当前位置:文档之家› 微波辅助离子液体合成水杨酸-2-乙基己酯

微波辅助离子液体合成水杨酸-2-乙基己酯

微波辅助离子液体合成水杨酸-2-乙基己酯
微波辅助离子液体合成水杨酸-2-乙基己酯

微波辅助合成TiO2 及其光催化性能的研究(完整版)

微波辅助合成TiO2及其光催化性能的研究 摘要:以TiCl 4为原料,采用微波辅助合成法制备了纳米TiO 2 光催化剂。利用SEM、XRD、TEM、TG-DTA 等技术。对产物进行了表征,并以制备的TiO 2 为催化剂,通过酸性品红水溶液的光催化降解实验考察了该催化剂的光催化反应性能。 关键词:微波辅助合成;催化性能;TiO 2 ;光催化 前言: 二氧化钛具有特殊的物理化学特性及电子能带结构,光催化活性高,作为光催化材料广泛地应用于环境保护和污染治理的研究应用领域[1]。TiO2的制备方法影响着二氧化钛催化剂的形态结构,从而也大大影响了其光催化性能,因而为了获得具有高活性的光催化剂,TiO2的制备技术也被广泛而深入地进行了研究[2~4]。制备纳米TiO2有很多方法,常用的有胶-凝胶法[2]、电化学(elect rochemist ry)法[3]、CVD(Chemical Vapor Deposition)法[4]、溅射法和真空蒸镀法等。微波能作为一种新型的加热方式,主要优点在于对反应体系快速升温、加快反应速率、缩短反应时间、提高反应选择性等,因而广泛地应用于材料加工与合成等诸多方面。本研究利用微波辅助合成的新方法,制备纳米TiO2光催化剂,研究催化剂的结构特点及光催化特性,旨在寻求微波法在TiO2纳米光催化剂制备领域的实际应用。 正文: 1 纳米TiO 2 光催化机理 半导体粒子具有能带结构,一般由添满电子的低能价带和高能导带构成,价带和导带之间存在禁带。当用能量等于或大于禁带宽度的光照射半导体时,价带上的电子(e-)被激发跃迁到导带,在价带上产生空穴(h+),并在电场作用下分离并迁移到粒子表面。光生空穴因具有极强的得电子能力,而具有很强的氧化能力,将其表面吸附的OH-和H2O分子氧化成·OH自由基,而·OH几乎无选择地将有机物氧化,并最终降解为CO2和H2O。也有部分有机物与h+直接反应,而迁移到表面的e-则具有很强的还原能力。光催化机理可用下式表示: 在整个光催化反应中,·OH起着决定作用。半导体内产生的电子-空穴对存在分离/被俘获与复合的竞争,电子与空穴复合的几率越小,光催化活性越高。半导体粒子尺寸越小时,电子与空穴迁移到表面的时间越小,复合的几率越小;同时粒子尺寸越小,比表面积越大,

乙酰水杨酸

乙酰水杨酸(阿司匹林)的合成 姓名: ﹙化学系, 应用化学, 094班, 学号﹚ 摘要乙酰水杨酸俗称阿司匹林,为重要的医药。具有退热、镇痛、抗风湿等作用。它是由水杨酸(邻羟基苯甲酸)和乙酸酐合成的。水杨酸是一种具有双官能团的化合物,一个是酚羟基,一个是羧基。能进行两种不同的酯化反应,而且还可以形成分子内氢键,阻碍酰化和酯化反应的发生。当与乙酸酐反应时,可以得到乙酰水杨酸,即阿斯匹林。 关键词阿司匹林,水杨酸,乙酸酐,乙酰水杨酸,抽滤 1.引言 乙酰水杨酸, 通常称为阿斯匹林(aspirin),是由水杨酸(邻羟基苯甲酸)和乙酸酐合成的。早在十八世纪,人们已从柳树皮中提取了水杨酸,注意到它可以作为止痛、退热和抗炎药,不过对肠胃刺激作用较大。水杨酸是1838年第一次由强碱作用于相应的醛后经酸化得到的一种化合物。1859年Kolbe使用于燥的苯酚钠盐粉末和二氧化碳在4—7atm(1atm=101.325kPa)下进行反应,制备成水杨酸,现在工业上都用Kolbe合成法生产。直到目前,阿斯匹灵仍然是一个广泛使用的具有解热止痛作用、用于治疗感冒的药物。常用于治疗风湿病和关节炎。近年来还发现阿斯匹林能抑制血小板凝聚,可防止血栓的形成。 水杨酸是一种具有双官能团的化合物,一个是酚羟基,一个是羧基。能进行两种不同的酯化反应,而且还可以形成分子内氢键,阻碍酰化和酯化反应的发生。当与乙酸酐反应时,可以得到乙酰水杨酸,即阿斯匹林;如与过量的甲醇反应,生成水杨酸甲酯,它是第一个作为冬青树的香味成分被发现的,因此通称为冬青油。 阿斯匹林又名乙酰水杨酸,分子式:C9H8O4,分子量为:180.16,是白色针状结晶或结晶性粉末。熔点:135℃,pka=2.98,其酸性比苯甲酸强,微溶于水,易溶于乙醇、氯仿、乙醚及碱液等。其分子内的羟基和羧基都可以进行酯化反应。本实验用乙酸酐对水杨酸的酚羟基进行酰化制备乙酰水杨酸,即阿斯匹林。 乙酰水杨酸(阿斯匹林)的相关光谱图: 乙酰水杨酸的红外光谱图

琥珀酸二异辛酯磺酸钠的合成与应用

琥珀酸二异辛酯磺酸钠的合成与应用 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

琥珀酸二异辛酯磺酸钠的合成与应用 实验任务:以异辛醇和顺丁烯二酸酐为原料,通过酯化和磺化,合成琥珀酸二异辛酯磺酸酯。{琥珀酸二甲酯磺酸钠的合成} 一、实验目的 1.学习由异辛醇和顺丁烯二酸酐通过酯化和磺化合成琥珀酸二异辛酯的原理及合成方法。 2.掌握琥珀酸二异辛酯的分离技术和分离方法。 3.学习用表面张力仪测量液体的表面张力。 二、实验原理 1.主要性质和用途 琥珀酸酯磺酸钠是一类性能优良的阴离子表面活性剂,具有亲水、亲油性质,能起乳化、分散、增溶、润湿、发泡、消泡、保湿、润滑、洗涤、抗静电、防腐作用,广泛用于纺织、印染、涂料、造纸、医药、农药、日用化工等领域。 琥珀酸二异辛酯磺酸钠也叫二-(2-乙基己基)磺化琥珀酸钠,由于其性能良好,应用广泛,因而有很多别名,也比较混乱,如二-(2-乙基己基)磺化琥珀酸钠、顺丁烯二酸二异辛酯磺酸钠、表面活性剂1292、气溶胶OT、快速渗透剂T等,简称AOT。 2.合成原理 本实验采用顺丁烯二酸酐与甲醇先发生酯化反应,后进行磺化制备琥珀酸二甲酯磺酸钠,合成过程中的主要化学式如下: 第一步:酯化反应 第二步:磺化反应

(2)O O O O NaHSO 3O O O O NaO 3S 琥珀酸二异辛酯磺酸钠3.酯化反应 和磺化反应的影响因素 (1)酯化反应的影响因素 ①催化剂的影响 不同催化剂催化合成顺丁烯二酸二异辛酯的研究表明:磷酸酸性较弱,催化能力较低,浓硫酸具有较强的脱水性和吸水性,做催化剂时酯化率最高,但因为其氧化性强,使副反应增多,酯化产物复杂。十二烷基苯磺酸和对甲苯磺酸与有机试剂相容性好,酯化速率较快,最终转化率也较高,是比较理想的催化剂。 ②水的影响 合成双酯时,是单酯分子中的羧基和醇分子中的羟基的酯化反应,为使反应进行需不断除去生成的水,可通过真空抽出生成的水。加入苯、甲乙酮等低沸点的溶剂与水共沸带出生成的水。低沸点醇也可与水共沸。因此,增加醇酐比,利用过量的辛醇也能起到带水剂的作用,使反应在短时间内完成,但若醇的用量过多将导致产物中的辛醇残留量增加,使原料成本增加,反应中醇酐比为2.26︰1(摩尔比)为最佳。 ③温度的影响 一般来说,随着反应温度的升高,反应速率加快,但高温下,副反应也相应增多,所以温度不是越高越好,实验中温度应控制在140℃左右。 ⑵磺化反应的影响因素 ① 相转移催化剂的影响

阿司匹林合成路线

阿司匹林的合成路线介绍 阿司匹林是世界最重要的解热镇痛药之一。目前全世界阿司匹林原料药产量已达5万吨左右,年产片剂1千多亿片。多年来,阿司匹林一直是我国解热镇痛药的支柱产品之一,年产量达1万多吨,也是我国医药原料药出口的大宗产品,2005年的出口量为7522吨,出口金额达到2055万美元。 1 . 采用乙酸酐为酰化剂的工艺路线 催化剂类别 需用原料及配方实例 原料名称规格组分比(份) 酚甲酸98.5% 25 乙酸酐98.5% 27 制备工艺: 混料投入带配有冷凝器的烧瓶中,在油浴上控温于150~160℃,反应约3小时,于减压下蒸去过量之乙酸酐及反应中生成的乙酸,其蒸出物重约16份,余品重为31份。再用2倍重量的苯重结晶,可得18份纯品。若将余液浓度增高,还可收得10份纯品。 经过几十年的生产实践,阿司匹林的生产形成了一套十分成熟的工艺:以苯酚为原料,经过和二氧化碳的羧化反应,生成水杨酸,经升华后得到升华水杨酸,再采用醋酐-醋酸法。由于此生产工艺不复杂,收率、成本等也较为理想,几十年来,国内外生产企业基本按照这条工艺路线进行生产。故该工艺较为成熟。由于长期以来,国内外科研机构、生产厂商对其生产工艺进一步深入研究的工作做得不多,所以这方面的专利以及研究论文也较为少见。 工艺探索不断 在传统的阿司匹林生产中,由水杨酸和醋酐反应生成阿司匹林的过程需要加温,使反应在80℃~90℃温度下进行,反应时间2小时左右,耗能量较大。近年来,由于基本能源价格不断上涨,反应时间越长则能耗越大,成本越高。从近几年的研究趋势看,研究的重点主要集中在水杨酸和醋酐反应过程中,通过添加不同的催化剂,使得反应更易进行,时间更短,耗能更少,产品质量更好。 1.1 水杨酸与醋酸酐法加入氧化钙或氧化锌 美国专利局2001年8月公开了Handal-Vega等人的“阿司匹林工业生产合成方法”的发明专利,该专利提出了一个水杨酸和醋酐合成阿司匹林的新方法:在水杨酸和醋酐反应中按一定比例加入氧化钙或氧化锌,得到一种乙酰水杨酸和醋酸钙或醋酸锌以及最大为2%游离水杨酸的混合物。此反应十分快速,属于放热反应,也是一锅反应,且无污染物,不需要排放残渣酸,也不需要任何有机溶剂,产物不需要再结晶。因产物是固体,合成完成后可以马上和普通药物制剂辅料混合压片,成阿司匹林片。 1.2 用一水硫酸氢钠作催化剂 肖新荣等人在《精细化工中间体》杂志上发表文章认为,水杨酸乙酸酐反应合成阿司匹林中,用一水硫酸氢钠为催化剂,反应时间约40分钟,反应温度80~90C,收率约为86.7%。硫酸氢钠为一价廉易得,使用安全的物质,其催化合成阿司匹林效果较好,因其难溶于有机溶剂,易于分离回收重用。

微波辅助有机合成中_非热效应_的研究方法

进展评述 微波辅助有机合成中“非热效应”的研究方法 陈新秀 徐 盼 夏之宁3 (重庆大学化学化工学院 重庆 400030) 摘 要 微波作为一种新颖的加热方式,极大地提高了有机合成的效率。对于微波促进有机合成反应机理,人们提出了它具有“非热效应”。本文从微波对分子的影响、微波光量子对化学键的影响以及微波对化学 反应的影响3个方面,对“非热效应”存在的理论依据进行了阐述;从理论、实验以及两者相结合的角度,对“非 热效应”的研究方法与技术进行了综述。 关键词 微波 有机合成 非热效应 Methods for N on2therm al Microw ave E ffects in Microw ave Assisted Organic synthesis Chen X inxiu,Xu Pan,X ia Zhining3 (C ollege of Chemistry and Chemical Engineering,Chongqing University,Chongqing400030) Abstract As a new heating technology,the microwave extraordinarily im proves the efficiency in organic synthesis. The investigations on the mechanism of microwave2accelerated organic synthesis were supposed to be a“non2thermal effects”.The theoretical foundation of non2thermal effects was studied on the basis of the im pact of microwave on m olecules, chemical bonds and the chemical reactions.The studying methods and the especial technologies for evidencing the non2 thermal effects in microwave assisted organic synthesis were reviewed. K eyw ords M icrowave,Organic synthesis,N on2thermal effects 微波作为一种新型的加热方式已被广泛应用于有机合成等领域。在过去30年,微波辅助合成方法已被应用到几乎所有类型的有机反应。与传统加热方式相比,微波辐射可提高反应的产率或大大缩短反应时间[1,2],有时还表现出和常规加热不同的选择性[3,4]。尽管已有大量有关微波合成的研究报道,但是相比于常规加热方式,微波加速或改变化学反应的原因并不十分清楚。目前认为微波存在3种可能的效应:微波热效应,特殊的微波效应,微波非热效应。微波热效应及其特殊效应,已得到大家的认可[5];而微波“非热效应”的存在与否,至今依然是微波化学领域争论的一个焦点。 微波非热效应是指不能用单纯的热Π动力学效应或者特殊微波效应解释的微波场对化学反应的影响,还有,微波作用使一个处于相同温度等反应条件下的合成产生了不同的效果,也被列为“非热效应”之类。对于一个有机反应微波能否产生“非热效应”,目前尚有较大的分歧[6~12],有的文献用实验证明有“非热效应”;而另外又有文献证明没有“非热效应”。后者认为微波辅助有机合成产生不一样效果的原因是温度控制不准的结果。对此争议采用证明的方法多种,但却不能令众人信服。鉴于对“非热效应”研究方法的归纳总结以及综合评价尚未见报道,本文根据“非热效应”的理论依据,从理论、实验以及两者相结合的角度,对合成领域中“非热效应”的研究方法与技术进行综述。 1 微波“非热效应”的理论依据 111 微波对分子存在影响 科技部国际合作项目(2006DFA43520)和国家自然科学基金项目(20775096)资助 2009201221收稿,2009203209接受

微波辅助法合成金属有机骨架

微波辅助法合成金属有机骨架 微波加热在有机化学中,使用了几十年,直到最近才应用于制备多维的配位聚合物,通常称为金属–有机框架(MOF)。微波加热使反应所需时间短,快速的结晶成核力学和生长,和高产量的理想产品,产品能够很容易地被分离出来,且而几乎没有副产物。这些具有较好性质的材料从过去经济可行时期被系统研究出来的角度来看,金属有机骨架的研究是极为重要的。强调的是纳米晶体可以直接应用功能化设备上。 1 引言 超级分子化学的分支被称作“晶体工程”,它主要研究的是大分子网状物的构成,它的可预测的拓扑学和性质是有其独特的祖坟的化学性质控制的。Desiraju 和Etter的关于通过氢键有机晶体组装的研究认为是晶体工程的开端。Hoskins 和Tobson描述了基于共价键的金刚石型骨架的设计,拓展了配位键的概念,现在是人们所熟知的金属有机骨架、配位聚合物或者配位骨架。共价键影响产物的性质,尤其是高度孔状结构的设计,这个孔状结构要求达到主体的交换和气体储存的要求,并且拥有催化性质、电学性质、磁性以及荧光性质。 有机配体和金属离子作为“主要的结构单元”,和作为“第二结构单元”的多齿配体,形成聚合物。这两个术语都引自沸石化学。遗憾的是,和沸石不同的是,金属阳离子和有机配体可能的结合方式是无穷大的,因此,我们仍然不能预测任何特殊的结构形成何种结构。 金属有机骨架的合成方法的发展分为三个阶段。第一阶段,在过去的几个世纪,人们用蒸发溶剂的方法在非常小的容器里制备较大单晶,制备时间从几周到几个月不等。第二阶段,借鉴传统的沸石合成方法——溶剂热法开始被应用,实验所需时间缩短到几天。虽然微晶通常能够在这些条件下得到,但是这个方法被改进后可以获得单晶。目前面临的工作是进一步缩短反应时间,大大增加产率和功能化材料。目前研究的主要目的是,能够形成产业化。微波法将很快取代传统的溶剂热合成法,溶剂热合成法利用的是传统加热方法,而且已经有关于微波法制备金属有机骨架的文章发表。这篇文章简要地阐述了微波加热的研究,阐述了它的优点及局限。 2 背景 2.1 传统的溶剂热合成法 金属有机骨架的合成是主要结构单元通过自我识别的自组装过程。大量的结构已经用溶剂热合成法合成制得,但是所需反应时间长(几天到几周),所需设备庞大,能量消耗高。为了克服这些困难,新的方法形成了,比如说电化学方法、溶剂热合成法,甚至更多的有前景的方法,包括微波辅助合成法。 2.2 微波辅助合成法 微波加热是P. L. Spencer于1946年在Raytheon Corporation偶然发现的。当他正在进行关于雷达微波的应用时,电磁波在1m到1mm之间(300Hz~300GHz),他口袋里的巧克力棒融化了。频繁使用的家用的微波放射是2.45GHz(12.24cm),最大瓦数是800W。 微波是通过磁电管形成的,磁电管包含振荡器,振荡器是用来将高电压的直流电转换为高频率的放射。用一个典型的实验设备中,波导将磁电管形成的能量转换到进样池(图1-顶部)。许多分子,最显著的是水,其具有绝缘性,使它们循环并和微波的交流电连接在一起。当分子之间相互碰撞的时候,分子运动形成的高温就被分散了。样品池是一个法拉第笼子,它能够阻止微波进入环境中。微波加热主要的优点是他的能量效率,因为能量只在反应

乙酰水杨酸的制备及思考题.

COOH O H +△ O —COCH 3 COOH COOH O —COCH 3 实验7-2 阿斯匹林的制备 一、 实验目的: 1.了解阿司匹林制备的反应原理和实验方法。 2.通过阿司匹林制备实验,初步熟悉有机化合物的分离、提纯等方法。 3.巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。 二、实验原理 水杨酸分子中含羟基(—OH )、羧基(—COOH ),具有双官能团。本实验采用以强酸为硫酸[1]为催化剂,以乙酐为乙酰化试剂,与水杨酸的酚羟基发生酰化作用形成酯。反应如下: M=138.12 M=102.09 M=180.15 引入酰基的试剂叫酰化试剂,常用的乙酰化试剂有乙酰氯、乙酐、冰乙酸。本实验选用经济合理而反应较快的乙酐作酰化剂。 副反应有: —COOH —COOH —C —O — + —OH OH OH 水杨酰水杨酸 —COOH HO — —COO — 乙酰水杨酰水杨酸 制备的粗产品不纯,除上面两副产品外,可能还有没有反应的水杨酸等杂质。 本实验用FeCl 3检查产品的纯度,此外还可采用测定熔点的方法检测纯度。杂质中有未反应完酚羟基,遇FeCl 3呈紫蓝色。如果在产品中加入一定量的FeCl 3,无颜色变化,则认为纯度基本达到要求。 利用阿斯匹林的钠盐溶于水来分离少量不溶性聚合物。 三、实验试剂 水杨酸2.00g(0.015mol),乙酸酐5mL(0.053mol),饱和NaHCO 3(aq),4mol/L 盐酸,浓流酸,冰块,95%乙醇,蒸馏水,1%FeCl 3 。 四、实验仪器 150mL 锥形瓶,5mL 吸量管(干燥,附洗耳球),100mL 、250mL 、500mL 烧杯各一只,加热器,橡胶塞,温度计,玻棒,布氏漏斗,表面皿,药匙, 50mL 量筒,烘箱。

乙酰水杨酸(阿司匹林)的合成

乙酰水杨酸(阿司匹林)的合成 一、教学要求: 1、通过本实验了解乙酰水杨酸(阿斯匹林)的制备原理和方法。 2、进一步熟悉重结晶、熔点测定、抽滤等基本操作。 3、了解乙酰水杨酸的应用价值。 二、预习内容: 1、重结晶操作 2、抽虑操作 三、实验操作流程: 水杨酸,醋酸酐浓硫酸摇匀70度左右 20min 冷却抽滤 洗涤 粗产物 乙酸乙酯沸石加热 回流 趁热过滤冷却 抽滤 洗涤乙酰水杨酸 三、实验原理: 乙酰水杨酸即阿斯匹林(aspirin),是19世纪末合成成功的,作为一个有效的解热止痛、治疗感冒的药物,至今仍广泛使用,有关报道表明,人们正在发现它的某些新功能。水杨酸可以止痛,常用于治疗风湿病和关节炎。它是一种具有双官能团的化合物,一个是酚羟基,一个是羧基,羧基和羟基都可以发生酯化,而且还可以形成分子内氢键,阻碍酰化和酯化反应的发生。 阿斯匹林是由水杨酸(邻羟基苯甲酸)与醋酸酐进行酯化反应而得的。水杨酸可由水杨酸甲酯,即冬青油(由冬青树提取而得)水解制得。本实验就是用邻羟基苯甲酸(水杨酸)与乙酸酐反应制备乙酰水杨酸。反应式为: O OH OH +(C H3CO)2 3 +CH3COOH 副反应:

O OH OH 2 OH C O O O O H +O H 2O OH OC OCH 3 O OH OH + OC OCH 3 C O O O O H 表1 主要试剂和产品的物理常数 在50mL 圆底烧瓶中,加入干燥的水杨酸()和新蒸的乙酸酐10ml ()(思考题1),再加10滴浓硫酸,充分摇动(思考题2)。水浴加热,水杨酸全部溶解,保持瓶内温度在70℃左右(思考题3),维持20min ,并经常摇动。稍冷后,在不断搅拌下倒入100ml 冷水中,并用冰水浴冷却15min ,抽滤,冰水洗涤(思考题4),得乙酰水杨酸粗产品。 将粗产品转至250ml 圆底烧瓶中,装好回流装置,向烧瓶内加入100ml 乙酸乙酯和2粒沸石,加热回流,进行热溶解(思考题5)。然后趁热过滤,冷却至室温,抽滤,用少许乙酸乙酯洗涤,干燥,得无色晶体状乙酰水杨酸,称重,计算产率。测熔点(思考题6)。 乙酰水杨酸熔点:136℃。 六、存在的问题与注意事项: 1、 热过滤时,应该避免明火,以防着火。 2、为了检验产品中是否还有水杨酸,利用水杨酸属酚类物质可与三氯化铁发生颜色反应的特点,用几粒结晶加入盛有3mL 水的试管中,加入1~2滴1% FeCl 3溶液,观察有无颜色反应(紫色)。 3、产品乙酰水杨酸易受热分解,因此熔点不明显,它的分解温度为128~135℃。因此重结晶时不宜长时间加热,控制水温,产品采取自然晾干。用毛细管测熔点时宜先将溶液加热至120℃左右,再放入样品管测定。

对苯二甲酸二异辛酯的合成研究汇总

对苯二甲酸二异辛酯的合成研究 中文摘要 对苯二甲酸二异辛酯(DOTP)是近年发展起来的新型增塑剂,它以其高绝缘、低挥发、耐热、耐寒、抗抽出、柔软性好,与PVC树脂有良好的相容性等优点而越来越引起橡塑行业的重视;它的某些性能已优于号称全能增塑剂的邻苯二甲酸二辛酯。 传统合成对苯二甲酸二异辛酯的方法是使用PTA直接酯化法和DMT酯交换法。由于PTA 和DMT 均为紧缺较贵的化工原料,用来生产对苯二甲酸二异辛酯成本较高。涤纶是聚酯的一种,在涤纶生产中会产生大量的废丝、废块,利用涤纶废料通过聚酯降解法来生产对苯二甲酸二异辛酯,该法生产过程简单,生产成本低,既能缓解对苯二甲酸的不足,又可实现涤纶废丝的资源化利用。用废涤纶制取对苯二甲酸二异辛酯是一种变废为宝、非常经济的方法。因此,本实验采用涤纶废料和异辛醇在醋酸锌做催化剂的条件下进行酯交换反应。为了探索反应的最佳条件,我们通过改变进料比、选择催化剂以及催化剂用量,发现在PET与异辛醇摩尔比为1:3.0,醋酸锌作催化剂且催化剂用量为PET质量0.5%时对苯二甲酸二异辛酯的产率最高。并对产物进行了红外和熔点测试,确定了产物即为我们的目的产物DOTP。 论文主要有以下内容: 1、简述DOTP的性能和用途; 2、简述DOTP的合成方法; 3、DOTP的合成研究。 关键字:涤纶废料;对苯二甲酸二异辛酯;DOTP Abstract DioetylterePhthalate(DOTP) is a kind of new PVC residues reeovery which Developes in recent years,it is more and more widely reeognized by rubber and Plastie Industry for its high insulation,softness and good merits of low volatilization,heat and cold resisting and good consistency with PVC. Some of its merits are better than The merits of all function residuces reeovery named DioetylPhthalte(DOP). The traditional production of DioetylterePhthalate approach is to use direct esterification of PTA and DMT transesterification law. As PTA and DMT are more expensive shortage of chemical raw materials, used in the production of DioetylterePhthalate, the cost is hingher. In the production of polyester will have a lot of waste block, through the use of polyester waste block to produce polyester degradation of the dioetylterePhthalate, the simple production process, production low cost, it can ease the shortage of terephthalic acid, polyester waste block can achieve the use of resources. Making use of waste polyester dioetylterePhthalate is a recycling, a very economic way. Therefore, the experimental use of polyester waste and octanol differences in zinc acetate and four nails titanate ester as catalyst under the conditions transesterification reactions. Through experiments and found differences in the PET and octanol differences of 1:3 at th dioetylterePhthalate of the highest yield. Keywords: 1 文献综述 1.1对苯二甲酸二异辛酯的性能

微波辅助合成及绿色化学

微波辅助化学合成和绿色化学 引言 绿色化学又称环境无害化学,它涉及到化学合成、催化、生物化学、分析化学等不同领域, 其核心是利用化学原理从根本上消除化学工业对环境的污染,少产废物,甚至不产废物,达到“零排放”的特点。为了使化学合成过程与环境达成友好的协调,人们通常期望采用清洁的实验技术、清洁的反应物、清洁的反应溶媒以及尽可能温和的实验条件进行高选择性的、高收率的化学合成。清洁的实验技术有电解化学合成、微波化学合成、光化学合成和催化合成等等;清洁的反应溶媒有超临界水、超临界CO2、离子性液体,或者不需反应溶媒的固相合成反应;清洁的反应物有有机锡的化合物等。 微波技术用于化学合成最早可追溯到1986年,当时加拿大的R.Gedye 等实验中发现: 和传统的加热方式如电加热、油浴加热相比,微波辅助化学合成的反应速度大大的得以提高。 此外,由于微波反应还具有重现性高、环保、选择性高等诸多特点,迅速引起了人们的广泛关注。自90年代后半期以来,有关微波合成的报导逐年呈上升趋势,至今 已有1000多篇相关报导。事实上,现在有机合成类代表 性杂志如Tetrahedron Letters,Synlett 等基本上每期上都刊登有微波合成的文章。此外,现已有关于微波化学的书籍出版、微波化学的学术论坛也方兴未艾。在美国,微波辅助化学合成已走进课堂,并得到了老师和学生们的高度认可。 微波加热原理和特徵 微波是频率位于300GHz 和300MHz ,波长介于1mm 和1m 之间的电磁波,家用微波炉的频率为2.45GHz ,波长为12.2cm 。在比该波长更短的可见光、紫外光的幅射下,分子由於受到激发,很容易发生光化学反应,但微波的能量相对较小,不会引起分子的光化学反应。和传统的加热方式相比,微波加热的速度快的多,大多数研究表明:采用微波加热的化学反应所用时间通常为采用传统加热方式所用时间的千分之一甚至更少。目前,对微波加热机理的探讨很多,大多数都是从传统的电磁波物理学理论出发对其加以解释的,可简单地描述如下:分子在微波的辐射下(电场的作用下) ,转向偶极矩发生变化,由於摩擦产生热量。 微波和物质的相互作用 可以看出:在微波加热的情况下,热量来自分子本身,这和传统的加热方式--热量来自热源并经过物质的热传导有明显的区别。因此,微波更适合于对极性物质的加热。下表中给出了一些溶媒(10ml)在微波辐射下的升温速度, 可以看出:极性溶媒的升温速度比非极性溶媒的升温速度快的多。故在采用微波加热进行化学合成的过程中,溶媒的选择显得非常重要。 溶媒 温度(。 C) 沸点(。 C) 电荷诱导率 30秒 60秒 H2O 62 104 100 80.10 198419861988199019921994199619982000 200 400 600 800 1000 t o t a l p a p e r year

微波辐射合成和水解乙酰水杨酸123

微波辐射合成和水解乙酰水杨酸 乙酰水杨酸(Acetylsalicylicacid),又称阿司匹林(Aspirin),为白色针状或片状晶体,m.p136℃,易溶于乙醚、苯、热 乙醇,难溶于冷水,是人们熟悉的解热镇痛、抗风湿类药物。阿司匹林价格低廉,疗效显著,且防治疾病范围广,因此至今仍被广泛使用。人工合成乙酰水杨酸的 历史已有百年,1859年Kolbe用干燥的苯酚钠和二氧化碳在4~7atm下发 生反应,合成廉价的水杨酸,因而乙酰水杨酸的大量合成始于主要原料水杨酸的 工业化生产。 乙酰水杨酸通常用水杨酸和乙酸酐反应来合成,用浓硫酸或浓磷酸作催化剂,以加速反应的进行。该法反应速度相对较慢,收率仅74—80%,且易产生副 反应,对生产设备有较强的腐蚀性。乙酰水杨酸的传统酸催化合成法存在着相对 反应时间长,乙酸酐用量大,副产物多等缺点。本实验参考文献将微波辐射技术 用于合成和水解乙酰水杨酸,并加以回收利用,体现了化学绿色化的改革目标。 1.1实验原理 实验方式如下: 1.2主要仪器和试剂仪器 仪器:格兰仕WP750型微波炉,电子天平,圆底烧瓶(100mL),烧杯(250m L),椎形瓶(100mL),移液管(5mL),减压抽滤装置,红外光谱仪。 试剂:水杨酸(A.R),乙酸酐(A.R),无水碳酸钠(C.P),盐酸(C. ,活性炭。 P),氢氧化钠(C.P),95%乙醇(C.P),2%FeCl 3 1.3操作步骤 1.3.1微波辐射碱催化合成乙酰水杨酸 在100mL干燥的圆底烧瓶中加入2.0g (0.014mol)水杨酸和约0.1g碳酸钠, 再用移液管加入2.8mL (3.0g,0.029mol)乙酸酐,振荡,防如微波炉中,在微波 辐射输出功率495W下,微波辐射20s.稍冷,假如20mL pH=3~4的盐酸水溶液,将混合无继续在冷水中冷却使之结晶完全。减压过滤,用少量冷水洗涤结晶2~ 3次,抽干,得乙酰水杨酸粗产品。粗产品用乙醇水混合溶剂(1体积95%乙醇+2 体积水)约16mL重结晶,干燥,得白色乙酰水杨酸2.02g,熔点135~136℃。产水溶液检验。 品用2%FeCl 3 1.3.2微波辐射水解乙酰水杨酸实验 在100mL烧杯中加入2.0g (0.01mol)乙酰水杨酸和40mL0.3mol/L NaOH水溶液,在微波辐射输出功率1000W下,微波辐射40s.冷却后,滴加6mol/L HCl至

油酸异辛酯的合成新方法

油酸异辛酯的合成新方法 油酸异辛酯是一种重要的有机化工原料,是合成环氧油酸异辛酯的主要中间体,同时一也可作为增塑剂广泛应用于橡胶、塑料等行业。环氧油酸异辛酯作为环氧类增塑剂用在PVC中,当与金属稳定剂并用时,能长期发挥热稳定性和光稳定性的协同效果,大大改善制品的稳定性,且耐寒性能好,是耐寒耐候制品中常用的增塑剂,因此发展较快。油酸异辛酯的传统合成方法是用油酸和异辛醇在酸性催化剂如浓硫酸、甲基磺酸等的作用下加热酯化脱水而成。工业上常采用对甲苯磺酸、钛酸四丁酯等作催化剂。但这些催化剂都存在某些不足之处,影响产品质量。本文选择的催化剂甲基磺酸钙是一种耐水性非常好的Lewis酸,具有催化活性高、可重复使用、对环境友好等优点,合成催化剂甲基磺酸钙的原料易得,是一种绿色酯化催化剂。 1、实验部分 1.1主要试剂与仪器 油酸,异辛醇,甲基磺酸,氧化钙,活性炭均为工业级。2型恒速搅拌器(上海中胜生物技术有限公司),Tensor 27型红外光谱仪(Bruker)。

1.2催化剂的制备 在装有冷凝管的250mL的四口烧瓶里加入38.4g蒸馏水,再加入38.48(0.4mo1)甲基磺酸,开搅拌,缓慢加入11.2g (0.2mo1)氧化钙加热回流2.0h。趁热过滤,洗涤,蒸干,在真空下,100℃干燥3h。得甲基磺酸钙36.8g,收率80.0%。 1.3酯化反应方程式 油酸异辛酯是在催化剂的作用下酯化而成,反应方程式如下: 1.4酯化反应过程 在装有温度计、分水器的500mL四口瓶中依次加入称量好的油酸、异辛醇和催化剂,搅拌均匀后检测酸值,再加入活性炭保护颜色,氮气带水,再在分水器上端安装冷凝管,升温到120一130℃保温4.0h。反应结束后,反应体系冷却至室温,取少量过滤,滤液测定酸值。

论文资料-微波法合成乙酰水杨酸探究性试验 实验方案-(word)可编辑

论文资料-微波法合成乙酰水杨酸探究性试验实验方案- (word)可编辑 乙酰水杨酸的微波合成研究实验方案 一.实验目的 掌握阿司匹林的微波合成方法。 1. 熟悉酚羟基酰化反应的原理, 2. 巩固重结晶精制固体产品的操作技术。 3. 通过正交试验得到最佳合成条件。 二.实验原理 乙酰水杨酸(阿司匹林)具有解热止痛作用可用来治疗感冒、心脑血管等疾病。目前它的新用途仍在不断被开发。常规方法合成乙酰水杨酸用浓硫酸或浓磷酸作催化剂,反应速率慢,产率低,并且对生产设备有较强的腐蚀性,也有用固体氢氧化钠,无水碳酸钠作催化剂的报道。将微波辐射技术应用于有机合成是上世纪80年代后期兴起的一项新技术,目前已发展成一 在微波反应器中由水杨酸和个新领域——More化学。本文报道以无水碳酸氢钠作催化剂, 乙酸酐快速合成乙酰水杨酸的方法。反应式如下: 三.仪器与试剂

微波反应器,红外光谱仪,烧杯(150ml×5),表面皿(×3),水杨酸(AR),乙酸酐(AR),碳酸氢钠(AR),乙醇(95%),氢氧化钠,碳酸钠,对甲苯磺酸,硫代硫酸钠,硫酸氢钠,对硫酸铵,磷酸,无水三氯化铝(均为AR),FeCl3(1%),抽滤系统 四.实验步骤 (一)产品的合成 在150 mL干燥的烧杯中加入10 g水杨酸和一定量新蒸馏的乙酸酐,加入适量无水碳酸氢钠作催化剂,稍加摇动,将一表面皿置于烧杯口,然后置于微波炉中,在特定的功率下反应一定时间。反应后稍加冷却,加入40 mL蒸馏水,搅拌,充分冷却,结晶完全。抽滤,干燥后得到乙酰水杨酸粗产品。 提纯:(1)粗产品至于100ML烧杯中缓慢加入饱和NaHCO3溶液,产生大量气体。固体大部分溶解。共加入约25ml溶液。 (2)用干净抽滤瓶抽滤,用5~10ml水洗(可先转移滤液,后洗)。将滤液和洗涤液合并转移至100ml烧杯中,缓缓加入(滴加,不宜过快)75ml 4mol/L的盐酸,边加边搅拌,有大量气泡产生。 (3)用冰水冷却10min后抽滤,2~3ml冷水洗涤几次,抽干,干燥 (80?,50min),称重。 1.正交试验表 因素 N(水):n(乙)反应温度 /? 辐射时间/s (催化剂)g质 B C mol比A 量 D 水平 30 0.05 1:1.5 1 45 0.1 1:2.0

实验一-乙酰水杨酸的合成

实验一-乙酰水杨酸的合成

实验一、乙酰水杨酸(阿司匹林)的合成、鉴定与含量的测定 一、实验目的 (1) 学习O-酰化(酯化)单元反应的特点和基本知识。 (2) 了解阿司匹林的性质和工业制法,掌握O-酰化制备阿司匹林的实验方法。 (3) 掌握水杨酸酰化反应的原理及实验操作以及乙酰水杨酸的鉴定、提纯及含量测定的方法。 (4)了解紫外光谱法、红外光谱法、核磁共振法在有机合成中的应用,掌握紫外-可见分光光度法定量分析的基本原理和实验技术。 (5) 进一步熟悉基础化学实验的重结晶及熔点测定等基本操作。 二、实验原理 乙酰水杨酸(acetyl Salicylic acid ),通常也称为阿司匹林(aspirin),是由水杨酸(邻羟基苯甲酸)和乙酸酐合成的。早在18世纪,人们已从柳树皮中提取了水杨酸,并注意到它可以作为止痛、退热和抗炎药,不过对肠胃刺激作用较大。19世纪末,人们成功地合成了乙酰水杨酸,直到目前,阿司匹林仍然是一个广泛的具有解热镇痛作用的药物。水杨酸是一个具有酚羟基和羧基双官能团化合物,能进行两种不同的酯化反应,当与乙酸酐作用时,可以得到乙酰水杨酸(即阿司匹林);如与过量的甲醇反应,生成水杨酸甲酯,它是第一个作为冬青树的香味成分被发现的,因此通称为冬青油。本实验将进行前一个反应的试验。 反应式: COOH OH +(CH 3CO)2O H SO COOH OCCH 3 +CH 3COOH 在生成乙酰水杨酸的同时,水杨酸分子之间可以发生酯化反应,生成少量的聚合酯: COOH OH n H +C O O O C O O C O O +H 2O 乙酰水杨酸能与NaHCO 3反应生成水溶性钠盐,而副产物聚合酯不能溶于NaHCO 3,这种性质上的差别可用于阿司匹林的纯化。 可能存在于最终产物中的杂质是水杨酸本身,这是由于乙酰化反应不完全或由于产物在分离步骤中发生水解造成的。它可以在各步纯化过程和产物的重结晶过程中被除去,与大多数酚类化合物一样,水杨酸可与FeCl 3,形成深色配(络)合物,而阿司匹林因酚羟基已被酰化,不再与FeCl 3发生颜色反应,因而未作用

水杨酸异辛酯的摘要

水杨酸异辛酯的合成研究 方军林(指导教师:魏先红) (化学与环境工程系应用化学 0903班湖北黄石 435002) 摘要:本文中我们采用水杨酸和异辛醇通过酯交换反应生成水杨酸异辛酯。在反应过程中改变反应条件如催化剂的用量、反应物配料比、反应终点温度、套用原料方法来探讨其收率的多少。当催化剂用量为0.5%,原料酯与醇物质的量比1:2时,收率在85%以上。 关键字:酯交换反应;水杨酸甲酯;异辛醇;水杨酸异辛酯 中文图分类号:O849 Study on synthesis of ISO-Octyl salicylate FANG Junlin (Tutor:WEI Xianhong) (College of Chemistry and environmental engineering,Applied Chemistry,0903,Huangshi,Hubei,435002) Abstract:In this article we use salicylic acid and ISO-Octyl alcohol by Exchange reaction of salicylic acid isooctyl ester. By changing the reaction conditions such as the amount of catalyst in the reaction process, the reactant ratio of ingredients, the endpoint of the reaction temperature, raw material method is applied to investigate the number of its yield. When the amount of catalyst is 0.5%, the raw material ester and an alcohol substance ratio of 1:2, the yield above 85%. Key words: Transesterification reaction;Salicylic acid methyl ester;ISO-Octyl alcohol ;Homos

(完整版)阿司匹林的合成

阿司匹林的制备 一、实验目的: 1、了解阿司匹林制备的反应原理和实验方法。 2、通过阿司匹林制备实验,初步熟悉有机化合物的分离、提纯等方法。 3、巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。 4、了解合成中的副产物以及相应的除杂方法。 5、了解阿司匹林合成中可使用的催化剂 二、实验原理: 阿司匹林的合成原理是在催化剂作用下,以醋酐为酰化剂, 与水杨酸羟基酰化成酯。传统的合成阿司匹林的催化剂为浓硫酸,它存在如下缺点: 1)收率较低(65%~70%),腐蚀设备,有排酸污染; 2)操作条件要求严格。浓硫酸具有强氧化性, 反应要严格控制其加入速度和搅拌速度, 否则会导致反应物碳化; 3)粗产品干燥时,由于硫酸分离不完全而导致部分产品氧化, 引起产品成色不好;4)产品不能加热干燥, 否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。 因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸必要的,改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。 酸性催化剂 酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基, 即完成乙酰水杨酸的合成。催化剂酸性越强, 氢质子流动性越好, 越易于催化酯基的生成, 但在乙酰水杨酸的合成中, 催化剂酸性太强, 也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。因此,以浓硫酸为催化剂合成阿司匹林的反应为基础, 人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究, 取得了可喜成果。酸性催化剂包括路易斯酸、固体酸、有机酸、 酸性无机盐、酸性膨润土等。

乙酰水杨酸的制备试验

乙酰水杨酸的制备 一、实验目的: 1.了解阿司匹林制备的反应原理和实验方法。 2.通过阿司匹林制备实验,初步熟悉有机化合物的分离、提纯等方法。 3.巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。 二、实验原理 水杨酸分子中含羟基(—OH)、羧基(—COOH),具有双官能团。本实验采用以强酸为硫酸[1]为催化剂,以乙酐为乙酰化试剂,与水杨酸的酚羟基发生酰化作用形成酯。反应如下: M=138.12 M=102.09 M=180.15 引入酰基的试剂叫酰化试剂,常用的乙酰化试剂有乙酰氯、乙酐、冰乙酸。本实验选用经济合理而反应较快的乙酐作酰化剂。 副反应有: COOH COOH + OH OH OH 水杨酰水杨酸 HO 乙酰水杨酰水杨酸制备的粗产品不纯,除上面两副产品外,可能还有没有反应的水杨酸等杂质。 本实验用FeCl3检查产品的纯度,此外还可采用测定熔点的方法检测纯度。杂质中有未反应完酚羟基,遇FeCl3呈紫蓝色。如果在产品中加入一定量的FeCl3,无颜色变化,则认为纯度基本达到要求。 利用阿斯匹林的钠盐溶于水来分离少量不溶性聚合物。

三、实验试剂 水杨酸2.00g(0.015mol),乙酸酐5mL(0.053mol),饱和NaHCO3(aq),4mol/L盐酸,浓流酸,冰块,95%乙醇,蒸馏水,1%FeCl3 。 四、实验仪器 150mL锥形瓶,5mL吸量管(干燥,附洗耳球),100mL、250mL、500mL烧杯各一只,加热器,橡胶塞,温度计,玻棒,布氏漏斗,表面皿,药匙, 50mL量筒,烘箱。 五、实验步骤及注意事项

O C OH O H 2)、仪器要全部干燥,药品也要实现经干燥处理。 3)、醋酐要使用新蒸馏的,收集139~140℃的馏分。长时间放置的乙酸酐遇空气中的水, 容易分解成乙酸。 4)、要按照书上的顺序加样。否则,如果先加水杨酸和浓硫酸,水杨酸就会被氧化。 5)、水杨酸和乙酸酐最好的比例为1:2或1:3 6)、本实验中要注意控制好温度(85-90℃),否则温度过高将增加副产物的生成,如水杨酰水杨酸、乙酰水杨酰水杨酸、乙酰水杨酸酐等。 7)、 将反应液转移到水中时,要充分搅拌,将大的固体颗粒搅碎,以防重结晶时不易溶解。 3、思考题 1、反应容器为什么要干燥无水? 以防止乙酸酐水解转化成乙酸 2、为什么用乙酸酐而不用乙酸? 不可以。由于酚存在共轭体系,氧原子上的 电子云向苯环移动,使羟基氧上的电子云密度 降低,导致酚羟基亲核能力较弱,进攻乙酸羰基碳的能力较弱,所以反应很难发 生。 3、加入浓硫酸的目的是什么? 浓硫酸作为催化剂。 ①水杨酸形成分子内氢键,阻碍酚羟基酰化作用。 水杨酸与酸酐直接作用须加热至150~160℃才能生成乙酰水杨酸, 如果加入浓硫酸(或磷酸),氢键被破坏,酰化作用可在较低温度下进行, 同时副产物大大减少。 4、本实验中可产生什么副产物? 本实验的副产物包括水杨酰水杨酸酯、乙酰水杨酰水杨酸酯、乙酰水杨酸酐和聚合物。 C O O H O OCOCH O OH

相关主题
文本预览
相关文档 最新文档