当前位置:文档之家› 磁场-专题电场与磁场在实际中的应用

磁场-专题电场与磁场在实际中的应用

磁场-专题电场与磁场在实际中的应用
磁场-专题电场与磁场在实际中的应用

专题:电场与磁场在实际中的应用

要点一 速度选择器

即学即用

1.如图所示,一束质量、速度和电荷量不同的正离子垂直地射入匀强磁场和匀强电场正 交的区域里,结果发现有些离子保持原来的运动方向,有些未发生任何偏转.如果让这 些不偏转的离子进入另一匀强磁场中,发现这些离子又分裂成几束,对这些进入另一磁 场的离子,可得出结论

( )

A .它们的动能一定各不相同

B .它们的电荷量一定各不相同

C .它们的质量一定各不相同

D .它们的电荷量与质量之比一定各不相同

答案 D

要点二 质谱仪

即学即用

2.质谱仪是一种测定带电粒子质量和分析同位素的重要仪器,它的构造如图所示.设从离子 源S 产生出来的正离子初速度为零,经过加速电场加速后,进入一平行板电容器C 中,电 场强度为E 的电场和磁感应强度为B 1的磁场相互垂直,具有某一速度的离子将沿图中所

示的直线穿过两板间的空间而不发生偏转,再进入磁感应强度为B 2的匀强磁场,最后打在记录它的照相底片上的P 点.若测得P 点到入口处S 1的距离为s ,证明离子的质量为m =

E

s

B qB 221. 答案 离子被加速后进入平行板电容器,受到的水平的电场力和洛伦兹力平衡才能够竖直向上进入上面的匀强磁

场,由qvB 1=qE 得v =E/B 1,在匀强磁场中

22qB m s v

,将v 代入,可得m =E

s B qB 221. 要点三 回旋加速器

即学即用

3.回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属盒,两盒分别和一高频交流电源两极相接,以便在盒间的窄缝中形成匀强电场,使 粒子每次穿过狭缝都得到加速,两盒放在匀强磁场中,磁场方向垂直于盒底面,离子源置

于盒的圆心附近.若离子源射出的离子电荷量为q ,质量为m ,粒子最大回转半径R m ,其运动轨迹如图所示.

求:(1)两个D 形盒内有无电场? (2)离子在D 形盒内做何种运动? (3)所加交流电频率是多大?

(4)离子离开加速器的速度为多大?最大动能为多少? 答案 (1)无电场

(2)做匀速圆周运动,每次加速之后半径变大 (3)m qB

π2 (4)m

qBR m m R B q 2m 222

要点四 霍尔效应

即学即用

4.如图所示,厚度为h 、宽度为d 的导体板放在垂直于它的磁感应强度为B 的匀强磁场中,

当电流通过导体板时,在导体板的上侧面A 和下侧面A ′之间会产生电势差,这种现象 称为霍尔效应.实验表明,当磁场不太强时,电势差U 、电流I 和B 的关系为U =k

d

IB

.式中的比例系数k 称为霍尔系数.霍尔效应可解释如下:外部磁场的洛伦兹力使运动的电子聚集在导体板的一侧,在导体板的另一侧会出现多余的正电荷,从而形成横向电场.横向电场对电子施加与洛伦兹力方向相反的静电力.当静电力与洛伦兹力达到平衡时,导体板上下两侧之间就会形成稳定的电势差.

设电流I 是由电子的定向流动形成的,电子的平均定向速度为v ,电荷量为e ,回答下列问题:

(1)达到稳定状态时,导体板上侧面A 的电势 下侧面A ′的电势(填“高于”“低于”或“等于”);

(2)电子所受的洛伦兹力的大小为 ;

(3)当导体板上下两侧之间的电势差为U 时,电子所受静电力的大小为 ; (4)由静电力和洛伦兹力平衡的条件,证明霍尔系数为k =ne

1

,其中n 代表导体板单位体积中电子的个数. 答案 (1)低于 (2)evB (3)e

h

U (4)由F =F 电得evB =e

h

U

U =hvB 导体中通过的电流I=nev ·d ·h 由U =k d IB 得hvB =k d IB =k d

v dhB ne 得k =ne

1

题型1 带电粒子在组合场中运动

【例1】如图所示,在y >0的空间中存在匀强电场,场强沿y 轴负方向;在y <0的空间中,存在 匀强磁场,磁场方向垂直xy 平面(纸面)向外.一电荷量为q 、质量为m 的带正电的运动 粒子,经过y 轴上y=h 处的点P 1时速率为v 0,方向沿x 轴正方向,经过x 轴上x =2h 处的P 2点 进入磁场,并经过y 轴上y =-2h 处的P 3点.不计重力.求: (1)电场强度的大小.

(2)粒子到达P 2时速度的大小和方向. (3)磁感应强度的大小.

答案 (1)qh

m 22

v

(2)02v ,与x 轴成45°角 (3)

qh

m 0

v 题型2 带电粒子在重叠场中运动

【例2】如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的匀 强磁场,磁感应强度B =1.57 T .小球1带正电,其电荷量与质量之比

1

1

m q =4 C/kg ,所受重力与电 场力的大小相等;小球2不带电,静止放置于固定的水平悬空支架上.小球1向右以v 0=23.59 m/s 的水平速度与小球2正碰,碰后经过0.75 s 再次相碰.设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内.(取g =10 m/s 2

) (1)电场强度E 的大小是多少?

(2)两小球的质量之比

1

2

m m 是多少? 答案 (1)2.5 N/C (2)11

题型3 科技物理

【例3】飞行时间质谱仪可以对气体分子进行分析.如图所示,在真空状态下,脉冲阀P 喷出微量气体,经激光照射产生不同价位的正离子,自a 板小孔进入a 、b 间的加速 电场,从b 板小孔射出,沿中线方向进入M 、N 板间的偏转控制区,到达探测器.已知

元电荷电荷量为e ,a 、b 板间距为d ,极板M 、N 的长度和间距均为L .不计离子重力及进入a 板时的初速度.

(1)当a 、b 间的电压为U 1时,在M 、N 间加上适当的电压U 2,使离子到达探测器.请导出离子的全部飞行时间与荷质比k (k =

m

ne

)的关系式. (2)去掉偏转电压U 2,在M 、N 间区域加上垂直于纸面的匀强磁场,磁感应强度为B ,若进入a 、b 间的所有离子质

量均为m ,要使所有的离子均能通过控制区从右侧飞出,a 、b 间的加速电压U 1至少为多少? 答案 (1)m

B eL kU L d t 3225)

2(222

21

+=

1.电磁流量计广泛应用于测量可导电流体(如污水)在管中的流量(在单位时间内通过 管内横截面的流体的体积).为了简化,假设流量计是如图所示的横截面为长方形的一

段管道,其中空部分的长、宽、高分别为图中的a 、b 、c .流量计的两端与输送流体的管道相连接(图中虚线).图

中流量计的上下两面是金属材料,前后两面是绝缘材料.现于流量计所在处加磁感应强度为B 的匀强磁场,磁场方向垂直于前后两面.当导电流体稳定地流经流量计时,在管外将流量计上、下两表面分别与一串接了电阻R 的电流表的两端连接,I 表示测得电流值.已知流体的电阻率为ρ,不计电流表的内阻,则可求得流量为

( )

A .

)(a

c

bR B I ρ+

B .

)(c

b aR B I ρ+ C .

)(b

a

cR B I ρ+ D .

)(a

c

R B I ρ+ 答案 A

2.目前世界上正在研究一种新型发电机叫磁流体发电机,它可以把气体的内能直接转化为电能. 如图所示为它的发电原理图.将一束等离子体(即高温下电离的气体,含有大量带正电和负电 的微粒,从整体上来说呈电中性)喷射入磁感应强度为B 的匀强磁场,磁场中有两块面积为S ,

相距为d 的平行金属板与外电阻R 相连构成一电路.设气流的速度为v ,气体的电导率(电阻率的倒数)为g ,则流

过外电阻R 的电流强度I 及电流方向为

( ) A .I =R

Bd v

,A →R →B B .I =gd

SR S

Bd +v ,B →R →A

C .I =

R

Bd v

,B →R →A

D .I =

d

gSR Sg

Bd +v ,A →R →B

答案 D

3.如图所示,回旋加速器D 形盒的半径为R ,用来加速质量为m 、电荷量为q 的质子,使质子由静止加速到能量为E 后,

由A 孔射出,求:

(1)加速器中匀强磁场B 的方向和大小.

(2)设两D 形盒间距为d ,其间电压为U ,电场视为匀强电场,质子每次经电场加速后能量增加,加速到上述能量所需

回旋周数.

(3)加速到上述能量所需时间. 答案 (1)qR mE

2 方向垂直纸面向里 (2)

qU

mE R qU

E 2π)3(2

4.(2009·平朔质检)如图所示是用来测量带电粒子质量的仪器的工作原理示意图,设法使某有机化合物的气态分子导入图示容器A 中,使它受到电子束轰击,失去一个电子变成正一价的离子.离子从狭缝S 1以很小的速度进入电压为U 的加速电场中(初速度不计),加速后再经过狭缝S 2、S 3射入磁感应强度为B 的匀强磁场,方向垂直于磁场区的界面PQ .最后,离子打到感光片上,形成垂直于纸面且平行于狭缝S 3的细线,若测得细线到狭缝S 3的距离为d .导出离子质量m 的表达式.

答案 m =U

d qB 82

2

1.在真空中,匀强电场方向竖直向下,匀强磁场方向垂直纸面向里.三个油滴带有等量同种电荷,其中a 静止,b 向右匀速运动,c 向左匀速运动,则它们的重力G a 、G b 、G c 的关系为

( ) A .G a 最大

B .G b 最大

C .G c 最大

D .不能确定

答案 C

2.如图所示,真空中一光滑水平面上,有两个直径相同的金属小球A 、C ,质量m A =0.01 kg ,m C = 0.005 kg .静止在磁感应强度B =0.5 T 的匀强磁场中的C 球带正电,电荷量q C =1.0×10-2

C , 在磁场外的不带电的A 球以v 0=20 m/s 的速度进入磁场中与C 球发生正碰后,C 球对水平面的压力恰好

为零,则碰后A 球的速度为

( ) A .20 m/s

B .10 m/s

C .5 m/s

D .15 m/s

答案 B

3.(2009·涿州模拟)如图所示,一粒子先后通过竖直方向的匀强电场区和竖直方向的匀 强磁场区,最后粒子打在右侧屏上第二象限上的某点.则下列说法中正确的是 ( ) A .若粒子带正电,则E 向上,B 向上 B .若粒子带正电,则E 向上,B 向下 C .若粒子带负电,则E 向下,B 向下

D .若粒子带负电,则

E 向下,B 向上

答案 AC

4.如图所示,质量为m 、电荷量为q 的微粒,在竖直向下的匀强电场、水平指向纸内的匀强磁 场以及重力的共同作用下做匀速圆周运动,下列说法中正确的是 ( )

A .该微粒带负电,电荷量q =

E

mg B .若该微粒在运动中突然分成荷质比相同的两个粒子,分裂后只要速度不为零且速度方向仍与磁场方向

垂直,它们

均做匀速圆周运动

C .如果分裂后,它们的荷质比相同,而速率不同,那么它们运动的轨道半径一定不同

D .只要一分裂,不论它们的荷质比如何,它们都不可能再做匀速圆周运动 答案 ABC

5.目前,世界上正在研究一种新型发电机叫磁流体发电机.如图表示了它的原理:将一束等离 子体喷射入磁场,在场中有两块金属板A 、B ,这时金属板上就会聚集电荷,产生电压.如果 射入的等离子体速度均为v ,两金属板的板长为L ,板间距离为d ,板平面的面积为S ,匀强磁

场的磁感应强度为B ,方向垂直于速度方向,负载电阻为R ,电离气体充满两板间的空间.当发电机稳定发电时,电流

表示数为I .那么板间电离气体的电阻率为

( ) A .)(R I Bd d S -v B .)(R I BL d S -v C .

)(R I

Bd L S -v

D .

)(R I

BL L S -v 答案 A

6.一个带正电的滑环套在水平且足够长的粗糙的绝缘杆上,整个装置处于方向如图所示的匀强 磁场中,现给滑环一个水平向右的瞬时作用力,使其由静止开始运动,则滑环在杆上运动情况 不可能...的是

( ) A .始终做匀速运动

B .始终做减速运动,最后静止于杆上

C .先做加速运动,最后做匀速运动

D .先做减速运动,最后做匀速运动

答案 C

7.设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示,已知一离子在静电力 和洛伦兹力的作用下,从静止开始自A 点沿曲线ACB 运动,到达B 点时速度为零,C 点是运动 的最低点,忽略重力,下述说法中错误..的是 ( ) A .该离子必带正电荷 B .A 点和B 点位于同一高度

C .离子在C 点时速度最大

D .离子到达B 点后,将沿原曲线返回A 点

答案 D

8.如图所示,空间存在相互垂直的匀强电场和匀强磁场,电场的方向竖直向下,磁场的方向垂直纸面向里, 一带电油滴P 恰好处于静止状态,则下列说法正确的是

( )

A .若撤去电场,P 可能做匀加速直线运动

B .若撤去磁场,P 可能做匀加速直线运动

C .若给P 一初速度,P 可能做匀速直线运动

D .若给P 一初速度,P 可能做顺时针方向的匀速圆周运动 答案 CD

9.如图所示,水平放置的平行金属板a 、b 带有等量正负电荷,a 板带正电,两板间有垂直 于纸面向里的匀强磁场,一个带正电的液滴在两板间做直线运动.关于液滴在两板间运 动的情况,可能是

( )

A .沿竖直方向向下运动

B .沿竖直方向向上运动

C .沿水平方向向右运动

D .沿水平方向向左运动

答案 C

10.带电粒子以初速度v 0从a 点进入匀强磁场,如图所示运动中经过b 点,Oa =Ob ,若撤去磁场 加一个与y 轴平行的匀强电场,仍以v 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感应强度B 之比B

E 为

( ) A .v 0

B .

1v C .2v 0

D .

2

v 答案 C

11.一个质量m =0.001 kg 、电荷量q =1×10

-3

C 的带正电小球和一个质量也为m 不带电的小球

相距L =0.2 m ,放在绝缘光滑水平面上.当加上如图所示的匀强电场和匀强磁场后,带电小球

开始运动,与不带电小球相碰,并粘在一起,合为一体.已知E =1×103

N/C ,B =0.5 T .问:(取g =10 m/s 2

) (1)两球碰后速度多大?

(2)两球碰后到两球离开水平面,还要前进多远? 答案 (1)10 m/s

(2)1.5 m

12.如图所示,两块平行金属板M 、N 竖直放置,两板间的电势差U =1.5×103

V .竖直边界MP 的左边存在着正交的匀强电场和匀强磁场,其中电场强度E =2 500 N/C ,方向竖直向上;磁感 应强度B =103

T ,方向垂直纸面向外;A 点与M 板上端点C 在同一水平线上,现将一质量m = 1×10

-2

kg 、电荷量q =+4×10-5

C 的带电小球自A 点斜向上抛出,抛出的初速度v 0=4 m/s ,方向与水平方

向成45°角,之后小球恰好从C 处进入两板间,且沿直线运动到N 板上的Q 点,不计空气阻力,g 取10 m/s 2.求:

(1)A 点到C 点的距离s AC . (2)Q 点到N 板上端的距离L . (3)小球到达Q 点时的动能E k .

答案 (1)2m (2)0.6 m (3)0.20 J

13.如图所示的坐标系,x 轴沿水平方向,y 轴沿竖直方向.在x 轴上方空间的第一、第二象限内,既 无电场也无磁场,在第三象限,存在沿y 轴正方向的匀强电场和垂直xy 平面(纸面)向里的匀强 磁场,在第四象限,存在沿y 轴负方向、场强大小与第三象限电场场强相等的匀强电场.一质量为m 、电荷量为q 的带

电质点,从y 轴上y =h 处的P 1点以一定的水平初速度沿x 轴负方向进入第二象限.然后经过x 轴上x =-2h 处的P 2点进入第三象限,带电质点恰好能做匀速圆周运动,之后经过y 轴上y =-2h 处的P 3点进入第四象限.已知重力加速度为g . 求:

(1)粒子到达P 2点时速度的大小和方向.

(2)第三象限空间中电场强度和磁感应强度的大小.

(3)带电质点在第四象限空间运动过程中最小速度的大小与方向. 答案 (1)2gh 方向与x 轴负方向成45°角斜向下 (2)

gh h

g q m q mg

2)3(2 方向沿x 轴正方向

电场与电磁场的区别

电场与电磁场 电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电 场具有能量)。 静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场[1](也称感应电场或涡旋电场)。静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。普遍意义的电场则是静电场和有旋电场两者之和。 电场是一个矢量场,其方向为正电荷的受力方向。电场的力的性质用电场强度来描述。 对放入其中的小磁针有磁力的作用的物质叫做磁场。磁场是一种看不见,而又摸不着的特殊物质。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。

电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。而现代理论则说明,磁力是电场力的相对论效应。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,

2021-2022年高考物理二轮复习专题突破3电场和磁场第1讲电场和磁场的基本性质

2021年高考物理二轮复习专题突破3电场和磁场第1讲电场和磁场 的基本性质 1.(xx·全国卷Ⅰ,14)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上。若将云母介质移出,则电容器( ) A .极板上的电荷量变大,极板间电场强度变大 B .极板上的电荷量变小,极板间电场强度变大 C .极板上的电荷量变大,极板间电场强度不变 D .极板上的电荷量变小,极板间电场强度不变 解析 由C =εr S 4πkd 可知,当云母介质移出时,εr 变小,电容器的电容C 变小;因为电容器接在恒压直流电源上,故U 不变,根据Q =CU 可知,当C 减小时,Q 减小。再由E =U d ,由于U 与d 都不变,故电场强度E 不变,选项D 正确。 答案 D 2.(xx ·全国卷Ⅲ,15)关于静电场的等势面,下列说法正确的是( ) A .两个电势不同的等势面可能相交 B .电场线与等势面处处相互垂直 C .同一等势面上各点电场强度一定相等 D .将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功 解析 若两个不同的等势面相交,则在交点处存在两个不同电势数值,与事实不符,A

错;电场线一定与等势面垂直,B 对;同一等势面上的电势相同,但电场强度不一定相同,C 错;将一负电荷从电势较高的等势面移至电势较低的等势面,电场力做负功,故D 错。 答案 B 3.(xx·全国卷Ⅱ,15)如图1,P 是固定的点电荷,虚线是以P 为圆心的两个圆。带电粒子Q 在P 的电场中运动,运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点。若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c ,则( ) 图1 A .a a >a b >a c ,v a >v c >v b B .a a >a b >a c ,v b >v c >v a C .a b >a c >a a ,v b >v c >v a D .a b >a c >a a ,v a >v c >v b 解析 由库仑定律F =kq 1q 2r 2 可知,粒子在a 、b 、c 三点受到的电场力的大小关系为F b >F c >F a ,由a =F m 可知a b >a c >a a 。根据粒子的轨迹可知,粒子Q 与场源电荷P 的电性相同,二者之间存在斥力,由c →b →a 整个过程中,电场力先做负功再做正功,且W ba >|W cb |,结合动能定理可知,v a >v c >v b ,故选项D 正确。 答案 D 4.(xx·全国卷Ⅱ,14)如图2,两平行的带电金属板水平放置。若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a 点的轴(垂直于纸面)逆时

电磁场与电磁波试题答案

《电磁场与电磁波》试题1 一、填空题(每小题1分,共10分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B ?和磁场H ? 满足的方程 为: 。 2.设线性各向同性的均匀媒质中, 02=?φ称为 方程。 3.时变电磁场中,数学表达式H E S ? ???=称为 。 4.在理想导体的表面, 的切向分量等于零。 5.矢量场 )(r A ? ?穿过闭合曲面S 的通量的表达式为: 。 6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表 示。 二、简述题 (每小题5分,共20分) 11.已知麦克斯韦第二方程为 t B E ??- =????,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题 (每小题10分,共30分) 15.按要求完成下列题目 (1)判断矢量函数 y x e xz e y B ??2+-=? 是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。 16.矢量z y x e e e A ?3??2-+=?,z y x e e e B ??3?5--=? ,求 (1)B A ??+ (2)B A ??? 17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E e E --=004?3?? (1) 试写出其时间表达式; (2) 说明电磁波的传播方向; 四、应用题 (每小题10分,共30分) 18.均匀带电导体球,半径为a ,带电量为Q 。试求

黄冈中学第二轮复习专题三电场和磁场

黄冈中学第二轮复习 专题三电场和磁场 【方法归纳】 一、场强、电势的概念 1、电场强度E ①定义:放入电场中某点的电荷受的电场力F与它的电量q的比值叫做该点的电场强度。 ②数学表达式:,单位: ③电场强度E是矢量,规定正电荷在电场中某点所受电场力的方向即为该点的电场强度的方向 ④场强的三个表达式 ⑤比较电场中两点的电场强度的大小的方法: 由于场强是矢量。比较电场强度的大小应比较其绝对值的大小,绝对值大的场强就大,绝对值小的场强就小。 Ⅰ在同一电场分布图上,观察电场线的疏密程度,电场线分布相对密集处,场强较大;电场较大;电场线分布相对稀疏处,场强较小。 Ⅱ形成电场的电荷为点电荷时,由点电荷场强公式可知,电场中距这个点电荷Q较近的点的场强比距这个点电荷Q较远的点的场强大。 Ⅲ匀强电场场强处处相等 Ⅳ等势面密集处场强大,等势面稀疏处场强小 2、电势、电势差和电势能 ①定义: 电势:在电场中某点放一个检验电荷q,若它具有的电势能为E,则该点的电势为电势能与电荷的比值。电场中某点的电势在数值上等于单位正电荷由该点移到零电势点时电场力所做的功。也等于该点相对零电势点的电势差。 电势差:电荷在电场中由一点A移到另一点B时,电场力做功与电荷电量q的比值,称为AB两点间的电势差,也叫电压。 电势能:电荷在电场中所具有的势能;在数值上等于将电荷从这一点移到电势能为零处电场力所做的功。 ②定义式:或,单位:V 单位:J ③说明:Ⅰ电势具有相对性,与零电势的选择有关,一般以大地或无穷远处电势为零。 Ⅱ电势是标量,有正负,其正负表示该的电势与零电势的比较是高还是低。 Ⅲ电势是描述电场能的物理量,

电场与磁场的对比

电场与磁场的对比 电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较“疏远”,后者比较“亲近”。究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等。 为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:⑴、从万有引力定律与库仑定律的比较开始,将电场与重力场(万有引力场)相关概念、规律一一进行类比;⑵、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比。现选择性对比如下: 一、研究对象、思路和方法对比:表1 内容项目研究对象研究思路研究方法、途径研究问题 电场静止电荷力-(功)-能 直观化、模拟实验; 间接(引入检验电 荷、电流元等)静电现象及本质规律(力与能的性质) 磁场运动电荷力静磁场、稳恒磁场现象及本质(力的 性质) 二、概念对比:表2 项目 量 定义公式单位方向意义矢标性决定因素 电场强度 引 入检验电 荷 F E q =1/1/ N C V m =与正电荷 受力同向 表征电场 强弱和方 向 矢量 (叠加 遵从平 行四边 形定 则) 场源电荷 及场点位 置 磁感应强 度 电流元m F B IL = 11/ T N A m =? 1、小磁针 静止时N 极指向 2、垂直于 磁力与电 流元所决 定的平面 表征磁场 强弱和方 向 磁体或载 流导体及 场点位置运动电 荷 m f B qυ =11/ T N S C m =?? 面积元B S ⊥ Φ =2 11/ B Web m = 注意⒈用“比值”定义的物理量的共同特点是被定义的量与用来定义的量均无关; ⒉磁感应强度三种定义的条件。 表3 项目 概念 定义性质意义 电场线1、不闭合(有 源场) 2、不相交 3、不中断 4、不存在 (直观手 段) 5、疏密表示 场的(相对) 强弱,切向表 示场的方向 表征电场的强 弱和方向 磁感线1、闭合曲线 (无源场) 表征磁场的强 弱和方向 注:电场线、磁感线是描写场这一抽象物质的直观手段,且均可用实验模拟。沿电场线方向电势逐渐(点)

高考物理二轮复习专题三电场和磁场课时作业新人教

课时作业八 一、选择题 1.(多选)(2020·河北唐山一模)如图所示,匀强电场中的A 、B 、C 、D 点构成一位于纸面内的平行四边形,电场强度的方向与纸面平行.已知A 、B 两点的电势分别为φA =12 V 、φB =6 V ,则C 、D 两点的电势可能分别为( ) A .9 V 、15 V B .9 V 、18 V C .0 V 、6 V D .6 V 、0V AC 已知ABCD 为平行四边形,则AB 与CD 平行且等长,因为匀强电场的电场强度的方向与纸面平行,所以U AB =U DC =6 V ,分析各选项中数据可知,A 、C 正确,B 、D 错误. 2.如图所示,Q 1、Q 2为两个等量同种带正电的点电荷,在两者的电场中有M 、N 和O 三点,其中M 和O 在Q 1、Q 2的连线上(O 为连线的中点),N 为过O 点的垂线上的一点.则下列说法中正确的是( ) A .在Q 1、Q 2连线的中垂线位置可以画出一条电场线 B .若将一个带正电的点电荷分别放在M 、N 和O 三点,则该点电荷在M 点时的电势能最大 C .若将一个带电荷量为-q 的点电荷从M 点移到O 点,则电势能减少 D .若将一个带电荷量为-q 的点电荷从N 点移到O 点,则电势能增加 B 根据等量同种正电荷形成的电场在点电荷连线和中垂线上的电场强度和电势的特点可判定A 错;M 、N 、O 三点电势大小的关系为φM >φO >φN ,可判定带正电的点电荷在M 点时的电势能最大,B 正确;从M 点到O 点,电势是降低的,故电场力对带电荷量为-q 的点电荷做负功,则电势能增加, C 错;从N 点到O 点,电势是升高的,故电场力对带电荷量为-q 的点电荷做正功,则电势能减少, D 错. 3.(2020· 河北冀州2月模拟)我国位处北半球,某地区存在匀强电场E 和可看作匀强磁场的地磁场B ,电场与地磁场的方向相同,地磁场的竖直分量和水平分量分别竖直向下和水平指北,一带电小球以速度v 在此区域内沿垂直场强方向在水平面内做直线运动,忽略空气阻力,此地区的重力加速度为g ,则下列说法正确的是( ) A .小球运动方向为自南向北 B .小球可能带正电 C .小球速度v 的大小为E B D .小球的比荷为 g E 2 + vB 2

(完整版)高中高考物理专题复习专题4电场、磁场和能量转化

考点4 电场、磁场和能量转化 山东 贾玉兵 命题趋势 电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。 知识概要 能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表: 如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的增量(ΔE =E 末-E 初)的代数和为零,即ΔE 1+ΔE 2+…ΔE n =0。 电、磁场中的功和能 电场中的 功和能 电势能 由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化 转化 磁场中的 功和能 洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机 转化 转化

恒定电流和磁场知识点总结

恒定电流 一、电流:电荷的定向移动行成电流。 1、产生电流的条件:(1)自由电荷;(2)电场; 2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向; 注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极;3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A (3)常用单位:毫安mA、微安uA; 二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比; 1、定义式:I=U/R; 2、推论:R=U/I; 3、电阻的国际单位时欧姆,用Ω表示; 三、闭合电路:由电源、导线、用电器、电键组成; 1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示; 2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压; 3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻; 4、电源的电动势等于内、外电压之和; E=U内+U外 U外=RI E=(R+r)I 四、闭合电路的欧姆定律: 闭合电路里的电流跟电源的电动势成正比,跟内、外电路的电阻之和成反比; 1、数学表达式:I=E/(R+r) 2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义; 3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路; 五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导; 补充: 1.电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。 R=pl/S(电阻的决定式)P只与导体材料性质有关。R与温度有关。 二极管:单向导电性;正极与电源正极相连。 2.串联特点:①总电压等于各部分电压之和。 ②电流处处相等 ③总电阻等于各部分电阻和 ④总功率等于各部分功率和

第二轮专题三:电场和磁场

物理第二轮复习 专题三:电场和磁场
一、知识网络
1.带电粒子在电场、磁场中的运动可分为下列几种情况:
带电粒子 在电场中 的运动
直线运动:如用电场加速或减速粒子 偏转:类似平抛运动,一般分解成两个分运动求解 圆周运动:以点电荷为圆心运动或受装置约束运动
带电粒子在 电场磁场中 的运动
带电粒子 在磁场中 的运动
带电粒子 在复合场 中的运动
直线运动(当带电粒子的速度与磁场平行时)
圆周运动(当带电粒子的速度与磁场垂直时)
半径公式: R mv
2m 周期公式:T
qB
qB
直线运动:垂直运动方向的力必定平衡
圆周运动:重力与电场力一定平衡,由洛伦兹力提 供向心力
一般的曲线运动
.带电粒子在匀强电场、匀强磁场中运动的比较
在场强为E的匀强电场中
在磁感应强度为B的匀强磁场中
初速度为零
做初速度为零的匀加速直线运动
保持静止
初速度∥场线 做匀变速直线运动
做匀速直线运动
初速度⊥场线 做匀变速曲线运动(类平抛运动)
做匀速圆周运动
共同规律
受恒力作用,做匀变速运动
洛伦兹力不做功,动能不变
(1)带电粒子在匀强电场中做类平抛运动。这类题的解题关键是画出示意图。
运动特点分析:在垂直电场方向做匀速直线运动 vx v0
x v0t
在平行电场方向,做初速度为零的匀加速直线运动 v y at
y 1 at 2 2
a Eq Uq 通过电场区的时间: t L
UqL2 粒子通过电场区的侧移距离: y
m dm
v0
2mdv02
粒子通过电场区偏转角: tg UqL
mdv
2 0
带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点。所以侧移距离
也可表示为: y L tg 2
(2) 不计重力的带电粒子在匀强磁场中做匀速圆周运动。这类题的解题关键是画好示意图, 画示意图的要点是找圆心、找半径和用对称。在画图的基础上特别注意使用几何知识寻找关系。
用几何知识确定圆心并求半径:画出粒子运动轨迹中任意两点(大多是射入点和出射点)的 F 或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系;确定轨迹所 对的圆心角,求运动时间:先利用圆心角与弦切角的关系,或者是四边形内角和等于 360°(或 2)计算出圆心角 的大小,再由公式 t=T/3600(或 T/2)可求出运动时间。
向心力公式: Bqv m v 2 运动轨道半径公式: R mv ; 运动周期公式:T 2m
R
Bq
Bq
T 或 f 、 的两个特点:T、 f 和 的大小与轨道半径(R)和运行速率( v )无关,只与磁场的磁感
q
应强度(B)和粒子的荷质比( )相关。
m
(3)处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而 定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由
题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目

电磁场与电磁波(第二版).

电磁场与电磁波第二章分章节复习 第二章:静电场 1、导体在静电平衡下,齐体内的电荷密度(B )。 A.为常数 B.为零 C.不为零 D.不确定 2、电介质极化后,其内部存在(D)。 A.自由正电荷 B.自由负电荷 C.自由正负电荷 D.电偶极子 3、在两种导电介质的分界面处,电场强度的(A)保持连续。 A.切向分量 B.幅值 C. 法向分量 D.所有分量 4、在相同的场源条件下,真空中的电场强度时电介质的(C)倍。 A.εoεr B.1/εoεr C. εr D.1/εr 5.导体的电容大小(B)。 A.与导体的电势有关 B.与导体的电势无关 C.与导体所带电荷有关 D.与导体间点位差有关 6、两个点电荷对试验电荷的作用力可表示为两个力的 ( D )。 A.算术和 B.代数和 C.平方和 D.矢量和 7、介质的极化程度取决于:( D )。 A. 静电场 B. 外加电场 C. 极化电场 D. 外加电场和极化电场之和 8、电场强度的方向(A)。 A.与正电荷在电场中受力的方向相同。 B.与负电荷在电场中受力的方向相同。 C.与正电荷在电场中受力的方向垂直。 D.垂直于正负电荷受力的平面。 9、在边长为a正方形的四个顶点上,各放一个电量相等的同性点电荷Q1,几何中心放置一个电荷Q2,那么Q2受力为(D); A.Q1Q2/2π B. Q1Q2/2πa C. Q1Q2/4πa D.0 10、两个相互平行的导体平板构成一个电容器,其电容与(B D)有关。 A.导体板上的电荷 B.平板间的介质 C.导体板的几何形状 D.两个导体板的距离 填空题: 1、静止电荷所产生的电场,称之为静电场。

2019届高考物理专题三电场和磁场18年真题汇编

考点十一 磁场 1.(2018·全国卷II ·T20)如图,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称。整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外。已知a 、b 两点的磁感应强度大小分别为13B 0和1 2 B 0,方向也垂直于纸面向外。则( ) A.流经L 1的电流在b 点产生的磁感应强度大小为 0127 B B.流经L 1的电流在a 点产生的磁感应强度大小为0121 B C.流经L 2的电流在b 点产生的磁感应强度大小为01 12B D.流经L 2的电流在a 点产生的磁感应强度大小为07 12 B 【命题意图】本题意在考查右手螺旋定则的应用和磁场叠加的规律。 【解析】选A 、C 。设L 1在a 、b 两点产生的磁感应强度大小为B 1,设L 2在a 、b 两点产生的磁感应强度大小为B 2,根据右手螺旋定则,结合题意B 0-(B 1+B 2)=13B 0,B 0+B 2-B 1=1 2 B 0, 联立可得B 1= 712B 0,B 2=1 12 B 0,选项A 、 C 正确。 2.(2018·北京高考·T6)某空间存在匀强磁场和匀强电场。一个带电粒子(不计重力)以一定 初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是 ( ) A.磁场和电场的方向 B.磁场和电场的强弱 C.粒子的电性和电量 D.粒子入射时的速度 【解析】选C 。由题可知,当带电粒子在复合场内做匀速直线运动,即Eq=qvB ,则v= E B ,若仅撤除电场,粒子仅在洛伦兹力作用下做匀速圆周运动,说明要满足题意,对磁场与电场的方向以及强弱程度都要有要求,但是对电性和电量无要求,根据F=qvB 可知,洛伦兹力的方向与速度方向有关,故对入射时的速度也有要求,故选C 。 3.(2018·全国卷I ·T25) 如图,在y>0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y<0的区域存在方向垂直于xOy 平面向外的匀强磁场。一个氕核11H 和一个氘核21H 先后从y 轴上y=h 点以相同的动能射出,速度方向沿x 轴正方向。已知11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场。11H 的质量为m ,电荷量为q 。不计重力。求

高考物理热门考点聚焦专题4电场、磁场和能量转化

考点4 电场、磁场和能量转化 命题趋势 电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。 知识概要 能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表: 如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的增量(ΔE =E 末-E 初)的代数和为零,即ΔE 1+ΔE 2+…ΔE n =0。 电磁感应现象中,其他能向电能转化是通过安培力的功来量度的,感应电流在磁场中受到的安培力作了多少功就有多少电能产生,而这些电能又通过电流做功转变成其他能,如电阻上产生的内能、电动机产生的机械能等。从能量的角度看,楞次定律就是能量转化和守恒定律在电磁感应现象中的具体表现。电磁感应过程往往涉及多种能量形势的转化,因此从功和能的观点入手,分析清楚能量转化的关系,往往是解决电磁感应问题的重要途径;在运用功能关系解决问题时,应注意能量转化的来龙去脉,顺着受力分析、做功分析、能量分析的思路严格进行,并注意功和能的对应关系。 电、磁场中的功和能 电场中的 功和能 电势能 由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化 转化 磁场中的 功和能 洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机 转化 转化

电磁场理论习题

《电磁场理论》题库 《电磁场理论》综合练习题1 一、填空题(每小题 1 分,共 10 分) 1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H 满足的 方程为: 。 2.设线性各向同性的均匀媒质中,02 =?φ称为 方程。 3.时变电磁场中,数学表达式H E S ?=称为 。 4.在理想导体的表面, 的切向分量等于零。 5.矢量场)(r A 穿过闭合曲面S 的通量的表达式为: 。 6.电磁波从一种媒质入射到理想 表面时,电磁波将发生全反射。 7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于 。 8.如果两个不等于零的矢量的 等于零,则此两个矢量必然相互垂直。 9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合 关系。 10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用 函数的旋度来表示。 二、简述题 (每题 5分,共 20 分) 11.已知麦克斯韦第二方程为t B E ??- =?? ,试说明其物理意义,并写出方程的积分形式。 12.试简述唯一性定理,并说明其意义。 13.什么是群速?试写出群速与相速之间的关系式。 14.写出位移电流的表达式,它的提出有何意义? 三、计算题 (每题10 分,共30分) 15.按要求完成下列题目 (1)判断矢量函数y x e xz e y B ??2+-= 是否是某区域的磁通量密度? (2)如果是,求相应的电流分布。 16.矢量z y x e e e A ?3??2-+= , z y x e e e B ??3?5--= ,求 (1)B A + (2)B A ? 17.在无源的自由空间中,电场强度复矢量的表达式为 ()jkz y x e E e E e E --=004?3? (1) 试写出其时间表达式; (2) 说明电磁波的传播方向;

高三物理二轮复习专题4电场和磁场第2讲

专题四 第二讲 一、选择题(1~6题只有一个选项正确,7~10小题有多个选项正确) 1.(2014·新课标Ⅰ)关于通电直导线在匀强磁场中所受的安培力,下列说法正确的是( ) A .安培力的方向可以不垂直于直导线 B .安培力的方向总是垂直于磁场的方向 C .安培力的大小与通电直导线和磁场方向的夹角无关 D .将直导线从中点折成直角,安培力的大小一定变为原来的一半 [答案] B [解析] 该题考查通电导线在磁场中所受安培力的大小和方向。解题的关键是要理解楞次定律和有效长度。安培力垂直于导线和磁场决定的方向,A 错B 对。由F =BIL sin θ可知,C 错。当导线从中间折成直角时,有效长度L 1= 2 2 L ,D 选项不正确。本题容易出错的是D 选项。没有掌握有效长度与原长度的关系。有效长度是连接初、末位置线段的长度。 2.(2014·长春模拟)如图所示,现有四条完全相同的垂直于纸面放置的长直导线,横截面分别位于一正方形abcd 的四个顶点上,直导线分别通有方向垂直于纸面向里、大小分别为I a =I ,I b =2I ,I c =3I ,I d =4I 的恒定电流。已知通电长直导线周围距离为r 处磁场的磁感应强度大小为B =k I r ,式中常量k >0,I 为电流强度。忽略电流间的相互作用,若电流I a 在 正方形的几何中心O 点处产生的磁感应强度大小为B ,则O 点处实际的磁感应强度的大小及方向为( ) A .22 B ,方向由O 点指向ad 中点 B .22B ,方向由O 点指向ab 中点 C .10B ,方向垂直于纸面向里 D .10B ,方向垂直于纸面向外 [答案] A [解析] 由题意,直导线周围某点的磁感应强度与电流强度成正比,与距直导线距离成反比。应用安培定则并结合平行四边形定则,可知A 选项正确。 3.(2014·乌鲁木齐模拟)如图所示,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里。长度为L 的导体中通有恒定电流,电流大小为I 。当导体垂直于磁场方向放置时,导体受到的安培力大小为BIL 。若将导体在纸面内顺时针转过30°角,导体受到的安培力大小为( ) A .BIL 2 B .BIL

电磁场的远场和近场划分

电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(感应场)和近区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。近区场通常具有如下特点: 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E 377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到1米。 2、远区场的测量 在远区场(辐射场区),可引入功率密度矢量(波印廷矢量),电场矢量、磁场矢量、波印廷矢量三者方向互相垂直,波印廷矢量的方向为电磁波传播方向。 在数值上,E=377H,S=EH=E2/377。其中电场强度E的单位是(V/m),磁场强度H的单位是(A/m),功率密度的单位是(W/m2),全部是国际单位制(SI)。 由公式可看出,在远场区,电场与磁场不是独立的,可以只测电场强度,磁场强度及功率密度中的一个项目,其他两个项目均可由此换算出来。 一般情况,关于远场和近场的测量问题可以简化为: 国标规定,当电磁辐射体的工作频率低于300MHz时,应对工作场所的电场强度和磁场强度分别测量。当电磁辐射体的工作频率大于300MHz时,可以只测电场强度。 300MHz频率相应的波长为1米,λ/6为16cm,16cm之外辐射场占优势。如按3λ的划分界限,距辐射源3米之外可认为是远场区。

物理电场磁场电磁感应知识点

电场知识点 一、电荷、电荷守恒定律 1、两种电荷:“+”“-”用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。 2、元电荷:所带电荷的最小基元,一个元电荷的电量为1.6×10-19C,是一个电子(或质子)所带的电量。 说明:任何带电体的带电量皆为元电荷电量的整数倍。 荷质比(比荷):电荷量q与质量m之比,(q/m)叫电荷的比荷 3、起电方式有三种 ①摩擦起电, ②接触起电注意:电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分。 ③感应起电——切割B,或磁通量发生变化。 4、电荷守恒定律: 电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,系统的电荷总数是不变的. 二、库仑定律 1.内容:真空中两个点电荷之间相互作用的电力,跟它们的电荷量的乘积成正比,跟它们的距离的二次方成反比,作用力的方向在它们的连线上。方向由电性决定(同性相斥、异性相吸) 2.公式:k=9.0×109N·m2/C2 极大值问题:在r和两带电体电量和一定的情况下,当Q1=Q2时,有F最大值。 3.适用条件:(1)真空中;(2)点电荷. 点电荷是一个理想化的模型,在实际中,当带电体的形状和大小对相互作用力的影响可以忽略不计时,就可以把带电体视为点电荷.(这一点与万有引力很相似,但又有不同:对质量均匀分布的球,无论两球相距多近,r都等于球心距;而对带电导体球,距离近了以后,电荷会重新分布,不能再用球心距代替r)。点电荷很相似于我们力学中的质点. 注意:①两电荷之间的作用力是相互的,遵守牛顿第三定律

高三物理第二轮复习专题四电场和磁场

专题四 电场和磁场 一、电场和磁场中的带电粒子 1、知识网络 2、方法点拨: 分析带电粒子在电场、磁场中运动,主要是两条线索: (1)力和运动的关系。根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。 (2)功能关系。根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。因此要熟悉各种力做功的特点。 处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目的隐含条件来判断。 处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系。 3、典型例题 【例题1】如图1所示,图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外。O 是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向。已知先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到O 的距离为L ,不计重力及粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O 点射入磁场的时间间隔。 半径公式: qB mv R = 周期公式: qB m T π2= 带电粒子在电场磁场中的运动 带电粒子在电场中的运动 带电粒子在磁场中的运动 带电粒子在复合场中的运动 直线运动:如用电场加速或减速粒子 偏转:类似平抛运动,一般分解成两个分运动求解 圆周运动:以点电荷为圆心运动或受装置约束运动 直线运动(当带电粒子的速度与磁场平行时) 圆周运动(当带电粒子的速度与磁场垂直时) 直线运动:垂直运动方向的力必定平衡 圆周运动:重力与电场力一定平衡,由洛伦兹力提 供向心力 一般的曲线运动

高中物理专题:电场磁场与复合场

电场、磁场及复合场 【典型例题】 1.空间存在相互垂直的匀强电场E 和匀强磁场B ,其方向如图所示.一带电粒子+q 以初速度v 0垂直 于电场和磁场射入,则粒子在场中的运动情况可能是 ( ) A .沿初速度方向做匀速运动 B .在纸平面内沿逆时针方向做匀速圆周运动 C .在纸平面内做轨迹向下弯曲的匀变速曲线运动 D .初始一段在纸平面内做轨迹向下(向上)弯曲的非匀变速曲线运动 2.如图所示空间存在着竖直向上的匀强电场和垂直纸面向外的匀强磁场,一带电液滴从静止开始自A 沿曲线ACB 运动到B 点时,速度为零,C 是轨迹的最低点,以下说法中正确的是 ( ) A .液滴带负电 B .滴在C 点动能最大 C .若液滴所受空气阻力不计,则机械能守恒 D .液滴在C 点机械能最大 3.如图所示,一个带正电的滑环套在水平且足够长的粗糙绝缘杆上,整个装置处在与杆垂直的水平方向的匀强磁场中,现给滑环以水平向右的瞬时冲量,使滑环获得向右的初速,滑环在杆上的运动情况可能是 ( ) A .始终作匀速运动 B .先作加速运动,后作匀速运动 C .先作减速运动,后作匀速运动 D .先作减速运动,最后静止在杆上 4.如图所示,质量为m 、带电量为+q 的带电粒子,以初速度v 0垂直进入相互正交的匀强电场E 和匀 强磁场B 中,从P 点离开该区域,此时侧向位移为s (重力不计),则 ( ) A .粒子在P 点所受的磁场力可能比电场力大 B .粒子的加速度为(qE – qv 0B )/m C .粒子在P 点的速率为m qsE v 220 D .粒子在P 点的动能为mv 02 /2 – qsE 5.如图所示,质量为m ,电量为q 的正电物体,在磁感强度为B 、方向垂 直纸面向里的匀强磁场中,沿动摩擦因数为μ的水平面向左运动,物体运动初速度为v ,则 ( ) A .物体的运动由v 减小到零所用的时间等于mv /μ(mg+qvB ) B .物体的运动由v 减小到零所用的时间小于mv /μ(mg+qvB ) C .若另加一个电场强度为μ(mg+qvB )/q 、方向水平向左的匀强电场,物体做匀速运动 D .若另加一个电场强度为(mg+qvB )/q 、方向竖直向上的匀强电场,物体做匀速运动 6.如图所示,磁感强度为B 的匀强磁场,在竖直平面内匀速平移时,质量为m ,带电– q 的小球,用线悬挂着,静止在悬线与竖直方向成30°角的位置,则磁场的最小移动速度为 . 7.如图所示,质量为1g 的小环带4×10-4 C 正电,套在长直的绝缘杆上,两者间的动摩擦 因数μ = 0.2,将杆放入都是水平的互相垂直的匀强电场和匀强磁场中,杆所在的竖 直平面与磁场垂直,杆与电场夹角为37°,若E = 10N/C ,B = 0.5T ,小环从静止释放,求: ⑴ 当小环加速度最大时,环的速度和加速度; ⑵ 当小环速度最大时,环的速度和加速度. 8.如图所示,半径为R 的光滑绝缘竖直环上,套有一电量为q 的带正电的小球,在水平正交的匀强电场和匀强磁场中,已知小球所受的电场力与重力的大小相等.磁场的磁感强度为B ,求: ⑴ 在环顶端处无初速释放小球,小球运动过程中所受的最大磁场力; ⑵ 若要小球能在竖直圆环上做完整的圆周运动,在顶端释放时初速必须满足什么条件? 9.如图所示,匀强磁场沿水平方向,垂直纸面向里,磁感强度B =1T ,匀强电场方向水平向右,场强E = 103N/C .一带正电的微粒质量m = 2×10-6kg ,电量q = 2×10-6 C ,在此空间恰好作直线运动,问: ⑴ 带电微粒运动速度的大小和方向怎样? ⑵ 若微粒运动到P 点的时刻,突然将磁场撤去,那么经多少时间微粒到达Q 点?(设PQ 连线与电场方向平行) 10.如图所示,两块平行放置的金属板,上板带正电,下板带等量负电.在两板间有一垂直纸面向里 的匀强磁场.一电子从两板左侧以速度v 0沿金属板方向射入,当两板间磁场的磁感强度为B 1时,电子从a 点射出两板,射出时的速度为2v 0.当两板间磁场的磁感强度为B 2时,电子从b 点射出时的侧移量仅为从a 点射出时侧移量的1/4,求电子从b 点射出的速率. 11.如图所示,在一个同时存在匀强磁场和匀强电场的空间,有一个质量为m 的带电微粒,系于长为 l 的细丝线的一端,细丝线另一端固定于O 点.带电微粒以角速度ω在水平面内作匀速圆周运动,此时细线与竖直方向成30°角,且细线中张力为零,电场强度为E ,方向竖直向上. ⑴ 求微粒所带电荷的种类和电量; ⑵ 问空间的磁场方向和磁感强度B 的大小多大? ⑶ 如突然撤去磁场,则带电粒子将作怎样的运动?线中的张力是多大?

相关主题
文本预览
相关文档 最新文档