当前位置:文档之家› 生物医用复合材料的研究进展

生物医用复合材料的研究进展

生物医用复合材料的研究进展
生物医用复合材料的研究进展

《复合材料》课程论文

论文题目:“生物医用复合材料的研究进展”

——

学院:矿业学院

专业:矿物资源工程

班级:矿资091

学号:0908010394

学生姓名:任前伟

指导教师:成奖国

2011年12 月5 日

生物医用复合材料的研究进展

关键词:生物医用复合材料

0 引言

生物医用复合材料(biomedical composite materials)是由两种或两种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、替换和人工器官的制造[1]。长期临床应用发现,传统医用金属材料和高分子材料不具生物活性,与组织不易牢固结合,在生理环境中或植入体内后受生理环境的影响,导致金属离子或单体释放,造成对机体的不良影响。而生物陶瓷材料虽然具有良好的化学稳定性和相容性、高的强度和耐磨、耐蚀性,但材料的抗弯强度低、脆性大,在生理环境中的疲劳与破坏强度不高,在没有补强措施的条件下,它只能应用于不承受负荷或仅承受纯压应力负荷的情况。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,生物医用复合材料必将成为生物医用材料研究和发展中最为活跃的领域。

1 生物医用复合材料组分材料的选择要求

生物医用复合材料根据应用需求进行设计,由基体材料与增强材料或功能材料组成,复合材料的性质将取决于组分材料的性质、含量和它们之间的界面。常用的基体材料有医用高分子、医用碳素材料、生物玻璃、玻璃陶瓷、磷酸钙基或其他生物陶瓷、医用不锈钢、钴基合金等医用金属材料;增强体材料有碳纤维、不锈钢和钛基合金纤维、生物玻璃陶瓷纤维、陶瓷纤维等纤维增强体,另外还有氧化锆、磷酸钙基生物陶瓷、生物玻璃陶瓷等颗粒增强体。

植入体内的材料在人体复杂的生理环境中,长期受物理、化学、生物电等因素的影响,同时各组织以及器官间普遍存在着许多动态的相互作用,因此,生物医用组分材料必须满足下面几项要求:(1)具有良好的生物相容性和

物理相容性,保证材料复合后不出现有损生物学性能的现象;(2)具有良好的生物稳定性,材料的结构不因体液作用而有变化,同时材料组成不引起生物体的生物反应;(3)具有足够的强度和韧性,能够承受人体的机械作用力,所用材料与组织的弹性模量、硬度、耐磨性能相适应,增强体材料还必须具有高的刚度、弹性模量和抗冲击性能;(4)具有良好的灭菌性能,保证生物材料在临床上的顺利应用。此外,生物材料要有良好的成型、加工性能,不因成型加工困难而使其应用受到限制。

2 生物医用复合材料的研究现状与应用

2.1 陶瓷基生物医用复合材料

陶瓷基复合材料是以陶瓷、玻璃或玻璃陶瓷基体,通过不同方式引入颗粒、晶片、晶须或纤维等形状的增强体材料而获得的一类复合材料。目前生物陶瓷基复合材料虽没有多少品种达到临床应用阶段,但它已成为生物陶瓷研究中最为活跃的领域,其研究主要集中于生物材料的活性和骨结合性能研究以及材料增强研究等。

Al2O3、ZrO3等生物惰性材料自70年代初就开始了临床应用研究,但它与生物硬组织的结合为一种机械的锁合。以高强度氧化物陶瓷为基材,掺入少量生物活性材料,可使材料在保持氧化物陶瓷优良力学性能的基础上赋予其一定的生物活性和骨结合能力。将具有不同膨胀系数的生物玻璃用高温熔烧或等离子喷涂的方法,在致密Al2O3陶瓷髋关节植入物表面进行涂层,试样经高温处理,大量的Al2O3进入玻璃层中,有效地增强了生物玻璃与Al2O3陶瓷的界面结合,复合材料在缓冲溶液中反应数十分钟即可有羟基磷灰石的形成[2]。为满足外科手术对生物学性能和力学性能的要求,人们又开始了生物活性陶瓷以及生物活性陶瓷与生物玻璃的复合研究,以使材料在气孔率、比表面积、生物活性和机械强度等方面的综合性能得以改善。近年来,对羟基磷灰石(HA)和磷酸三钙(TCP)复合材料的研究也日益增多[3,4]。30% HA 与70%TCP在1150℃烧结,其平均抗弯强度达155MPa,优于纯HA和TCP陶瓷,研究发现HA-TCP致密复合材料的断裂主要为穿晶断裂,其沿晶断裂的程度也大于纯单相陶瓷材料。HA-TCP多孔复合材料植入动物体内,其性能起初类似于β-TCP,而后具有HA的特性,通过调整HA与TCP的比例,达到满足不同临床需求的目的。45SF1/4玻璃粉末与HA制备而成的复合材料,植入兔骨中

8周后取出,骨质与复合材料之间的剪切破坏强度达27MPa,比纯HA陶瓷有明显的提高。

生物医用陶瓷材料由于其结构本身的特点,其力学可靠性(尤其在湿生理环境中)较差,生物陶瓷的活性研究及其与骨组织的结合性能研究,并未能解决材料固有的脆性特征。因此生物陶瓷的增强研究成为另一个研究重点,其增强方式主要有颗粒增强、晶须或纤维增强以及相变增韧和层状复合增强等[3,5~7]。当HA粉末中添加10%~50%的ZrO2粉末时,材料经1350~1400℃热压烧结,其强度和韧性随烧结温度的提高而增加,添加50%TZ-2Y的复合材料,抗折强度达400MPa、断裂韧性为2.8~3.0MPam1/2。ZrO2增韧β-TCP复合材料,其弯曲强度和断裂韧性也随ZrO2含量的增加而得到增强。纳米SiC 增强HA复合材料比纯HA陶瓷的抗弯强度提高 1.6倍、断裂韧性提高2倍、抗压强度提高 1.4倍,与生物硬组织的性能相当。晶须和纤维为陶瓷基复合材料的一种有效增韧补强材料,目前用于补强医用复合材料的主要有:SiC、Si3N4、Al2O3、ZrO2、HA纤维或晶须以及C纤维等,SiC晶须增强生物活性玻璃陶瓷材料,复合材料的抗弯强度可达460MPa、断裂韧性达4.3MPam1/2,其韦布尔系数高达24.7,成为可靠性最高的生物陶瓷基复合材料。磷酸钙系生物陶瓷晶须或纤维同其它增强材料相比,不仅不影响材料的增强效果,而且由于其具有良好的生物相容性,与基体材料组分相同或相近,不会影响到生物材料的性能。HA晶须增韧HA复合材料的增韧补强效果同复合材料的气孔率有关,当复合材料相对密度达92%~95%时复合材料的断裂韧性可提高40%。

2.2 高分子基生物医用复合材料

研究表明几乎所有的生物体组织都是由两种或两种以上的材料所构成的,如人体骨骼和牙齿就是由天然有机高分子构成的连续相和弥散于其基质中的羟基磷灰石晶粒复合而成的。生物有机高分子基复合材料,尤其生物无机与高分子复合材料的出现和发展,为人工器官和人工修复材料、骨填充材料开发与应用奠定了坚实的基础。

生物陶瓷增强聚合物复合材料于1981年由Bonfield提出,目前的研究对象主要有:HA、AW玻璃陶瓷、生物玻璃等增强高密度聚乙烯(HDPE)和聚乳酸等高分子化合物[8,9]。HDPE-HA复合材料随HA掺量的增加,其密度也

增加,弹性模量可从1GPa提高到9MPa,但材料从柔性向脆性转变,其断裂形变可从大于90%下降至3%,因此可通过控制HA的含量调整和改变复合材料的性能。HA增强HDPE复合材料的最佳抗拉强度可达22~26MPa、断裂韧性达2.9±0.3MPam1/2。由于该复合材料的弹性模量处于自然骨杨氏模量范围之内,具有极好的力学相容性,并且具有引导新骨形成的功能。AW玻璃陶瓷和生物玻璃增强HDPE复合材料具有与HA增强HDPE复合材料相似的力学性能和生物学性能,复合材料在37℃的SBF溶液中体外实验研究表明,在其表面可形成磷灰石层,通过控制和调整AW玻璃陶瓷和生物玻璃的含量,使其满足不同临床应用的需求。

聚乳酸具有良好的生物相容性和可降解性,但材料还缺乏骨结合能力,对X光具有穿透性,不便于临床上显影观察。将聚乳酸与HA颗粒复合有助于提高材料的初始硬度和刚性,延缓材料的早期降解速度,便于骨折早期愈合。随着聚乳酸的降解吸收,HA在体内逐渐转化为自然骨组织,从而提高材料的骨结合能力和材料的生物相容性;此外可提高材料对X-射线的阻拒作用,便于临床显影观察。最近,国外采用一种新的共混及精加工工艺将HA均匀分散于PLLA基体中制备了超高强度生物可吸收PLLA-HA复合材料[10],随HA在PLLA基体中含量增加,材料的弯曲强度和弯曲模量也增加,其最高弯曲强度可达280MPa,它既有高分子的弹性又具有类皮质骨的刚度。将该材料浸入到SBF溶液中3天后即有大量HA晶体在表面沉积,具有骨结合能力,12周后材料具有210MPa的弯曲强度,高于皮质骨内固定材料弯曲强度200MPa的最底要求。因此该复合材料可望作为骨折内固定材料,广泛应用于临床。PDLLA-HA 复合内固定棒治疗兔子髁部骨折的实验研究表明[11],术后动物自由活动,不用任何外固定,所有动物伤口Ⅰ期愈合,无关节积液和窦道形成。X线摄片见3周时骨折端无移位,有明显骨痂生成,骨折线模糊。6周骨折愈后,骨折线消失,骨痂最多,以后各时间点骨折无移位和再骨折,骨痂逐渐减少。12周前材料可清晰显影,24周后模糊至消失。

碳纤维增强生物医用高分子复合材料是发展最早的一类医用复合材料,它主要用作骨水泥、人工关节和接骨板等[12,13]。碳纤维增强HDPE复合材料,其强度、刚性、抗疲劳和抗磨损性能均显著高于HDPE材料,因此它常用作承受复杂应力和摩擦作用的髋关节和膝关节。碳纤维增强聚砜复合材料

的抗扭强度最高可达100MPa,与金属板相比,其断裂模量可减少2~4倍。碳纤维增强聚甲基丙烯酸甲酯(PMMA)复合材料在90年代初就成功地用于颅骨缺损修复,其弯曲强度、断裂模量及其抗冲击性能均优于人体颅骨材料,对患者实施颅骨缺损修复后起到重要的防护作用。用四氟乙烯纤维与碳纤维复合制备成多孔复合材料,其表面积为宏观的1200倍,有利于生物组织的长入,它已用于牙槽骨、下颌骨、关节软骨的修复。

2.3 金属基生物医用复合材料

作为生物医用材料,金属材料占有极其重要的地位,它具有较好的综合力学性能和优良的加工性能,是国内外较早将其作为人体硬组织修复和植入的一类材料,但金属材料与机体的亲和性、生物相容性较差,在体液中存在材料腐蚀等问题。因此,除进一步优化材料的整体性能外,必须通过表面涂层、离子注入等技术进行表面处理。自国外1931年发表生物氧化物涂层的文献以来,涂层的技术和种类已得到不断的丰富和发展,但材料与骨组织之间的结合性能以及涂层与基体之间的界面结合性能仍是目前金属基复合材料的研究重点。近年来,随着涂层技术的不断发展,电化学沉积法、浸渍-热解法、水热处理法不断出现,它已成为金属基生物复合材料研究的一个重要方向,涂层材料的研究已从生物惰性涂层发展到生物活性材料以及非氧化物涂层材料[14~16]。

生物活性陶瓷能与骨形成直接的骨键合,早在70年代Hench就提出以金属材料为基体,表面涂覆生物活性陶瓷,使其既具有金属材料的优良力学性能,又具有生物活性陶瓷的表面生物活性特征。将生物活性陶瓷、生物玻璃和生物玻璃陶瓷用等离子喷涂于钛合金表面,生物玻璃涂层能与骨组织发生化学结合,结合界面处含有明显的Ca、P成分过渡区,用该法制备的钛合金人工骨、人工齿根已成功地应用于临床。近年来,我国采用两步烧结法,以膨胀系数与表面涂层和基体相匹配的材料作为中间层,分别将中间层材料及表面处理烧结在基体表面形成复合涂层,有效地解决了涂层与基体之间的界面结合性能。

非氧化物陶瓷涂层近几年发展较快,涂层的材料主要有氮化物、碳化物、硼化物和硅化物等,用作植入体抗磨损和腐蚀保护。钛合金表面经氮化处理,形成氮化钛,在常温模拟体液中浸泡,其抗腐蚀性能明显改善。采用离子注

入法,在金属材料表面注入C、N、B等元素,有效地提高了金属人工骨和人工齿根的腐蚀和耐磨性。此外,生物相容性也有较大的改善。

3 生物医用复合材料的研究趋势与展望

3.1 先进复合材料的研究

对生物材料来说,生物相容性、力学适应性和抗血栓性,都是不可缺少的条件。单一结构的生物材料由于其本身的结构所决定,很难满足人体环境的要求。而单纯的几种材料复合,虽然比单一生物材料在使用性能上有所提高,但其界面是一个薄弱环节,一系列性能在此发生突变而导致失效。因此,研究植入体在人体骨骼系统的各种受力状态下的力学行为,从生物力学方面指导材料的结构设计与加工处理。研究材料多相结构与多孔性机体组织的力学相容性、疲劳过程以及损伤的影响因素,调整其结构及有关相的组成,使得整体材料性能按梯度规律变化,从而研制出生物相容性和力学适应性、生物活性和生物惰性、抗血栓性等一系列生物材料。

3.2 生物材料的生理活化研究

材料生理活化研究是生物医用复合材料发展的一个重要方向,它利用现代生物工程技术,将生物活性组元引入生物材料,加速材料与机体组织的结合,并参与正常的生命活动,最终成为机体的一部分。目前,该项研究已在国内外引起关注。胶原与多孔羟基磷灰石陶瓷复合,其强度比HA陶瓷提高2~3倍,胶原膜还有利于孔隙内新生骨的长入,植入狗的股骨后仅4周,新骨即已充满大的孔隙。胶原与颗粒状的HA复合也已成为克服牙槽嵴萎缩的理想材料[17]。具有诱导成骨作用的骨形态蛋白同磷酸钙生物陶瓷复合,可赋予仅具有传导骨生长作用的磷酸钙生物陶瓷以诱导成骨能力,从而为具有长寿命的新一代人工骨材料的研制展现良好的前景。

3.3 仿生材料研究

最为理想的生物材料就是机体自身的组织,天然生物材料经过亿万年的演变进化,形成具有结构复杂精巧、效能奇妙多彩的功能原理和作用机制[1]。因此,参照自然规律,从材料科学的观点对其进行观察、测试、分析、计算、归纳和抽象,找出有用的规律来指导复合材料的设计与研究,制备成分、结构与天然骨组织相接近的复合替代材料,获得生物相容性好、具有良好生理效应和力学性能的人工骨替代材料。

3.4 组织工程材料研究

生物材料的研究目前已从植入材料与生物组织的界面相容性、植入材料的力学相容性研究转移到组织工程材料研究。它通过建立适当的组织再生环境,调动生物组织的主动修复能力诱导组织再生。组织工程材料的研究为利用细胞培养制造生物材料和人造器官开辟了光明前景。

4 参考文献

[1]《材料科学技术百科全书》编辑委员会.材料科学技术百科全书.中国大百科全书出版社.北京:1995

[2]全大萍.PDLLA/HA复合材料及其作为生物可吸收骨折内固定材料的研究.博士学位论文:武汉工业大学,1998

[3]巫辉,赵建国.人工颅骨与人体颅骨的基本力学性能.材料科学进展,1991,5(5):455~459

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

生物医用复合材料的发展和应用综述

生物医用复合材料的发展和应用 班级:材料科学与工程1103班 姓名:李海涛(2011010400)史赛赛(2011010410) 吴海泉()董朝力() 李昂() 摘要:生物医用复合材料(biomedical composite materials)是由两种或两种以上的不同材料复合而成的生物医用材料它主要用于人体组织的修复、替换和人体器官的制造。长期临床应用发现,传统医用金属材料和高分子材料不具生物活性,与组织不易牢固结合,在生理环境中或植入体内后受生理环境的影响,导致金属离子或单体释放,造成对机体的不良影响。而生物陶瓷材料虽然具有良好的化学稳定性和相容性、高的强度和耐磨、耐蚀性,但材料的抗弯强度低、脆性大,在生理环境中的疲劳与破坏强度不高,在没有补强措施的条件下,它只能应用于不承受负荷或仅承受纯压应力负荷的情况。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,生物医用复合材料必将成为生物医用材料研究和发展中最为活跃的领域。 关键词: 陶瓷基;、金属基、高分子基;、碳纤维、生物相容性、医用高分子材料、医用金属材料、医用无机材料、医用复合材料 一、生物医用复合材料概述: 1、发展状况: 随着社会文明进步、经济发展和生活水平日益提高,人类对自身的医疗康复事业格外重视。与此同时,社会人口剧增,交通工具大量涌现,生活节奏加快,疾病、自然灾害、交通事故、运动创伤和工伤等的频繁发生等,造成人们意外伤害剧增。因此,发展用于人体组织和器官再生与修复的生物医用材料具有重大社

生物医用材料探究进展

医用羟基磷灰石的研究进展 摘要: 羟基磷灰石(HA)是人体骨、牙无机组成的主要成分,组成生物体骨、牙组织的磷灰石晶体为纳米级、低结晶度、非化学当量和被多种离子的置换的针状纳米微晶.纳米羟基磷灰石由于与生物硬组织结构成分相似,以及在结构上的可模拟性,在生物医用材料研究中占据着重要的地位,并以各种应用形式出现在各类医学研究中。 羟基磷灰石[Calo(P04)6(0H)2】(hydroxyapatite,HAp)是一种生物活性材料,具有独特的生物相容性,是人体和动物骨骼、牙齿的主要无机成分【I】,基于HAp良好的生物活性以及生物相容性,使其成为理想的硬组织替代材料,广泛应用于硬组织修复、药物载体和抗肿瘤活性的研究。 关键词:羟基磷灰石;特性;医用功能 前言: 生物材料是生命科学和材料科学的交叉边缘学科,成为现代医学和材料科学的匿要领域之一.预计生物材料的发展将成为21世纪国际经济的主要支柱产业之一。 生物医学材料的历史与人类的历电一样漫长,最初人们用木、金属、动物牙齿作为牙齿种植修复的材料.到19世纪,金、镀、锦等开始用T-口腔修复中,而陶瓷作为骨种植材料具有意义的研究是smitll在20世纪印年代开始的。70年代玻璃陶瓷、羟基磷灰石等进入n舱临床以后,把口腔种植修复推向丁新阶段,特别是80年代以来各种复合材料的H}现,使几腔种植的临床应用更加广泛。 纳米羟基磷灰石是人体骨、牙无机组成的主要成分,具有骨引导作用,在较短的时间内能与骨坚固结合,结合了生物材料和纳米材料的优点,临床已广泛应用,在生物医用材料中也占据着重要的地位. 羟基磷灰石(HA)具有骨引导作用,在较短的时间内能与骨坚固结合,临床已广泛应用.生物体内天然羟基磷灰石以纳米晶体的形式存在,为65~80 nm的针状结晶体.根据“纳米效应”理论,单位质量的纳米级粒子的表面积明显大于微米级粒子,使得处于粒子表面的原子数目明显增加,提高了粒子的活性,十分有利于组织的结合.目前人工合成的纳米羟基磷灰石直径在1—100 nm之间,钙磷比值约为1.67,因而与人骨的结构和成分很相似,是一种理想的组织植入材料.然而以羟基磷灰石作为骨植入材料因强度偏低,尤其是脆性太大尚难直接应用于人体承载部位。 正文: 羟基磷灰石概念: 羟基磷灰石制备方法:1.高温分解法2.煅烧磷酸钙法3.干法合成4.湿法合成:

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.doczj.com/doc/c014336968.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

支持生物基新材料产业发展若干政策

支持生物基新材料产业发展若干政策 生物基新材料是指利用可再生生物质资源加工生产的有机高分子材料,具有可再生、可降解、绿色环保等特点。发展以聚乳酸为代表的生物基新材料产业对推动材料工业绿色转型,增加绿色产品供给,降低对化石资源依赖,加快生态文明建设具有重要意义。为推动我省生物基新材料产业高质量发展,制定如下政策。 一、加强规划引导。统筹全省生物基新材料产业基础、资源环境承载、创新能力等条件,研究编制全省生物基新材料产业发展规划,明确重点发展方向、路径、布局、保障措施等,引导推动生物基新材料产业科学有序加快发展。 二、支持研发产业化创新项目。在生物基高分子材料、生物基材料助剂、生物基复合材料、天然生物材料创新型增效利用等领域,支持相关企业与科研院所、下游用户联合实施研发产业化创新项目。经评审认定的项目,对研发及关键设备投入按照10%比例给予补助,单个项目最高补助3000万元,特别重大项目纳入“三重一创”建设“一事一议”支持范畴。 三、支持创新能力建设。充分发挥生物基可降解材料安徽省技术创新中心等创新平台作用,加快突破行业关键技术瓶颈,支撑生物基

新材料产业加快发展。支持相关企业、高校院所等围绕生物基新材料菌种定制与构建、材料合成、材料加工成型、产品应用等环节组建创新平台,对符合条件的运用“三重一创”等政策予以支持。鼓励相关企业联合上下游企业、高校院所、检验检测机构、行业协会等组建省级生物基新材料产业发展联盟,常态化组织开展供需合作、技术对接、行业交流等活动。 四、支持产业集群发展。支持有条件的市围绕“龙头+配套”推动生物基新材料链式发展,打造产学研用有机结合、引领示范作用显著、集聚程度高、创新能力强的产业集群。鼓励产业集群内部产业链上下游优势互补与协同合作,推动延链、补链、强链,加快提升产业链现代化水平。对符合条件的集群,及时认定为省级重大新兴产业基地,积极推荐争取国家级产业集群。 支持相关企业围绕产业链招引上下游企业,对引入上下游企业实施总投资(不含土地价款)1亿元及以上新建项目按“三重一创”政策给予补助。每成功招引1个注册资本金(实际到位,下同)1—10亿元且年主营业务收入超过5000万元生物基新材料企业,给予招引企业一次性100万元奖励;每成功招引1个注册资本金10亿元及以上且年主营业务收入超过1亿元的,给予招引企业一次性200万元奖励;单个招引企业最高奖励1000万元。 五、支持推广应用。鼓励有条件的市在包装材料、农用地膜、纺织化纤材料、卫生材料等重点领域开展生物基新材料示范应用,支持

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.doczj.com/doc/c014336968.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

纳米生物医用材料的进展研究样本

生物医用材料的研究进展 生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料, 它是研究人工器官和医疗器械的基础, 己成为材料学科的重要分支, 特别是随着生物技术的莲勃发展和重大突破, 生物材料己成为各国科学家竞相进行研究和开发的热点。研究动态 迄今为止 ,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。当前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料, 具体体现在以下几个方面: 1. 提高生物医用材料的组织相容性 途径不外乎有两种, 一是使用天然高分子材料, 例如利用基因工程技术将产生蛛丝的基因导入酵母细菌并使其表示; 二是在材料表面固定有生理功能的物质, 如多肽、酶和细胞生长因子等, 这些物质充当邻近细胞、基质的配基或受体 ,使材料表面形成一个能与生物活体相适应的过渡层。 2. 生物医用材料的可降解化 组织工程领域研究中 ,一般应用生物相容性的可降解聚合物去诱导周围组织的生长或作为植入细胞的粘附、生长、分化的临时支架。其中组织工程材料除了具备一定的机械性能外, 还需具有生物相容性和可降解性。 英国科学家创造了一种可降解淀粉基聚合物支架。以玉米淀粉为基本材料, 分别加入乙烯基乙烯醇和醋酸纤维素 ,再分别对应加入不同比例的发泡剂 (主要为羧酸 ), 注塑成型后就能够获得支撑组织再生的可降解支架。 3. 生物医用材料的生物功能化和生物智能化 利用细胞学和分子生物学方法将蛋白质、细胞生长因子、酶及多肽等固定在现有材料的表面 ,经过表面修饰构建新一代的分子生物材料 ,来引发我们所需的特异生物反应 ,抑制非特异性反应。例如将一种名叫玻璃粘连蛋白 (VN)的物质固定到钛表面, 发现固定VN的骨结合界面上有相对多的蛋白存在。4.开发新型医用合金材料

生物医用复合材料

生物医用复合材料 生物医用复合材料(biomedical composite materials) 是由两种或两 种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、 替换和人工器官的制造[1]。长期临床应用发现,传统医用金属材料和高分 子材料不具生物活性,与组织不易牢固结合,在生理环境中或植入体内后受生理环境的影响,导致金属离子或单体释放,造成对机体的不良影响。而生物陶瓷材料虽然具有良好的化学稳定性和相容性、高的强度和耐磨、耐蚀性,但材料的抗弯强度低、脆性大,在生理环境中的疲劳与破坏强度不高,在没有补强措施的条件下,它只能应用于不承受负荷或仅承受纯压应力负荷的情况。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,生物医用复合材料必将成为生物医用材料研究和发展中最为活跃的领域。 1. 生物医用复合材料组分材料的选择要求 生物医用复合材料根据应用需求进行设计,由基体材料与增强材料或功能材料组成,复合材料的性质将取决于组分材料的性质、含量和它们之间的界面。常用的基体材料有医用高分子、医用碳素材料、生物玻璃、玻 璃陶瓷、磷酸钙基或其他生物陶瓷、医用不锈钢、钻基合金等医用金属材料;增强体材料有碳纤维、不锈钢和钛基合金纤维、生物玻璃陶瓷纤维、陶瓷纤维等纤维增强体,另外还有 氧化锆、磷酸钙基生物陶瓷、生物玻璃陶瓷等颗粒增强体。 植入体内的材料在人体复杂的生理环境中,长期受物理、化学、生物电等因素的影响,同时各组织以及器官间普遍存在着许多动态的相互作用,因此,生物医用组分材料必须满足下面几项要求:(1)具有良好的生物相容 性和物理相容性,保证材料复合后不出现有损生物学性能的现象;(2)具有 良好的生物稳定性,材料的结构不因体液作用而有变化,同时材料组成不引起生物体的生物反应;(3)具有足够的强度和韧性,能够承受人体的机械作用力,所用材料与组织的弹性模量、硬度、耐磨性能相适应,增强体材料还必须具有高的刚度、弹性模量和抗冲击性能;(4)具有良好的灭菌性能, 保证生物材料在临床上的顺利应用。此外,生物材料要有良好的成型、力卩工性能,不因成型加工困难而使其应用受到限制。 2. 生物医用复合材料的研究现状与应用 陶瓷基生物医用复合材料 陶瓷基复合材料是以陶瓷、玻璃或玻璃陶瓷基体,通过不同方式引入颗粒、晶片、晶须或纤维等形状的增强体材料而获得的一类复合材料。目

国内生物基材料的现状及发展

国内生物基材料的现状及发展 姓名:吕远 班级:生工A1101 学号:2011018099 摘要:随着人们对气候变化和化石资源枯竭等问题的关注,低碳、环保,可持续的经济发展模式日益为世界各国政府所重视。将可再生的原料转化为生物高分子材料或者单体,进而开发各种产品,获得环境友好的功能性材料,能够降低碳排放,缓解石油危机,已经成为全球研究的热点领域。本文将对我国生物基材料的现状以及未来发展做出阐明。 生物基材料是指利用可再生生物质,包括农作物、树木和其它植物及其残体和内含物为原料,通过生物、化学以及物理等手段制造的一类新型材料。主要包括生物塑料、生物基平台化合物、生物质功能高分子材料、功能糖产品、木基工程材料等产品,具有绿色、环境友好、原料可再生以及可生物降解的特性。 新材料产业是我国战略性新兴产业主要内容。利用丰富的农林生物质资源,开发环境友好和可循环利用的生物基材料,最大限度地替代塑料、钢材、水泥等材料,是国际新材料产业发展的重要方向。新世纪以来,生物基材料受到发达国家广泛重视,呈现快速发展的势头,以农林生物质为原料转化制造的生物塑料、节能保温材料、木塑复合材料、热固性树脂材料、功能高分子材料等生物基材料和生物基单体化合物、生物基助剂、表面活性剂等生

物基大宗精细化学品快速增加,产品经济性正在逐步增强。拜耳、巴斯夫、埃克森美孚、三星道达尔、杜邦化工等跨国公司长期致力于生物基材料的研发,推动了全球生物基材料的商业化进程。对于一异戊二烯来说,因其可生产轮胎,在工业发展上十分重要。目前,美国丹尼斯克公司与固特异公司正在合作开辟生物基异戊二烯工艺路线,以部门替换石油(petro)基橡胶和苯乙烯基弹性体工艺。生物基异戊二烯可以出产轮胎用的合成橡胶和其他弹性体,可使轮胎产业更少地依靠石油衍生物产物。同样,另一种生物基材料丁二醇也已获得大量工业化生产。 目前,我国生物基材料产业科技取得了显著的成效,形成了如全降解生物基塑料、木基塑料、聚合超大分子聚乳酸、农用地膜等一大批具有自主知识产权的技术。全国性的“木塑热”正逐渐兴起,木塑制品年产销量已超过20万吨,并以20%以上的年增长率高速增长。生物基材料作为石油基材料的升级替代产品,正朝着以绿色资源化利用为特征的高效、高附加值、定向转化、功能化、综合利用、环境友好化、标准化等方向发展。与国际先进水平相比,在产品性能、制造成本、关键技术、技术集成与产业化规模等方面还存在差距,必须加快突破生物基材料制造过程的生物合成、化学合成改性及树脂化、复合成型等关键技术,促进重要生物基材料低成本规模化生产与示范,构建生物基材料研发平台,提升生物基材料企业科技创新能力,实现化石资源的有效替代,为生物基材料产业培育提供科技支撑。

生物医用纺织材料及其器件研究进展

生物医用纺织材料及其器件研究进展 生物医用纺织材料是生物医用材料的重要组成部分,是以纤维为基础、纺织技术为依托、医疗应用为目的的医用材料,用于临床诊断、治疗、修复、替换以及人体的保健与防护。生物医用纺织材料是纺织与材料、生物、医学及其他相关基础学科深度交叉融合产生的一类医用材料,其产品是医疗器械的一个重要组成部分,由各级食品药品监督部门监管。与服用和家用纺织品相比,生物医用纺织品研发流程长,产品审批手续复杂,故新产品注册上市所需时间更长。 生物医用纺织材料按来源分类可分为生物医用金属纤维( 如不锈钢丝缝合线) 、生物医用无机非金属纤维( 如氧化铝纤维) 和生物医用高分子纤维。其中,以高分子纤维居多。生物医用高分子纤维包括: 1) 天然高分子基生物医用纤维,含纤维状的天然物质直接分离、精制而成的天然纤维和用天然高分子为原料经化学和机械加工制成的纤维,如纤维素及其衍生物纤维( 氧化纤维素) 、甲壳素及其衍生物纤维、蚕丝和骨胶原纤维等; 2) 合成高分子基生物医用纤维,如聚酯、聚酰胺、聚烯烃、聚丙烯腈、聚四氟乙烯、聚丙烯、聚乳酸纤维等。 生物医用纺织材料纤维的主要成型方法有: 干法纺丝、湿法纺丝、熔融纺丝、干湿纺丝、乳液纺丝、凝胶纺丝等。不同的纺丝方法可获得不同的截面形态和直径尺度的纤维。截面形态包括圆形、三角、核壳及中空型等。根据不同的成型方法可获得从纳米级到毫米级的不同纤维尺度。熔融和湿法纺丝的纤维直径与大多数动植物细胞尺度相近,而静电纺丝纤维更接近于病毒的尺度。 生物医用纤维可经纺织手段制备成一维(线状)、二维(平面) 或三维(管状)纺织品。其手段主要是指机织、针织、编织、非织、静电纺及复合成型方法。实际研发过程中,常常根据医疗产品的需求,可选择1种或数种纺织手段来进行成型。生物医用纺织品具有规则的多孔结构且连续贯穿,表面拓扑形貌规则且易控,厚度可在1 × 102~ 1 × 107nm范围内调节。通过不同的纺织手段获得的纺织品,其力学性能各具特色且调节范围大。 生物医用纺织材料在临床上具有广泛的用途,可独立或参与制成人体器官或组织的替代物,不同的产品具有不同的医学功能。1) 支持运动功能: 人工关节、人工骨、人工肌腱等; 2) 血液循环功能: 人工心脏瓣膜、人工血管等; 3) 呼吸功能: 人工肺、人工气管、人工喉等; 4) 血液净化功能: 人工肾、人工肝等; 5) 消化功能:人工食管、人工胆管、人工肠等;6) 泌尿功能: 人工输尿管、人工尿道等; 7) 生殖

复合材料加工研究进展

复合材料加工技术的最新研究进展 摘要:本主要综述了陶瓷基、树脂基这两种主要的非金属基复合材料的加工技术。通过对传统加工和新型加工技术的比较,认为今后研究非金属基复合材料加工工艺参数的优化,工艺过程中关键步骤的改进,新技术的研究,生产设备自动化、智能化程度的提高,生产线的规模化、专业化、可控制化,是其加工技术发展的关键。 关键词:陶瓷基、树脂基、复合材料加工 复合材料是由两种或两种以上不同化学性能或不同组织结构的材料,通过不同的工艺方法组成的多相材料,主要包括两相:基体相和增强相。20世纪40年代,因航空工业需要而发展了玻璃纤维增强塑料,是最早出现的复合材料,从此以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成了格局特色的复合材料。复合材料由于其具有各方面独特的性质,广泛应用与军事工业,汽车工业、医疗卫生、航空、航海以及日常生活的各个方面。对于复合材料的加工技术的研究,将是扩大其适用范围的关键之一[1]。 1 陶瓷基复合材料的加工 由于陶瓷材料同时具有高硬度、高脆性和低断裂韧性等特点,使得其加工、特别是成形加工,至今仍非常困难。在陶瓷材料加工中,使用金刚石工具的磨削加工仍然是目前最常用的加工方法,占所有加工工艺的80%。而陶瓷材料磨削加工不仅效率低,而且在加工中很容易产生变形层、表面/亚表面微裂纹、材料粉末化、模糊表面、相变区域、残余应力等缺陷,这对于航空、航天、电子等高可靠性、高质量要求的产品是决不允许的。陶瓷精密元件的加工费用一般占总成本的30%~60%,有的甚至高达90%。因此,通过新的陶瓷加工制造技术的探索,能够很好的提高产品制造精度和降低生产成本[2]。 1.1新型加工技术 1.1.1 放电加工 放电加工(EDM)是一种无接触式精细热加工技术,当单相或陶瓷/陶瓷、陶瓷/金属复合材料的电阻小于100Ω.m时,陶瓷材料可以进行放电加工。首先将形模(刻丝)和加工元件分别作为电路的阴、阳极,液态绝缘电介质将两极分开,通过悬浮于电介质中的高能等离子体的刻蚀作用,表层材料发生熔化、蒸发或热剥离而达到加工

生物医用材料

生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料,它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料己成为各国科学家竞相进行研究和开发的热点。 二关键词: 生物,医学,材料,医疗器械,创伤,组织,植入 biomedical material, new materials 三文献综述 1生物医用材料定义 生物医用材料(biomedical material)是用于对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料。它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,己成为各国科学家竞相进行研究和开发的热点。当代生物材料已处于实现重大突破的边缘,不远的将来,科学家有可能借助于生物材料设计和制造整个人体器官,生物医用材料和制品产业将发展成为本世纪世界经济的一个支柱产业. 由生物分子构成生物材料,再由生物材料构成生物部件。生物体内各种材料和部件有各自的生物功能。它们是“活”的,也是被整体生物控制的。生物材料中有的是结构材料,包括骨、牙等硬组织材料和肌肉、腱、皮肤等软组织;还有许多功能材料所构成的功能部件,如眼球晶状体是由晶状体蛋白包在上皮细胞组成的薄膜内而形成的无散射、无吸收、可连续变焦的广角透镜。在生物体内生长有不同功能的材料和部件,材料科学的发展方向之一是模拟这些生物材料制造人工材料。它们可以做生物部件的人工代替物,也可以在非医学领域中使用。前者如人工瓣膜、人工关节等;后者则有模拟生物黏合剂、模拟酶、模拟生物膜等

医用金属材料的研究进展

医用金属材料的研究进展 姓名:因 学号: 专业:材料

摘要:介绍了医用金属材料目前的研究现状、性能和应用,指出了医用金属材料 应用中目前存在的主要问题,阐述了近年来生物医用金属材料的新进展1。Medical metal materials with high strength toughness, fatigue resistance, easy processing and forming excellent properties become clinical dosage biggest and wide application of biomedical materials. 关键词:医用金属种类应用研究进展 一生物医用金属材料的简介 生物医用材料是指能够植入生物体或与生物组织相结合的材料,可用于诊断、治疗,以及替换生物机体中的组织、器官或增进其功能。生物医用金属材料是用作生物医用材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料2。这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料。该类材料的应用非常广泛,遍及硬组织、软组织、人工器官和外科辅助器材等各个方面。除了要求它具有良好的力学性能及相关的物理性质外,优良的抗生理腐蚀性和生物相容性也是其必须具备的条件。医用金属材料应用中的主要问题是由于生理环境的腐蚀而造成的金属离子向周围组织扩散及植入材料自身性质的退变,前者可能导致毒副作用,后者常常导致植入的失败。已经用于临床的医用金属材料主要有纯金属钛、钽、铌、锆等、不锈钢、钴基合金和钛基合金等3。 二生物医用金属材料的特性 2.1材料毒性 生物医用金属材料的毒性主要来自金属表面离子或原子因腐蚀或磨损进入周围生物组织,由此作用于细胞,抑制酶的活性,组织酶的扩散和破坏溶酶体。具体可表现为与体内物质生成有毒化合物。并且金属离子进入组织液,会引起水肿、栓塞、感染和肿瘤等。一般才用的降毒方法包括合金化、提高耐蚀性、提高光洁度、表面涂层等4。 2.2生理腐蚀性 生物医用金属材料的生理腐蚀性是决定材料植入后成败的关键,其产物对生物机体的影响决定植入器件的使用寿命。 2.3力学性能 生物医用金属材料需要有足够的强度与塑性。一般说来,对人工髋关节金属材料的要求是:屈服强度>450Mpa;抗拉强度>800Mpa;疲劳强度>400Mpa;延伸率>8%。通常材料的弹性模量大于骨的弹性模量,由此会使得材料与骨应变不同,界面处发生的相对位移造成界面松动;除此产生应力屏蔽,引起骨组织的功能退化或吸收8。 2.4耐磨性 耐磨性影响植入摩擦器件的寿命;以及可能产生有害的金属微粒或微屑,导致周围组织的炎性、毒性反应。可通过提高硬度,表面处理等方法进行改善。 三医用金属材料的种类

复合材料研究进展讲述

铝基复合材料的制备和增强技术的研究进展 摘要本文简单介绍了铝基复合材料的一些基本的制备方法。对于纳米相和碳化硅颗粒增强的铝基复合材料,它们也有不同的制备方法。 关键词铝基复合材料纳米相碳化硅颗粒 0前言 复合材料是应现代科学发展需求而涌现出的具有强大生命力的材料,它由两种或两种以上性质不同的材料通过各种工艺手段复合而成。金属基复合材料基体主要是铝、镍、镁、钛等。铝在制作复合材料上有许多特点,如质量轻、密度小、可塑性好,铝基复合技术容易掌握,易于加工等。此外,铝基复合材料比强度和比刚度高,高温性能好,更耐疲劳和更耐磨。同其他复合材料一样,它能组合特定的力学和物理性能,以满足产品的需要。因此,铝基复合材料已成为金属基复合材料中最常用的、最重要的材料之一。本文主要讲述铝基复合材料的制备方法以及增强技术的发展情况。 1 铝基复合材料的制备工艺 1.1 无压浸渗法 无压浸渗法是Aghaianian 等于1989 年在直接金属氧化工艺的基础上发展而来的一种制备复合材料的新工艺[1],将基体合金放在可

控气氛的加热炉中加热到基体合金液相线以上温度,在不加压力和没有助渗剂的参与下,液态铝或其合金借自身的重力作用自动浸渗到颗粒层或预制块中,最终形成所需的复合材料。 Aghajanian 等[2]撰文指出,要使自发渗透得以进行,需具备两个必要条件:①铝合金中一定含有Mg元素;②气氛为N2环境。影响该工艺的主要因素为:浸渗温度、颗粒大小和环境气氛种类。无压渗透工艺的本质是实现自润湿作用,通过适当控制工艺条件,如合金成分、温度、保温时间和助渗剂等,可取得良好的润湿,使自发浸渗得以进行。 1.2 粉末真空包套热挤压法 采用快速凝固技术与粉末冶金技术相结合制备高硅含量铝基复合材料。由于Al 活性很高,在快速凝固制粉时不可避免地会形成一层氧化膜,导致在致密化过程中合金元素的相互扩散受到阻碍,难以形成冶金粘结。因此,采用了粉末真空包套热挤压这一特殊的致密化工艺[3]。 1.3 喷射沉积法 喷射沉积技术是一种新的金属成形工艺,由Singer 教授于1968 年提出,后经发展逐步形成了Osprey工艺、液体动态压实技术和受控喷射沉积工艺等。 喷射沉积的基本原理是:熔融金属或合金经导流管流出,被雾化

生物功能材料的研究进展

生物功能材料的研究进展 随着人民生活水平的提高,人们对于医疗保健方面的要求也越来越强,使得对于生物医用材料的要求也越苛刻。本文详细阐述了生物医用功能高分子材料近年来的应用研究及发展状况,综述了国内外生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。 生物功能材料和加工技术的发展, 使得人工合成材料在医学上的应用, 变得越来越广泛。数十年的医学发展和临床应用, 证明医用高分子材料在人体内外, 获得了成功的应用, 而医学的进步, 又给高分子材料提出了大量新的课题, 使其向“精细化”, “功能化”的方向发展, 赋予了高分子材料以新的生命力。 生物医用高分子材料分合成和天然两大类,下面我们就分别对这两种材料进行详细的论述。 ﹙1﹚天然生物材料 天然生物材料是指从自然界现有的动、植物体中提取的天然活性高分子,如从各种甲壳类、昆虫类动物体中提取的甲壳质壳聚糖纤维,从海藻植物中提取的海藻酸盐,从桑蚕体内分泌的蚕丝经再生制得的丝素纤维与丝素膜,以及由牛屈肌腱重新组构而成的骨胶原纤维等。这些纤维由于他们来自生物体内且都具有很高的生物功能和很好的生物适应性,在保护伤口、加速创面愈方面具有强大的优势,已引起国内外医务界广泛的关注。自然界广泛存在的天然生物材料仍有着人工材料无可比拟的优越性能。例如:迄今为止再高明的材料学家也做不出具有高强度和高韧性的动物牙釉质,海洋生物能长出色彩斑斓、坚阊义不被海水腐蚀的贝壳等等。甲壳素又称几丁质(chitin),广泛存在于虾、蟹等甲壳动物及昆虫、藻类和细菌中,是世界上仅次于纤维素的第二大类天然高分子化合物。它是一种惰性多糖,用浓碱脱去乙酰基可转变成聚壳糖(chintosan)。甲壳素、聚壳糖及其衍生物具有良好的生物相容性和生物降解性。降解产物带有一定正电荷,能从血液中分离出血小板因子,增加血清中H-6水平,促进血小板聚集或凝血素系统,作为止血剂有促进伤口愈合,抑制伤口愈合中纤维增生,并促进组织生长的功能,对烧、烫伤有独特疗效。比如家蚕丝脱胶后可得到纯丝素蛋白成分,丝素蛋白是一种优质的生物医学材料,具有无毒、无刺激性、良好的血液相容性和组织相容性。根据研究报道,由于天然高分子医用材料的独特临床效果,它的应用前景相当广阔。﹙2﹚合成生物材料 由于天然材料的有限,人们需要大量的生物材料来维持他们的健康。合成高分子材料因与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因而可以植入人体,部分或全部取代有关器官。因此,在现代医学领域得到了最为广泛的应用,成为现代医学的重要支柱材料。与天然生物材料相比,合成高分子材料具有优异的生物相容性,不会因与体液接触而产生排斥和致癌作用,在人体环境中的老化不明显。通过选用不同成分聚合物和添加剂,改变表面活性状态等方法可进一步改善其抗血栓性和耐久性,从而获得高度可靠和适当有机物功能响应的生物合成高分子材料。目前,使用于人体植入产品的高分子合成材料包括聚酰胺、环氧树脂、聚乙烯、聚乙烯醇、聚乳酸、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶和硅凝胶等。应用场合涉及组织粘合、手术缝线、眼科材料(人工玻璃体、人工角膜和人工晶状体等)、软组织植入物(人工心脏、人工肾、人工肝等)和人工管形器(人工器官、食道)等。 合成医用高分子材料发展的第一阶段始于1937年,其特点是所用高分子材料都是已有的现成材料,如用丙烯酸甲酯制造义齿的牙床。第二阶段始于1953年,其标志是医用级有机硅

金属基复合材料的研究进展及发展趋势(DOC)

金属基复合材料界面的研究进展及发展趋 势 周奎 (佳木斯大学材料科学与工程学院佳木斯 154007)摘要本文介绍了目前金属基复合材料界面的研究现状,存在的问题及优化的有效途径。重点阐述了金属基复合材料在各个领域的应用情况。最后在综述金属基复合材料界面的研究进展与应用现状的基础上,对学者未来研究呈现的趋势进行了简述并对其发展趋势进行了展望。 关键词金属基复合材料界面特性应用发展趋势 The research progress of metal matrix composites interface and development trend ZHOU Kui (jiamusi university school of materials science and engineering jiamusi 154007) Abstract:Interface of metal matrix composites are introduced in this paper the current research status, existing problems and the effective ways to optimize. Expounds the metal matrix composites and its application in various fields. Finally in this paper the research progress and application of metal matrix composites interface status quo, on the basis of research for scholars in the future the trend of the present carried on the description and its development trend is prospected. Keywords: metal matrix composites application Interface features the development trend 1前言 金属基复合材料(MMCS)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。 研究金属基复合新材料是当代新材料技术领域中的重要内容之一。金属基复合材料的品种繁多,有碳(石墨)、硼、碳化硅、氧化铝等高性能连续纤维增强铝基、镁基、钦基等复合材料,碳化硅晶须、碳化硅、氧化铝颗粒、氧化铝短纤维增强铝基、镁基复合材料,以及牡钨丝增强超合金等高温金属基复合材料等.但它们的发展和应用并不迅速。主要原因是存在界面问题,制备方法较复杂,成本高。学者们在金属基复合材料的有效制备方法、金属基体与增强体之间的界面反应规律、控制界面反应的途径、界面结构、性能对材料性能的影响、界面结构与制备工艺过程的关系等进行了大量的研究工作,取得了许多重要成果,推动了金属基复合材料的发展和应用。但随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等。尚需结合材料类型、使用性能要求深入研究。

相关主题
文本预览
相关文档 最新文档