)锯齿波(c)方波 本章主要讨论非正弦周期电流、电压信号的作用下,线性电路的稳态分析和计算方法。采用谐波分析法,实质上就是通过应用数学中傅里叶级数展开方法,将非正弦周期信号分解为一系列不同频率的正弦量之和,再根据线性电路的叠加定理,分别计算在各个正弦量

单独作用下电路中产生的同频率正弦电流分量和电压分量,最后,把所得分量按时域形式叠加得到电路在非正弦周期激励下的稳态电流和电压。

§13.2 周期函数分解为付里叶级数 电工技术中所遇到的非正弦周期电流、电压信号多能满足展开成傅里叶级数的条件,因而能分解成如下傅里叶级数形式: 也可表示成: 以上两种表示式中系数之间关系为: 上述系数可按下列公式计算: (k=1,2,3……)求出a0、a k、b k便可得到原函数f(t) 的展开式。 注意:非正弦周期电流、电压信号分解成傅里叶级数 的关键在于求出系数a0、ak、bk ,可以利用函数的某种 对称性判断它包含哪些谐波分量及不包含哪些谐波分量, 可使系数的确定简化,给计算和分析将带来很大的方便。图 13.2

信号采样与及恢复过程中的混叠及其滤波

信号采样与及恢复过程中的混叠及其滤波 一、实验目的: (1)理解连续时间信号的采样与恢复过程; (2)掌握采样序列的频域分析和滤波,信号的恢复,掌握Shannon 采样定理; (3)学会利用MATLAB 软件分析信号采样、滤波与恢复的过程。 (4)学会FIR 滤波器的简单设计方法 二、实验内容: 给定原始信号如下式所示: 12()10.5sin 20.2sin 2f t f t f t ππ=++, 其中,12,f f 是信号原始频率(本实验中为自选常数,1f 为低频,2f 为高频)。确定一个采样频率s f 对()f t 进行采样,再将采样得到的序列 进行DFT ,画出过程中各信号的图形。进行频域高、低频滤波,再反变换得出处理后恢复出来的信号。将实验过程中得到的图形与理论图形进行比较,发现不同点并加以解释。 三、实验过程: 先选定f1=50hz 、270f Hz =,则原始信号表示为: ()10.5sin(250)0.2sin(270)f t t t ππ=+?+? 1、 原信号时域截取: 因为在计算机中只能计算离散的点列,若要用MATLAB 处理图形,只能先对信号进行截取和采样。本实验选定矩形截取窗口的宽

度为原信号周期的m 倍,m 为正整数。所以画出截取后的信号图像为 图1截断后的信号图像 原信号中低频为50Hz ,高频为70Hz ,取采样频率s f 为3倍的2f ,即370210fs Hz Hz =?=。50和70的最大公约数为10,所以原信号的最小正周期为1/10s ,这里取m 为3(即取窗口函数的宽度为3/10s ),相应的采样点数=1400.342Nc ?=,所以窗口函数为 ()100.30t s t ---≤

检测正弦信号相位差算法的研究(精)

检测正弦信号相位差算法的研究 程捷 (中国计量学院信息工程系, 杭州310034 摘要本文基于最小二乘原理和FFT 的选频特性, 讨论了二种测量正弦信号相位差的方法。该算法适用于短信号序列的相位测量。实验结果表明这二种算法具有数据处理量少, 准确度高的特点。关键词相位检测FFT 最小二乘法 一、引言 有直读法, 本文基于最小二乘原理和快速傅里叶变换(FFT 的选频特性, 提出了用最小二乘法和FFT 检测正弦信号相位差的算法。影响算法的主要因素是采样点数。利用最小二乘法数据处理量少, 准确度高, 而利用FFT 来检测相位差, 算法过程简捷。 二、算法的理论分析 11最小二乘相位测量的算法 假设有两正弦信号v 1(t 、v 2(t 被采样频率f s 采样, 得到一组M 个采样点。待处理的信号如下式所示: v 1(t =V 1sin (Ξt +Υ1 v 2(t =V 2sin (Ξt +Υ2 (1 展开上式可得 v 1(t =C 0sin Ξt +C 1co s Ξt v 2(t =D 0sin Ξt +D 1co s Ξt (2 其中: C 0=V 1co s Υ1, C 1=V 1sin Υ1 D 0=V 2co s Υ2, D 1=V 2sin Υ2故有 V

1C 2 +C 21 , Υ1=arc tg C 0 +〔1-sgn (C 0 2 V 2 D 20+D 2 1, 2tg D 0 2 (3 , C j 、D j 参数(j =0, 1 。为此, 需要应用最小二乘法。根据C j 、D j 参 数总的测量残差平方和最小, 用求偏导数的方法得到C j 、D j 参数的最小二乘估计。 假设信号频率为f =50H z , 采样频率为f s , 选取一定量的采样数据(取决于周期数K 的值 , 则M =I N T (Kf s f =I N T (KN , 这里, I N T 表示取整。采样间隔为?=1 f s , 对连续的 正弦信号按一定的时间间隔?进行采样, 得到 v i (n ? (i =1, 2, ; n =1, 2, …M 。对v 1(t 计算出各采样点值v 1(t 0 , v 1(t 1 , …, v 1(t M -1 , 可得到 v 1(t 的测量残差为: v i =C 0sin Ξt i +C 1co s Ξt i -v 1(t i i =0, 1, …, M -1 (4

50Hz非正弦周期信号的分解与合成实验报告

硬件实验 实验一50H z非正弦周期信号的分解与合成 一、实验目的 1. 理解并掌握信号分解与合成的原理。 2. 观测50Hz非正弦周期信号的频谱,并与其傅立叶级数展开式中各项的频率与系数比较。 3. 观测基波和其谐波的合成。 二、实验设备 1.信号与系统实验箱:TKSS-C型; 2.双踪示波器。 三、实验原理 1.一个非正弦周期函数,只要符合狄里赫利条件,可以用一系列频率成整数倍的正弦函数来表示,其中,与非正弦具有相同频率的成分称为基波或一次谐波,其它成分根据其频率为基波频率的2、3、4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.一个非正弦周期波也可以分解为无限个不同频率的谐波成分,相反,不同频率的谐波可以合成一个非正弦周期波。 3.一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1,方波频谱图如图1.1表示 图1-1 方波频谱图 图1.1 方波的频谱图 下面是各种不同波形的傅立叶级数表达式 方波 三角波 正弦整流半波 正弦整流全波

矩形波 (1)方波 (2)三角波 (3)半波 (4)全波 (5)矩形波 实验装置的结构如图1.2所示 图1.2信号分解与合成实验装置结构框图, 图中,LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。1BPF ~6BPF 为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。 四、预习要求 在做实验前必须认真复习教材中关于周期性信号傅立叶级数分解的有关内容。 五、实验内容及步骤 1.调节函数信号发生器,使其输出50Hz 的方波信号,并将其接至信号分解实验模块BPF 的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz 成分BPF 的输出幅度为最大。 2.将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。 )7sin 7 15sin 513sin 31(sin 4)(???++++=t t t t u t u m ωωωωπ)5sin 251 3sin 91(sin 8)(2???++-=t t t U t u m ωωωπ)3cos 3sin 312cos 2sin 21cos (sin 2)(???++++=t T t T t T U T U t u m m ωτπωτπωτππτ2111()(sin cos 2cos 4)24315 m U u t t t t πωωωπ=+--+???)6cos 351 4cos 1512cos 3121(4)(???+---=t t t U t u m ωωωπ

信号的采样与恢复

实验报告 课程名称:信号分析与处理 指导老师: 成绩: 实验名称:信号的采样与恢复 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1. 了解信号的采样方法与过程以及信号恢复的方法。 2. 验证采样定理。 二、实验内容和原理 2.1信号的自然采样 采样信号为周期Ts ,宽度τ的矩形脉冲信号S(t)。 s(t)的傅里叶变换为: 2(t)Sa( )()2 s s s n S n T ωτ πτ δωω+∞ -∞ = -∑ 采样的过程可以视为两个信号相乘:()()()s f t f t s t = 在频域中,1 ()()()2Sa()()2 s s s s F F S n F n T ωωωπ ωττωω+∞ -∞= *=-∑ 可以看到自然采样后的频谱除了左右平移采样信号的角频率ωs 外,还按取样函数Sa(x)的 规律衰减。 时域采样定理:如果采样信号的频率为fs ,原信号的最大频率为f m ,为了采样后信号的频谱不混叠,需要有fs ≥2f m 。

2.2信号的恢复 在不发生频谱混叠的时候,将信号通过的低通滤波器,理论上可以完全恢复原信号。低通滤波器的截止频率略大于fm,即“频谱加窗”的方法。 如果发生了频谱混叠,则原信号的频谱不能完全被恢复,通过低通滤波器后输出的信号将产生失真。 本实验分别用500Hz三角波和正弦波作为输入信号,占空比50%和10%的0.4kHz、1kHz、2kHz、5kHz、10kHz的矩形脉冲作为采样信号,使用截止频率1kHz以及2kHz的低通滤波器,观察输出波形,验证采样定理。 实验中,受自然采样、实验滤波器效果的限制,恢复后的波形难免都会有失真。三、主要仪器设备 PC一台、myDAQ设备一套、面包板一块、导线、电容、电阻若干。 四、操作方法和实验步骤 1.编辑波形文件:正弦波峰峰值4V、频率500Hz,与10kHz、幅值1V、占空比50%的方 波相乘,保存波形文件。改变方波频率为5kHz、2kHz、1kHz、400Hz,重复以上过程。 改方波占空比为10%,重复以上过程。改正弦波为峰峰值1V、频率500Hz三角波,重复以上过程。共获得5*2*2=20个波形文件。 2.连接线路: 3.加载步骤1中生成的波形,打开slope,观察并保存两个通道的波形。 4.改变参数,变为截止频率2kHz的滤波器,重复步骤1-3。共获得40个波形图。 5.参数: 1kHz滤波器:R1=R2=5.1kΩ,C1=C2=10nF (103) 仿真结果:截止频率约1.1kHz

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

信号与系统——信号的采样与恢复实验

实验六 信号与系统实验 1.信号的采样与恢复实验 1.1实验目的 (1)熟悉信号的采样与恢复的过程 (2)学习和掌握采样定理 (3)了解采样频率对信号恢复的影响 1.2实验原理及内容 (1)采样定理 采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号等时间间隔上瞬时值表示,这些值包含该信号全部信息,利用这些值可以恢复原信号。采样定理是连续时间信号与离散时间信号的桥梁。 采样定理:对于一个具有有限频谱且最高频率为max w 的连续信号进行采样,当采样频率s w >=2max w 时,采样函数能够无失真地恢复出原信号。 (2)采样信号的频谱 连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为 )]([)2 ( )(s n s s nw w j F nw Sa T A jw F -= ∑ +∞ -∞ =τ τ 它包含了原信号频谱以及重复周期为s w 的原信号频谱的搬移,且幅度按 )2 (ττ s nw Sa T A 规律变化。所以抽样信号的频谱便是原信号频谱的周期性拓延。 (3)采样信号的恢复 将采样信号恢复成原信号,可以是用低通滤波器。低通滤波器的截止频率c f 应当满足 max max f f f f x c -≤≤。实验中采用的低通滤波器的截止频率固定为 Hz RC f 8021≈=π (4)单元构成 本实验电路由脉冲采样电路和滤波器两部分构成,滤波器部分不再赘述,其中采样保持部分电路由一片CD4052完成。此电路有两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲。 1.3实验步骤 本实验在脉冲与恢复单元完成。 (1)信号的采样 1)使波形发生器第一路输出幅值3V 、频率10Hz 的三角波信号;第二路输出幅值5V 、频率100Hz 、占空比50%的脉冲信号,将第一路信号接入IN1端;作为输入信号,第二路信号接入Pu 端,作为采样脉冲。 2)用示波器分别测量IN1端和OUT1端,观察采样前后波形的差异。 3)增加采样脉冲的频率为200、500、800等值。观察OUT1端波形的变化。解释现象产生的原因。

迭代法正弦信号频率估计

频率估计的相位加权平均算法及其迭代方法 在信号处理领域,估计复高斯白噪声环境中的单频复正弦信号的频率是一个十分重要的问题,其应用十分广泛。如在系统频率同步时,利用导频进行频偏估计等。 根据最大似然(ML )准则,解决该问题的最优方法是搜索周期图的谱峰位置,但是,即使采用FFT 快速算法,这种最大似然估计方法仍然具有非常大的运算量。因此,在文献[12]-[16]中提出了一些运算量相对较低的简化算法。要评价这些简化算法的估计性能,信噪比门限是一个重要的指标。某一算法的信噪比门限指的是该算法估计结果的均方误差开始离开CRB (Cramer-Rao bound )时的信噪比值。 文献[12]-[16]提出的方法中,WPA 方法[12]具有最低的运算量,但是其存在信噪比门限随所估计的复正弦信号频率的增大而升高的问题。为了克服这个问题,文献[16]提出了WNLP 方法,该方法可使得信噪比门限在整个[,)ππ-的估计范围内保持不变,但WNLP 方法的信噪比门限较高,当所估计的复正弦信号频率较低时,WNLP 方法的信噪比门限将高于WPA 方法。因此,本文提出了一种基于WPA 方法的迭代方法。该迭代方法不仅能在整个[,)ππ-的估计范围内保持其信噪比门限不变,而且其信噪比门限远低于WNLP 方法的信噪比门限。 .1 相位加权平均法 叠加复高斯白噪声的复正弦信号为: ()()0j n n s n Ae z ωθ+=+ 式中,0,1,2,,1n N =- 。 采样时刻序列表示采样周期的整数倍。主要关心的参量是频率0ω。n z 表示测量噪声。 记加权系数为:

22312212n N n N p N N ??????--?? ?????????=-?????????????? 。 频率的估计为: 11n n n n n x x x x ++=∠-∠=∠ , 2 010N n n n t p x x ?-+==∠∑ 。 式中2 01N n t p -==∑;0?是无偏估计。其中n 为相邻2点的相位差。Kay 提出的频率估 计算法在高信噪比下达到CR 门限。 在较高信噪比SNR > 6dB 时,估计误差可以达到CRB. Kay 方法理论上可以计算的频率范围为(),ππ-,其主要缺点是低信噪比情况下性能较差, 其门限信噪比还会随着待估频率的增大而增大. Kim 等人在Kay 方法的基础上, 针对Kay 方法的高信噪比门限问题,提出了前置矩形滤波器的思路,通过这一预处理, 极大地改善了信噪比门限这一问题,且只增加了少量的计算量, 然而Kim 方法的不足在于其频率估计范围极大地减小. 当前置滤波器为长度为M 的矩形滤波器时, 频率估计器可以获得()1010log M 的增益,但是其频率估计范围仅为(),M M ππ-,这种方法是以减小频率估计范围为代价来达到使频率估计方法适应于低信噪比情况。 另一方面,从最大谱峰搜索这一思路出发FITZ 首先推导出一种快速测频方法,如下式, ()()() (){} 016arg 121J N m m N n R m J J ω=≈-++∑

实现正弦信号的采样与重构课程设计报告

东华理工大雪软件学院课程设计报告 课程设计题目:实现正弦信号的采样与重构 学生姓名:陈俊 学号:08113203 专业:信息工程 班级:081132 指导教师:李金萍 2011 年 1 月 6日

目录 实验目的 (2) 实验原理 (2) MATLAB简介 (3) 实验步骤 (5) 程序代码 (6) 实验效果图 (9) 心得体会 (10) 参考文献 (10) 附录 (11)

一、试验目的 1、了解信号的采样方法与过程以及信号恢复的方法。 2、通过实验前对MATLAB软件的学习,更好的掌握MATLAB 软件的使用 3、验证采样定理。 二、试验原理 1、离散时间信号可以从离散信号源获得,也可以从连续时间信号采样而得。采样信号x s(t)可以看成连续信号x (t)和一组开关函数s(t)的乘积。s(t)是一组周期性窄脉冲,如图2-5-1,T s称为采样周期,其倒数f s=1/T s 称采样频率。 图2-5-1 矩形采样信号 对采样信号进行傅里叶分析可知,采样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。平移的频率等于采样频率f s及其谐波频率2f s、3f s……。当采样信号是周期性窄脉冲时,平移后的频率幅度按sinx/x规律衰减。采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。 2、采样信号在一定条件下可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f n的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出端可以得到恢复后的原信号。

三、MATLAB简介 软件的功能特点: 在科学研究和工程应用中,往往要进行大量的数学计算,其中包括矩阵运算。这些运算一般来说难以用手工精确和快捷地进行,而要借助计算机编制相应的程序做近似计算。 Matlab就解决这些问题。Matlab语言有如下特点: 1.编程效率高 它是一种面向科学与工程计算的高级语言,允许用数学形式的语言编写程序,且比Basic、Fortran和C等语言更加接近我们书写计算公式的思维方式,用Matlab编写程序犹如在演算纸上排列出公式与求解问题。因此,Matlab语言也可通俗地称为演算纸式科学算法语言由于它编写简单,所以编程效率高,易学易懂。 2.用户使用方便 Matlab语言是一种解释执行的语言,它灵活、方便,其调试程序手段丰富,调试速度快,需要学习时间少。人们用任何一种语言编写程序和调试程序一般都要经过四个步骤:编辑、编译、连接以及执行和调试。各个步骤之间是顺序关系,编程的过程就是在它们之间作瀑布型的循环。具体地说,Matlab运行时,如直接在命令行输入Mailab语句(命令),包括调用M文件的语句,每输入一条语句,就立即对其进行处理,完成绩译、连接和运行的全过程。又如,将Matlab源程序编辑为M文件,由于Mat1ab 磁盘文件也是M文件,所以编辑后的源文件就可直接运行,而不需进行编译和连接。在运行M文件时,如果有错,计算机屏幕上会给出详细的出锗信息,用户经修改后再执行,直到正确为止。 所以可以说,Mat1ab语言不仅是一种语言,广义上讲是一种该语言开发系统,即语言调试系统。

信号的采样与恢复实验报告

竭诚为您提供优质文档/双击可除信号的采样与恢复实验报告 篇一:实验2:连续信号的采样和恢复 电子科技大学 实验报告(二) 学生姓名:学号:指导教师:一、实验室名称:信号与系统实验室二、实验项目名称:连续信号的采样和恢复三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 xpT(t) ) 图3.4-1实际采样和恢复系统 采样脉冲:p(t)??F ?pT(j?)?T 2?T ?? ?

k???(:信号的采样与恢复实验报告) 2?ak?(??k?s) 其中,?s? ,ak? ?sin(k?s?/2)T k?s?/2 F ,???T。 采样后的信号:xs(t)???xs(j?)? 1T ? ?x(j(? k??? ?k?s) 当采样频率大于信号最高频率两倍,可以用低通滤波器hr(j?)由采样后的信号xs(t)恢复原始信号x(t)。 四、实验目的与任务: 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。

五、实验内容: 1、采样定理验证 2、采样产生频谱交迭的验证 六、实验器材(设备、元器件): 数字信号处理实验箱、信号与系统实验板的低通滤波器模块u11和u22、采样保持器模块u43、pc机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。 七、实验步骤: 打开pc机端软件ssp.exe,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 【1.采样定理验证】 1、连接接口区的“输入信号1”和“输出信号”,如图1所示。 图1观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6khz”。按“F4”键把采样脉冲设为10khz。 3、点击ssp软件界面上的 按钮,观察原始正弦波。 4、按图2的模块连线示意图连接各模块。 图2观察采样波形的模块连线示意图

基于LabVIEW的正弦信号频率与相位测量

基于LabVIEW 的正弦信号频率与相位测量 1. 前言 信号频率与相位的测量具有重要的实际意义。本文调研了频率与相位的多种测量算法,并借助LabVIEW 编程实现。在此基础上,对各种算法进行了比较研究,且提出了行之有效的改进措施。 2. 采样定理与误差分析 2.1 采样定理 时域信号()f t 的频谱若只占据有限频率区间m m ωω(-,),则信号可以用等间隔的采样值唯一表示,而最低采样频率为m 2f 。采样定理表明:信号最大变化速度决定了信号所包含的最高频率分量,要使采样信号能够不失真地反映原信号,必须满足在最高频率分量的一个周期内至少采样两个点。 2.2 误差分析 对连续周期信号()a x t 进行采样得离散序列()d x n ,如果满足采样定理,则离散序列 ()d x n 的傅里叶级数()dg X k 是连续信号()a x t 的傅里叶级数1()ag X k ω的周期延拓,否则会 出现两种形式的误差。 2.2.1 泄漏误差 在连续信号()a x t 一个周期1T 内采样1N 个点,如果正好满足11s N T T =(s T 为采样间隔),则是完整周期采样,采样结果()d x n 仍为周期序列,周期为1N 。基于()d x n 一个周期1N 个点计算离散傅里叶级数()dg X k ,由()dg X k 可以准确得到连续信号()a x t 的傅里叶级数 1()ag X k ω。如果在连续信号()a x t 的M 个周期时间内采样整数1N 个点,即11s N T MT =, 也是完整周期采样。在此情况下,采样结果()d x n 仍为周期序列,周期为1N ,但()d x n 的一个周期对应于()a x t 的M 个周期,由离散序列()d x n 仍然可以准确得到连续信号()a x t 的

非正弦周期信号的分解与合成

实验五50H z非正弦周期信号的分解与合成 班级:信工 姓名:xx 学号:xxxxxxxxx 一、实验目的 1. 理解并掌握信号分解与合成的原理。 2. 观测50Hz非正弦周期信号的频谱,并与其傅立叶级数展开式中各项的频率与系数比较。 3. 观测基波和其谐波的合成。 二、实验设备 1.信号与系统实验箱:TKSS-C型; 2.双踪示波器。 三、实验原理 1.一个非正弦周期函数,只要符合狄里赫利条件,可以用一系列频率成整数倍的正弦函数来表示,其中,与非正弦具有相同频率的成分称为基波或一次谐波,其它成分根据其频率为基波频率的2、3、4、…、n等倍数分别称二次、三次、四次、…、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。 2.一个非正弦周期波也可以分解为无限个不同频率的谐波成分,相反,不同频率的谐波可以合成一个非正弦周期波。 3.一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式见表1-1,方波频谱图如图1.1表示 四、实验内容及步骤 实验内容: 1、调节函数信号发生器,使其输出50Hz的方波信号,并将其接至信号分解实验模块BPF的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz成分BPF的输出幅度为最大。 2、将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅值,并列表记录之。 3、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。 4、在3的基础上,再将五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。 5、分别将50Hz单相正弦半波、全波、矩形波和三角波的输出信号接至50HZ电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,记录之。 6、将50Hz单相正弦半波、全波、矩形波、三角波的基波和谐波分量接至加法器的相

采样与恢复

实验项目六:连续信号的采样和恢复 一、实验项目名称:连续信号的采样和恢复 二、实验目的与任务 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。 三、实验原理: 实际采样和恢复系统如图3.6-1所示。可以证明,奈奎斯特采样定理仍然成立。 x ) (t P T ) 图3.6-1 实际采样和恢复系统 采样脉冲: 其中,T s π ω2= ,2 /)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号: ∑∞ -∞ =-=?→←k s S F S k j X T j X t x )((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的 ()()2() F T T k s k p t P j a k ωπδωω+∞ =-∞ ←?→= -∑

信号)(t x S 恢复原始信号)(t x 。 四、实验内容 打开PC 机端软件SSP.EXE ,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 实验内容(一)、采样定理验证 实验步骤: 1、连接接口区的“输入信号1”和“输出信号”,如图3.6-2所示。 图3.6-2 观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。按“F4”键把采样脉冲设为10kHz 。 图3.6-3 2.6kHz 正弦波(原始波形) 3、点击SSP 软件界面上的按钮,观察原始正弦波,如图3.6-3 所示。 4、按图3.6-4的模块连线示意图连接各模块。

正弦信号的采样与恢复

***************** 实践教学 ******************* 计算机与通信学院 2013年春季学期 信号处理课程设计 题目:正弦信号的采样与恢复 专业班级: 姓名: 学号: 指导教师: 成绩:

摘要 通过对信号取样定理与信号恢复知识认识的学习,了解到数字信号处理的理论之后,了解到数字信号处理技术相对于模拟信号处理技术有许多优点,因此人们希望将模拟信号经过采样和量化编码形成数字信号,在采用数字信号处理技术进行处理。数字信号处理是一门理论与实践紧密结合的课程,而本课程设计是对正弦信号进行采样与恢复,通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中的多个周期中的一个周期频谱,并显示恢复后的时域连续信号,采用MATLAB软件进行一些仿真和设计,并对所得到的MA TLAB图形进行分析和比较。最后总结。 关键字:采样、恢复、 MATLAB、仿真

目录 前言 (1) 一、设计任务 (2) 二、低通滤波器 (3) 1、概念 (3) 2、工作原理 (3) 3、特点 (3) 三、设计原理 (4) 1、采样定理的原理 (4) 2、信号的恢复 (4) 四、设计流程图 (6) 五、设计内容与步骤 (7) 1、正弦信号的采样 (7) 1.1连续信号y=sin(t)和其对应的频谱 (7) 1.2 对连续信号y=sin(t)进行抽样并产生其频谱 (7) 2、通过低通滤波恢复原连续信号 (10) 总结 (13) 参考文献 (14) 致谢 (15) 附录 (16)

前言 随着信息科学和计算机技术的迅速发展,数字信号处理的理论与应用得到飞跃的发展,形成了一门及其重要的学科。数字信号处理是一门理论与实践紧密结合的课程。做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。过去用其他算法语言,实验程序复杂,在有限的实验课时内所做的实验内容少。MA TLAB 强大的运算和图形显示功能,可使数字信号处理上机实验效率大大提高。特别是它的频谱分析和滤波器分析与设计功能很强,使数字信号处理工作变得十分简单、直观。这样一来,使复杂的数字滤波器分析与设计的繁杂计算问题,变得容易接受,以实现的见到问题。 本实验设计的题目是:信号的采样与恢复、采样定理的仿真。通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,最后通过设计低通滤波器滤出抽样所得频谱中多个周期中的一个周期频谱,并显示恢复后的时域连续信号。实验中,原连续信号的频谱由于无法实现真正的连续,所以通过扩大采样点的数目来代替,理论上当采样点数无穷多的时候即可实现连续,基于此尽可能增加采样点数并以此来产生连续信号的频谱。信号采样过程中,通过采样点的不同控制采样频率实现大于或小于二倍最高连续信号的频率,从而可以很好的验证采样定理。信号恢复,滤波器的参数需要很好的设置,以实现将抽样后的信号进行滤波恢复原连续信号。 由于自己能力有限,此次课程设计肯定有很多不足,但在老师的帮助下,自己得到了很大的提升。使本课程设计进一步得到了完善。

信号系统非正弦周期信号的分解与合成实验报告

非正弦周期信号的分解与合成 一、实验目的 1.用同时分析法观测50Hz 非正弦周期信号的频谱,并与其傅利叶级数各项的频率与 系数作比较。 2.观测基波和其谐波的合成。 二、实验设备 1、THBCC-1型信号与系统 控制理论及计算机控制技术实验平台 2、PC 机(含“THBCC-1”软件) 三、实验原理 1.一个非正弦周期函数可以用一系列频率成整数倍的正弦函数来表示,其中与非正弦 具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、?、 n 等倍数分别称二次、三次、四次、?、n 次谐波,其幅度将随谐波次数的增加而减小,直 至无穷小。不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。 2.实验装置的结构图 3、各次不同波形及其傅氏级数表达式 方波 ) 7sin 7 15sin 5 13sin 3 1(sin 4)( +ω+ ω+ ω+ ωπ = t t t t A t f ,其中的T π= ω2 三角波

) 7 cos 49 1 5 sin 25 1 3 sin 9 1 (sin 8 ) ( 2 + ω - ω + ω - ω π =t t t t A t f ,其中的T π = ω 2 半波 半波的傅立叶频谱 正弦整流全波 正弦全波整流形波的傅立叶频谱 ) 8 cos 63 1 6 cos 35 1 4 cos 15 1 2 cos 3 1 2 1 ( 4 ) ( - ω - ω - ω - ω - π =t t t A t f ,其中T π = ω 2矩形波 矩形波形波的傅立叶频谱 四、实验内容及步骤

信号的采样与恢复

信号的采样与恢复实验 一、任务与目的 1. 熟悉信号的采样与恢复的过程。 2. 学习和掌握采样定理。 3. 了解采样频率对信号恢复的影响。 二、原理(条件) PC机一台,TD-SAS系列教学实验系统一套。 1. 采样定理 采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。采样定理是连续时间信号与离散时间信号之间的桥梁。 采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。三角波信号的采样如图4-1-1所示。 图4-1-1信号的采样 2. 采样信号的频谱 连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为

它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。所以抽样信号的频谱便是原信号频谱的周期性拓延。某频带有限信号被采样前后频谱如图4-1-2。 图4-1-2 限带信号采样前后频谱 从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。这样只需要利用截止频率适当的滤波器便可以恢复出原信号。 3. 采样信号的恢复 将采样信号恢复成原信号,可以用低通滤波器。低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为 1802f Hz RC π=≈ 图4-1-3 滤波器电路 4. 单元构成 本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。其中的采样保持部分电路由一片CD4052完成。此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。 三、内容与步骤 本实验在脉冲采样与恢复单元完成。 1. 信号的采样

信号取样与恢复实验报告概要

实验四信号取样与恢复 一、实验目的 1.了解模拟信号取样及恢复的基本方法。 2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。 3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。 4.熟悉DDS-3X25虚拟信号发生器的使用方法。 二、实验内容 1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。 2.有混叠条件下正弦信号的取样与恢复测试分析。 3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。 三、实验仪器 1.信号与系统实验硬件平台一台 2.信号取样与恢复实验电路板一块 3.DSO-3064虚拟示波器一台 4.DDS-3X25虚拟信号发生器二台 5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台 四、实验原理 1. 信号取样 信号取样与恢复实验电路板,如图4.1所示。该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。

) ()()(t s t f t f s =图4.1 信号取样与恢复实验电路板 电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。取样信号()s f t 可用(4-1)式来描述 (4-1) 式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则 ()0s t =。 电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。“恢复滤波器2”是一个截止频率可调,通带增益等于1的八阶巴特沃斯滤波器,其截止频率(转折频率)调节范围为0.1Hz~25kHz ,通过外接“控制时钟”信号f0来调节,滤波器转折频率为f0时钟频率的1/100。 由(4-1)式获取的取样信号()s f t 依然是一个时域信号。设()f t 的频谱为()F j ω,()s t 的频谱为()S j ω,则根据频域卷积定理,()s f t 的频谱 1 ()()*()2s F j F j S j ωωωπ = (4-2) 设取样脉冲序列的周期为s T 、脉冲宽度为τ,则 ()()Sa 2s s s n n S j n ωτωτωδωω∞ =-∞ ?? =- ??? ∑ (4-3) 式中2s s ωπ=为取样角频率、Sa()g 为取样函数,即()S j ω为取样函数包络下的冲激序列。此时 ()()1()()*()Sa 222 Sa 2s s s s n s s n s n F j F j S j F j n n F j n T ωωτ ωωωτωωππωττωω∞=-∞∞ =-∞?? ==-?? ????? ?? = -?? ?? ???∑∑ (4-4) 因此,取样信号的频谱()s F j ω是将原信号频谱()F j ω在ω轴上以s ω为间隔的非等幅周期延拓,如图4.2所示。若()F j ω的幅度归一化为1,则第n 个延拓()s F j n ωω-???? 的幅度为 ()Sa 2 s s n A n T ωτ τ ??= ??? (4-5)

噪声中正弦信号的经典法频谱分析

实验报告 一、实验名称 噪声中正弦信号的经典法频谱分析 二、实验目的 通过对噪声中正弦信号的经典法频谱分析,来理解和掌握经典谱估计的知识,以及学会应用经典谱估计的方法。 三、基本原理 1.周期图法:又称直接法。把随机信号)(n x 的N 点观察数据)(n x N 视为一能量有限信号,直接取)(n x N 的傅里叶变换,得)(jw N e X ,然后再取其幅值的平方,并除以N ,作为对)(n x 真 实的功率谱)(jw e P 的估计,以)(?jw PER e P 表示用周期图法估计出的功率谱,则2)(1)(?w X N w P n PER =。 2.自相关法:又称为间接法功BT 法。先由)(n x N 估计出自相关函数)(?m r ,然后对)(?m r 求傅里叶变换得到)(n x N 的功率谱,记之为)(?w P BT ,并以此作为对)(w P 的估计,即1,)(?)(?-≤=--=∑N M e m r w P jwm M M m BT 。 3.Bartlett 法:对L 个具有相同的均值μ和方差2σ的独立随机变量1X ,2X ,…,L X ,新随机变量L X X X X L /)(21+++= 的均值也是μ,但方差是L /2σ,减小了L 倍。由此得 到改善)(?w P PER 方差特性的一个有效方法。它将采样数据)(n x N 分成L 段,每段的长度都是M ,即N=LM ,第i 段数据加矩形窗后,变为L i e n x M w x M n jwn i N I PER ≤≤=∑-=-1,)(1)(?2 10 。把)(?w P PER 对应相加,再取平均,得到平均周期图2 1110 )(1)(?1)(∑∑∑==-=-==L i L i M n jwn i N i PER PER e n x ML w P L w P 。 4.Welch 法:它是对Bartlett 法的改进。改进之一是,在对)(n x N 分段时,可允许每一段的数据有部分的交叠。改进之二是,每一段的数据窗口可以不是矩形窗口,例如使用汉宁窗或汉明窗,记之为)(2n d 。这样可以改善由于矩形窗边瓣较大所产生的谱失真。然后按Bartlett

相关主题
文本预览
相关文档 最新文档