当前位置:文档之家› 小学奥数 计数题库 容斥原理之重叠问题(二).题库版

小学奥数 计数题库 容斥原理之重叠问题(二).题库版

小学奥数  计数题库   容斥原理之重叠问题(二).题库版
小学奥数  计数题库   容斥原理之重叠问题(二).题库版

1.

了解容斥原理二量重叠和三量重叠的内容;

2. 掌握容斥原理的在组合计数等各个方面的应用.

一、两量重叠问题 在一些计数问题中,经常遇到有关集合元素个数的计算.求两个集合并集的元素的个数,不能简单地把两个集合的元素个数相加,而要从两个集合个数之和中减去重复计算的元素个数,即减去交集的元素个数,用式子可表示成:A B A B A B =+-(其中符号“”读作“并”,相当于中文“和”或者“或”的意思;符号“”读作“交”,相当于中文“且”的意思.)则称这一公式为包含与排除原理,简称容斥原理.图示如下:A 表示小圆部分,B 表示大圆部分,C 表示大圆与小圆的公共部分,记为:A

B ,即阴影面积.图示如下:A 表示小圆部分,B 表示大圆部分,

C 表示大圆与小圆的公共部分,记为:A B ,即阴影面积.

包含与排除原理告诉我们,要计算两个集合A B 、的并集A B 的元素的个数,可分以下两步进行:

第一步:分别计算集合A B 、的元素个数,然后加起来,即先求A B +(意思是把A B 、的一切元素都“包含”进

来,加在一起);

第二步:从上面的和中减去交集的元素个数,即减去C A B =(意思是“排除”了重复计算的元素个数).

二、三量重叠问题

A 类、

B 类与

C 类元素个数的总和A =类元素的个数B +类元素个数C +类元素个数-既是A 类又是B 类的元素个数-既是B 类又是C 类的元素个数-既是A 类又是C 类的元素个数+同时是A 类、B 类、C 类的元素个数.用符号表示为:A B C A B C A B B C A C A B C =++---+.图示如下:

教学目标

知识要点

7-7-2.容斥原理之重叠问题(二)

1.先包含——A B +

重叠部分A B 计算了2次,多加了1次;

A B A B +-1A B

在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考. 模块一、三量重叠问题

【例 1】 一栋居民楼里的住户每户都订了2份不同的报纸。如果该居民楼的住户只订了甲、乙、丙三种报

纸,其中甲报30份,乙报34份,丙报40份,那么既订乙报又订丙报的有___________户。

【考点】三量重叠问题 【难度】3星 【题型】填空 【关键词】2010年,第8届,希望杯,4年级,1试

【解析】 总共有(30+34+40)÷2=52户居民,订丙和乙的有52-30=22户。

【答案】22户

【例 2】 某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34人,手中有黄旗的共

有26人,手中有蓝旗的共有18人.其中手中有红、黄、蓝三种小旗的有6人.而手中只有红、黄

两种小旗的有9人,手中只有黄、蓝两种小旗的有4人,手中只有红、蓝两种小旗的有3人,那么

这个班共有多少人?

【考点】三量重叠问题 【难度】3星 【题型】解答

C

B A

【解析】 如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有

红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,

手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:342618943++-++-()()

6250?=(人).

【答案】50人

【巩固】 某班有42人,其中26人爱打篮球,17人爱打排球,19人爱踢足球,9人既爱打篮球又爱踢足球,4

人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打

篮球又爱打排球的有几人?

【考点】三量重叠问题 【难度】3星 【题型】解答

【解析】 由于全班42人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42人.根据包含排除法,例题精讲

图中小圆表示A 的元素的个数,中圆表示B 的元素的个数,

C

1.先包含:A B C ++

重叠部分A B 、B C 、C A 重叠了2次,

多加了1次. 2.再排除:A B C A B B C A C ++---

A B C 3A B C ++-

A B B C A C

--A B C A B B C A C A B C ++---+

4226171994

=++-++

()(既爱打篮球又爱打排球的人数0

+

),得到既爱打篮球又爱打排球的人数为:49427

-=(人).

【答案】7人

【例3】四年级一班有46名学生参加3项课外活动.其中有24人参加了数学小组,20人参加了语文小组,参加文艺小组的人数是既参加数学小组也参加文艺小组人数的3.5倍,又是3项活动都参加人数

的7倍,既参加文艺小组也参加语文小组的人数相当于3项都参加的人数的2倍,既参加数学小

组又参加语文小组的有10人.求参加文艺小组的人数.

【考点】三量重叠问题【难度】3星【题型】解答

【解析】设参加数学小组的学生组成集合A,参加语文小组的学生组成集合B,参加文艺小组的学生组成集合G.三者都参加的学生有z人.有A B C=46,A=24,B=20,C =3.5,A C =7A B C,

B C =2A B C,A B=10.

因为A B C A B C A B A C B C A B C

=++---+,

所以46=24+20+7x-10-2x-2x+x,解得x=3,

即三者的都参加的有3人.那么参加文艺小组的有3?7=21人.

【答案】21人

【巩固】五年级三班学生参加课外兴趣小组,每人至少参加一项.其中有25人参加自然兴趣小组,35人参加美术兴趣小组,27人参加语文兴趣小组,参加语文同时又参加美术兴趣小组的有12人,

参加自然同时又参加美术兴趣小组的有8人,参加自然同时又参加语文兴趣小组的有9人,

语文、美术、自然3科兴趣小组都参加的有4人.求这个班的学生人数.

【考点】三量重叠问题【难度】3星【题型】解答

C语文B美术

A自然

【解析】设参加自然兴趣小组的人组成集合A,参加美术兴趣小组的人组成集合日,参加语文兴趣小组的人组成集合C.

A=25,B=35,C =27,B C=12,A B=8,A C=9,A B C=4.

A B C=A B C A B A C B C A B C

++---+.

所以,这个班中至少参加一项活动的人有25+35+27-12-8-9+4=62,而这个班每人至少参加一项.即这个班有62人.

【答案】62人

【巩固】光明小学组织棋类比赛,分成围棋、中国象棋和国际象棋三个组进行,参加围棋比赛的有42人,参加中国象棋比赛的有55人,参加国际象棋比赛的有33人,同时参加了围棋和中国象棋比赛

的有18人,同时参加了围棋和国际象棋比赛的有10人,同时参加了中国象棋和国际象棋比赛

的有9人,其中三种棋赛都参加的有5人,问参加棋类比赛的共有多少人?

【考点】三量重叠问题【难度】3星【题型】解答

【解析】根据包含排除法,先把参加围棋比赛的42人,参加中国象棋比赛的55人与参加国际象棋比赛的33人加起来,共是425533130

++=人.把重复加一遍同时参加围棋和中国象棋的18人,同时参加围棋和国际象棋的10人与同时参加中国象棋和国际象棋的9人减去,但是,同时参加了三种棋赛的5人被加了3次,又被减了3次,其实并未计算在内,应当补上,实际上参加棋类比赛的共有:

()(人).

-+++=

130********

或者根据学过的公式:A B C A B C A B B C A C A B C

=++---+,参加棋类比赛的总人数为:42553318109598

++---+=(人).

【答案】98人

【例4】新年联欢会上,共有90人参加了跳舞、合唱、演奏三种节目的演出.如果只参加跳舞的人数三倍于只参加合唱的人数;同时参加三种节目的人比只参加合唱的人少7人;只参加演奏的比同时参加演奏、跳舞但没有参加合唱的人多4人;50人没有参加演奏;10人同时参加了跳舞和合唱但没有参加演奏;40人参加了合唱;那么,同时参加了演奏、合唱但没有参加跳舞的有________人.【考点】三量重叠问题【难度】3星【题型】填空

【关键词】2008年,西城实验

【解析】设只参加合唱的有x人,那么只参加跳舞的人数为3x,由50人没有参加演奏、10人同时参加了跳舞和合唱但没有参加演奏,得到只参加合唱的和只参加跳舞的人数和为501040

-=人,即340

+=,得10

x=,所以只参加合唱的有10人,那么只参加跳舞的人数为30人,又由“同时参加x x

三种节目的人比只参加合唱的人少7人”,得到同时参加三项的有3人,所以参加了合唱的人中“同时参加了演奏、合唱但没有参加跳舞的”有:401010317

---=人.

【答案】17人

【巩固】六年级100名同学,每人至少爱好体育、文艺和科学三项中的一项.其中,爱好体育的55人,爱好文艺的56人,爱好科学的51人,三项都爱好的15人,只爱好体育和科学的4人,只爱好体育和文艺的17人.问:有多少人只爱好科学和文艺两项?只爱好体育的有多少人?

【考点】三量重叠问题【难度】3星【题型】解答

【解析】只是A类和B类的元素个数,有别于容斥原理Ⅱ中的既是A类又是B类的元数个数.依题意,画图如下.设只爱好科学和文艺两项的有x人.由容斥原理,列方程得()()()

++-+-+-++=

55565117154151515100

x

即555651174152100

++----?=

x

x

-=

111100

x=只爱好体育的有:551715419

---=(人).

11

【答案】11人只爱好科学和文艺,19人只爱好体育。

【例5】在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕.2个人既带了汉堡又带了芝土蛋糕.问:

⑴三种都带了的有几人?

⑵只带了一种的有几个?

【考点】三量重叠问题【难度】4星【题型】解答

A

B

C

【解析】如图,用A圆表示带汉堡的人,B圆表示带鸡腿的人,C圆表示带芝士蛋糕的人.

⑴根据包含排除法,总人数=(带汉堡的人数+带鸡腿的人数+带芝士蛋糕的人数-

)(带汉堡、鸡腿的人数+带汉堡、芝士蛋糕的人数+带鸡腿、芝士蛋糕的人数+

)三种都带了的人数,即

-=(人).()()三种都带了的人数,得三种都带了的人数为:10100 10664321

-++-+++

⑵求只带一种的人数,只需从10人中减去带了两种的人数,即103214

()(人).只带了一种

-++=

的有4人.

【答案】(1)0人,(2)4人

【巩固】盛夏的一天,有10个同学去冷饮店,向服务员交了一份需要冷饮的统计表:要可乐、雪碧、橙汁的各有5人;可乐、雪碧都要的有3人;可乐、橙汁都要的有2人;雪碧、橙汁都要的有2人;三样都要的只有1人,证明其中一定有1人这三种饮料都没有要.

【考点】三量重叠问题【难度】4星【题型】解答

【解析】略

【答案】根据根据包含排除法,至少要了一种饮料的人数=(要可乐的人数+要雪碧的人数+要橙汁的人数)-(要可乐、雪碧的人数+要可乐、橙汁的人数+要雪碧、橙汁的人数)+三种都要的人数,即至少要了一种饮料的人数为:55532219

++-+++=

-=(人),所以其中有1人这三种

()()(人).1091

饮料都没有要.

【例6】全班有25个学生,其中17人会骑自行车,13人会游泳,8人会滑冰,这三个运动项目没有人全会,至少会这三项运动之一的学生数学成绩都及格了,但又都不是优秀.若全班有6个人数学不及格,那么,⑴数学成绩优秀的有几个学生?

⑵有几个人既会游泳,又会滑冰?

【考点】三量重叠问题【难度】4星【题型】解答

【解析】⑴有6个数学不及格,那么及格的有:25619

-=(人),即最多不会超过19人会这三项运动之一.而又因为没人全会这三项运动,那么,最少也会有:17138219

()(人)至少会这三项运动之一.于

++÷=

是,至少会三项运动之一的只能是19人,而这19人又不是优秀,说明全班25人中除了19人外,剩下的6名不及格,所以没有数学成绩优秀的.

⑵上面分析可知,及格的19人中,每人都会两项运动:会骑车的一定有一部分会游泳,一部分会滑

冰;会游泳的人中若不会骑车就一定会滑冰,而会滑冰的人中若不会骑车就一定会游泳,但既会

游泳又会滑冰的人一定不会骑自行车.所以,全班有19172

-=(人)既会游泳又会滑冰.

【答案】(1)0人,(2)2人

【巩固】五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组,若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只

有4人.那么,参加B组的有_______人.

【考点】三量重叠问题【难度】4星【题型】填空

【解析】参加B,C,D三组的总人数是3615417

--=(人),C,D每组至少5人,当C,D每组6人时,

--=(人).

B组为5人,不符合题意,所以参加B组的有17557

【答案】7人

【例7】五一班有28位同学,每人至少参加数学、语文、自然课外小组中的一个.其中仅参加数学与语文小组的人数等于仅参加数学小组的人数,没有同学仅参加语文或仅参加自然小组,恰有6个同学

参加数学与自然小组但不参加语文小组,仅参加语文与自然小组的人数是3个小组全参加的人数

的5倍,并且知道3个小组全参加的人数是一个不为0的偶数,那么仅参加数学和语文小组的人

有多少人?

【考点】三量重叠问题【难度】4星【题型】解答

【解析】参加3个小组的人数是一个不为0的偶数,如果该数大于或等于4,那么仅参加语文与自然小组的人数则大于等于20,而仅参加数学与自然小组的人有6个,这样至少应有30人,与题意

矛盾,所以参加3个小组的人数为2.仅参加语文与自然小组的人数为10,于是仅参加语文与

自然、仅参加数学与自然和参加3个小组的人数一共是18人,剩下的10人是仅参加数学与语

文以及仅参加数学的.由于这两个人数相等,所以仅参加数学和语文小组的有5人.

【答案】5人

【例 8】 在一个自助果园里,只摘山莓者两倍于只摘李子者;摘了草莓、山莓和李子的人数比只摘李子的

人数多3个;只摘草莓者比摘了山莓和草莓但没有摘李子者多4人;50个人没有摘草莓;11个人

摘了山莓和李子但没有摘草莓;总共有60人摘了李子.如果参与采摘水果的总人数是100,你能回

答下列问题吗?

① 有 人摘了山莓;

② 有 人同时摘了三种水果;

③ 有 人只摘了山莓;

④ 有 人摘了李子和草莓,而没有摘山莓;

⑤ 有 人只摘了草莓.

草莓李子山莓

G

F E

D

C B A

【考点】三量重叠问题 【难度】3星 【题型】填空

【解析】 如图,根据题意有

2A C =

3G C -=

4B E -=

50A D C ++=

11D =

60C D F G +++=

40A B E ++=

代入求解:26A =,9B =,13C =,11D =,5E =,20F =,16G =

所以①有261151658A D E G +++=+++=(人)摘了山莓;

②有16人同时摘了三种水果;

③有26人只摘了山莓;

④有20人摘了李子和草莓,而没有摘山莓;

⑤有9人只摘了草莓.

【答案】①有58(人)摘了山莓;②有16人同时摘了三种水果;

③有26人只摘了山莓;④有20人摘了李子和草莓,而没有摘山莓;

⑤有9人只摘了草莓.

【例 9】 某学校派出若干名学生参加体育竞技比赛,比赛一共只有三个项目,已知参加长跑、跳高、标枪

三个项目的人数分别为10、15、20人,长跑、跳高、标枪每一项的的参加选手中人中都有五分之

一的人还参加了别的比赛项目,求这所学校一共派出多少人参加比赛?

科学51人

文艺56人

17154

体育55人x

【考点】三量重叠问题 【难度】4星 【题型】解答

【解析】 由条件可知,参加长跑的人中有2人参加其它项目,参加跳高的人中有3人参加其它项目,参加标

枪的人中有4人还参加别的项目,假设只参加长跑和跳高的人数为x ,只参加长跑和标枪的人数为y ,

只参加标枪和跳高的有z 人,三项都参加的有n 人.那么有以下方程组:

由条件可知,参加长跑的人中有2人参加其它项目,参加跳高的人中有3人

参加其它项目,参加标枪的人中有4人还参加别的项目,假设只参加长跑和跳高的人数为x ,只参加

长跑和标枪的人数为y ,只参加标枪和跳高的有z 人,三项都参加的有n 人.那么有以下方程组:

2

3 4x y n x z n z y n ++=??++=??++=? 将3条等式相加则有2(x +y +z )+3n =9,由这个等式可以得到,n 必须是奇数,所以,n 只能是1或

3、5、7……,如果n ≥3时x 、y 、z 中会出现负数.所以n =1,这样可以求得x =0,y =1,z =2.由此可得

到这个学校一共派出了10+15+20-0-1-2-2×1=40人.

将3条等式相加则有2(x +y +z )+3n =9,由这个等式可以得到,n 必须是奇数,所以,n 只能是1或

3、5、7……,如果n ≥3时x 、y 、z 中会出现负数.所以n =1,这样可以求得x =0,y =1,z =2.由此可得

到这个学校一共派出了10+15+20-0-1-2-2×1=40人.

【答案】40人

模块二、四个量的重叠问题

【例 10】 养牛场有2007头黄牛和水牛,其中母牛1105头,黄牛1506头,公水牛200头,那么母黄牛有

头。

【考点】四个量的重叠问题 【难度】3星 【题型】填空

【关键词】2007年,第5届,希望杯,4年级,1试

【解析】 解:公牛有2007-1105=902头,公黄牛有902-200=702头,母黄牛有1506-702=804头

【答案】804头

【例 11】 一个书架上有数学、语文、英语、历史4种书共35本,且每种书的数量互不相同。其中数学书和

英语书共有l6本,语文书和英语书共有17本:有一种书恰好有9本,这种书是 书。

【考点】四个量的重叠问题 【难度】4星 【题型】填空

【关键词】2008年,迎春杯,四年级,初赛,5题

【解析】 如果数学书有x 本,那么英语书有16-x 本,语文书有17-(16-x )=x+1本,历史书为

35-(x+16-x+x+1)=18-x 本,其中有可能出现相等的有x 和16-x ,x 和18-x 因为它们奇偶性相同.为了

不相等,x≠8且x≠9,有此得到16-x 不等于8和7,x+1不等于9和10,18-x 不等于10和9,只有

16-x 可以等于9,所以英语书有9本.

【答案】英语

小学奥数:抽屉原理(含答案)

教案 抽屉原理 1、概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢?一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢?只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 2、例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。 例2 一副扑克牌(去掉两张王牌),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的? 例3 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34。

小学数学 位值原理.教师版

5-7-1.位值原理 教学目标 1.利用位值原理的定义进行拆分 2.巧用方程解位值原理的题 知识点拨 位值原理 当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使象古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十。我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算。这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同。既是说,一个数字除了本身的值以外,还有一个“位置值”。例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值。最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十。但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们。希望同学们在做题中认真体会。 1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理。 2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f。 3.解位值一共有三大法宝:(1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x,列方程解答 例题精讲 模块一、简单的位值原理拆分 【例1】一个两位数,加上它的个位数字的9倍,恰好等于100。这个两位数的各位数字的和是。【考点】简单的位值原理拆分【难度】2星【题型】填空 【关键词】希望杯,4年级,初赛,7题,六年级,初赛,第8题,5分 【解析】这个两位数,加上它的个位数字的9倍,恰好等于100,也就是说,十位数字的10倍加上个位数字的10倍等于100,所以十位数字加个位数字等于100÷10=10。 【答案】10 【例2】学而思的李老师比张老师大18岁,有意思的是,如果把李老师的年龄颠倒过来正好是张老师的年龄,求李老师和张老师的年龄和最少是________?(注:老师年龄都在20岁以上) 【考点】简单的位值原理拆分【难度】3星【题型】填空 【关键词】学而思杯,4年级,第5题

小学奥数排列组合常见题型及解题策略备选题

小学奥数排列组合常见题型及解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有 【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4 424 A 种【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3

小学奥数教案课程抽屉原理解析版

小学奥数教案课程抽屉 原理解析版 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

教案 抽屉原理 一本讲学习目标 初步抽屉原理的方法和心得。 二概念解析 把3个苹果任意放到两个抽屉里,可以有哪些放置的方法呢一个抽屉放一个,另一个抽屉放两个;或3个苹果放在某一个抽屉里.尽管放苹果的方式有所不同,但是总有一个共同的规律:至少有一个抽屉里有两个或两个以上的苹果.如果把5个苹果任意放到4个抽屉里,放置的方法更多了,但仍有这样的结果.由此我们可以想到,只要苹果的个数多于抽屉的个数,就一定能保证至少有一个抽屉里有两个或两个以上的苹果.道理很简单:如果每个抽屉里的苹果都不到两个(也就是至多有1个),那么所有抽屉里的苹果数的和就比总数少了.由此得到: 抽屉原理:把多于n个的苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。 如果把苹果换成了鸽子,把抽屉换成了笼子,同样有类似的结论,所以有时也把抽屉原理叫做鸽笼原理.不要小看这个“原理”,利用它可以解决一些表面看来似乎很难的数学问题。 比如,我们从街上随便找来13人,就可以断定他们中至少有两个人属相(指鼠、牛、虎、兔、…等十二种生肖)相同.怎样证明这个结论是正确的呢只要利用抽屉原理就很容易把道理讲清楚.事实上,由于人数(13)比属相数(12)多,因此至少有两个人属相相同(在这里,把13人看成13个“苹果”,把12种属相看成12个“抽屉”)。 应用抽屉原理要注意识别“抽屉”和“苹果”,苹果的数目一定要大于抽屉的个数。 三例题讲解 例1 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。

小学奥数:简单的排列问题.专项练习

1.使学生正确理解排列的意义; 2.了解排列、排列数的意义,能根据具体的问题,写出符合要求的排列; 3.掌握排列的计算公式; 4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列的一些计数问题进行归纳总结,并掌握一些排列技巧,如捆绑法等. 一、排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. 排列的基本问题是计算排列的总个数. 从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P . 根据排列的定义,做一个m 元素的排列由m 个步骤完成: 步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法; 步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; …… 步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有 11n m n m --=-+()(种)方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+L ()()() ,即121m n P n n n n m =---+L ()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 二、排列数 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????L ( )(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =?-?-????L L ()() . 教学目标 例题精讲 知识要点 7-4-1.简单的排列问题

小学奥数竞赛专题训练之抽屉原理

小学奥数竞赛专题训练之抽屉原理 竞赛专题选讲囊括了希望杯、华罗庚金杯、走进美妙的数学花园、EMC、全国小学数学联赛和数学解题能力展示等在内的国内主要数学竞赛的精华试题 [专题介绍] 把4只苹果放到3个抽屉里去,共有4种放法(请小朋友们自己列举),不论如何放,必有一个抽屉里至少放进两个苹果。 同样,把5只苹果放到4个抽屉里去,必有一个抽屉里至少放进两个苹果。 …… 更进一步,我们能够得出这样的结论:把n+1只苹果放到n个抽屉里去,那么必定有一个抽屉里至少放进两个苹果。这个结论,通常被称为抽屉原理。 利用抽屉原理,可以说明(证明)许多有趣的现象或结论。不过,抽屉原理不是拿来就能用的,关键是要应用所学的数学知识去寻找“抽屉”,制造“抽屉”,弄清应当把什么看作“抽屉”,把什么看作“苹果”。 [经典例题] 【例1】一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么? 【分析】每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。 【例2】任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么? 【分析与解】首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。 想一想,例2中4改为7,3改为6,结论成立吗? 【例3】有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)? 【分析与解】试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。 按5种颜色制作5个抽屉,根据抽屉原理1,只要取出6只袜子就总有一只抽屉里装2只,这2只就可配成一双。拿走这一双,尚剩4只,如果再补进2只又成6只,再根据抽屉原理1,又可配成一双拿走。如果再补进2只,又可取得第3双。所以,至少要取6+2+2=10只袜子,就一定会配成3双。 思考:1.能用抽屉原理2,直接得到结果吗? 2.把题中的要求改为3双不同色袜子,至少应取出多少只? 3.把题中的要求改为3双同色袜子,又如何? 【例4】一个布袋中有35个同样大小的木球,其中白、黄、红三种颜色球各有10个,另外还有3个蓝色球、2个绿色球,试问一次至少取出多少个球,才能保证取出的球中至少

小学四年级奥数 第13讲:位值原理

位值原理 叁仟陆佰伍拾捌 3 6 5 8 加油站 位值原理的定义: 同一个数字,由于它在所写的数里的位置不同,所表示 的数值也不同.也就是说,每一个数字除了有自身的一个值外, 还有一个“位置值”.例如“2”,写在个位上,就表示2个一, 写在百位上,就表示2个百,这种数字和数位结合起来表示数

的原则,称为写数的位值原理. 【例1】(★) 填空: ⑴ 123=1个( )+2个( )+3个( ) ⑵234=( )个100+( )个10+( )个1 ⑶24=2×( )+4×( ) 【例2】(★ ★) : ⑴ 30300 3 3 ⑵ 22030 2 2 3 ⑷657=( )×100+( )×10+( )×1 2 3 ⑸ ( )=5×100+7×10+9×1 ⑹ 23+45=( )×10+( )×1 ⑺ 234+321=( )×100+( )×10+( )×1 =( )×111 ⑶ abc 100 10+ 1 ⑷ abcd a b c d ⑸ 1

【例3】(★★★)【例5】(★★★)(希望杯五年级一试试题) ⑴ 三位数abc比三位数cba小99,若a,b,c彼此不 同,则abc最大是_____。 ⑵a b a b 98790807 【例6】(★★★★) 【例4】(★★★) 计算:(123456+234561+345612+456123+561234+612345)÷7 从1~9九个数字中取出三个,用这三个数可组成六个不同的三 位 数.若这六个三位数之和是3330,则这六个三位数中最小至少是 多 少?最大的至多是多少? 【例7】(★★★★★)(希望杯四年级二试试题) 本讲总结 数abcd,abc,ab,a依次表示四位数、三位数、 两位数及一位abcd abc ab a 1787,那么满足条件的是多少? abcd a c=a c 重要应用: ①计算——分位计算 ②代数化表示——分类讨论

小学奥数专题 抽屉原理

小升初奥数专题 抽屉原理(1) 一、抽屉原理(1)知识引入 【例1】将三本书放入两个抽屉,有几种放法? 从上述的表格中我们可以发现:至少有一个抽屉放了两本或两本以上的书。这就是抽屉原理的体现。 把m 个物体,任意放进() n m n n 2≤<只抽屉,则其中一定有一直抽屉里至少有2个物体;有1+n 个物体,任意放进n 只抽屉里,则其中一定有一只抽屉里至少有两个物体。因为运用抽屉原理解题时,往往要从最不利(极端)的情况去考虑,所以抽屉原理也叫最不利原理。 二、典例分析&随堂演练 【例2】实验小学今年招收学生730人,他们都是同一年出生的。那么至少有几名同学同一天出生? 【从最不巧的情况考虑,一年有366天(闰年),每天都有一个学生出生,则366名学生出生日期都不相同。另有730-366=364个学生,无论他们各在哪天过生日,那么至少有两个学生的生日是同一天。】 随堂练: [1]铅笔盒中有4支圆珠笔和3支钢笔,若从笔盒中随意拿取笔,一次至少拿几只才能保证有一只是钢笔?【一次至少拿5支】 [2]六年级共用学生57人,至少有几人在同一个星期内过生日?【一年有52个星期余1天或2天,57÷52=1……4,至少有2人在同一星期内过生日。】 【例3】在一条长100米的小路旁种102棵树苗,你能说明不管怎样种,至少还有两棵树苗之间的距离不超过1米吗?【将100米平均分成100段,每段长1米,两头都栽一共可栽101棵树苗。现在要栽102棵树苗,至少有两棵树苗栽在同一段中,这一段会有两棵树苗之间的距离小于1米,也就是不超过1米。】 随堂练: [3]一个阳台长10米,要摆放12盆花,不管怎样放,会有两盆花的距离不超过一米吗? 【把10米平均分成10份,每份是1米,两头都放,正好放11盆,每两盆之间的距离正好是1米。现在有12盆花,这样一定会在1份中放两盆花,就会有两盆花的距离小于1米。】 [4]体育室有篮球、足球和排球各7个。现有7名学生来借球,每人任意借走两个,会有两名学生借的球相同吗?【借的球只有6种情况:篮球篮球,足球足球,排球排球,篮球足球,篮球排球,足球排球。故7个人来借球,至少有两个人借的球是相同的。】

小学奥数之排列组合问题

计 数 问 题 教学目标 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合的计算公式以及组合数与排列数之间的关系; 4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。 5.根据不同题目灵活运用计数方法进行计数。 知识点拨: 例题精讲: 一、 排 列 组 合 的 应 用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法 (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×6 6P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所 以只要求出其中一种的排法数,再乘以2即可.4×3×5 5P ×2=2880(种).排队问题,一般先考虑特殊 情况再去全排列。 【例 2】 用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数 【解析】 个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n =,2m =,根据排列数公式, 一共可以组成255420P =?=(个)符合题意的三位数。 【巩固】 用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数 【解析】 可以分两类来看: ⑴ 把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有 44432124P =???=(种)放法,对应24个不同的五位数; ⑵ 把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P =种选择.由乘法原理,可

高斯小学奥数六年级下册含答案第05讲_抽屉原理

第五讲抽屉原理二 本讲知识点汇总: 一、最不利原则:为了保.证.能完成一件事情,需要考虑在最倒霉(最不利)的情况下,如何能 达到目标. 二、抽屉原理: 形式1:把n 1个苹果放到n个抽屉中,一定有2个苹果放在一个抽屉里; 形式2:把m n 1个苹果放到n 个抽屉中,一定有m 1个苹果放在一个抽屉里. 例1.中国奥运代表团的173 名运动员到超市买饮料,已知超市有可乐、雪碧、芬达、橙汁、味全和矿泉水 6 种饮料,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同?「分析」本题的“抽屉”是饮料的选法,“苹果”是1 73名运动员. 练习1、中国奥运代表团的83 名运动员到超市买饮料.超市有可乐、雪碧、芬达和橙汁,每人各买两种不同的饮料,那么至少多少人买的饮料完全相同? 例2.国庆嘉年华共有5项游艺活动,每个学生至多参加2项,至少参加1项.那么至少有多少个学生,才能保证至少有4 个人参加的活动完全相同?「分析」本题的“抽屉”是参加活动的方法. 练习2、高思运动会共有4 个项目,每个学生至多参加3项,至少参加1 项.那么至少有多少个学生,才能保证至少有5 个人参加的活动完全相同?

例3.从1到50这50个自然数中,至少选出多少个数,才能保证其中一定有两个数的和是50? 「分析」思考一下:哪两个数的和是50? 练习3、从1到35这35 个自然数中,至少选出多少个数才能保证其中一定有两个数的和为34? 例4.从1到100这100个自然数中,至少选出多少个数才能保证其中一定有两个数的和是7的倍数?如果要保证是 6 的倍数呢?「分析」两个数的和是7 的倍数,这两个数除以7 的余数要符合什么条件哪? 练习4、从1至99这99 个自然数中任意取出一些数,要保证其中一定有两个数的和是 5 的倍数,至少要取多少个? 例5.至少取出多少个正整数,才能保证其中一定有两个整数的和或差是100 的倍数? 「分析」从余数角度思考一下:什么样的两个数的和或差是100? 例6.在边长为2 的正六边形中,放入50 个点,任意三点不共线,请证明:一定能从中选出三个点,以它们为顶点的三角形面积不大于 「分析」通过把正六边形均分,来构造“抽屉” 1.

小学数学思维训练——抽屉原理练习题及答案

小学数学思维训练——抽屉原理练习题 1.木箱里装有红色球3个、黄色球5个、蓝色球7个,若蒙眼去摸,为保证取出的球中有两个球的颜色相同,则最少要取出多少个球? 解:把3种颜色看作3个抽屉,若要符合题意,则小球的数目必须大于3,故至少取出4个小球才能符合要求。 2.一幅扑克牌有54张,最少要抽取几张牌,方能保证其中至少有2张牌有相同的点数? 解:点数为1(A)、2、3、4、5、6、7、8、9、10、11(J)、12(Q)、13(K)的牌各取1张,再取大王、小王各1张,一共15张,这15张牌中,没有两张的点数相同。这样,如果任意再取1张的话,它的点数必为1~13中的一个,于是有2张点数相同。 3.11名学生到老师家借书,老师是书房中有A、B、C、D四类书,每名学生最多可借两本不同类的书,最少借一本。试证明:必有两个学生所借的书的类型相同。 证明:若学生只借一本书,则不同的类型有A、B、C、D四种,若学生借两本不同类型的书,则不同的类型有AB、AC、AD、BC、BD、CD六种。共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”。如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同。 4.有50名运动员进行某个项目的单循环赛,如果没有平局,也没有全胜,试证明:一定有两个运动员积分相同。 证明:设每胜一局得一分,由于没有平局,也没有全胜,则得分情况只有1、2、3……49,只有49种可能,以这49种可能得分的情况为49个抽屉,现有50名运动员得分,则一定有两名运动员得分相同。 5.体育用品仓库里有许多足球、排球和篮球,某班50名同学来仓库拿球,规定每个人至少拿1个球,至多拿2个球,问至少有几名同学所拿的球种类是一致的? 解题关键:利用抽屉原理2。 解:根据规定,多有同学拿球的配组方式共有以下9种:﹛足﹜﹛排﹜﹛蓝﹜﹛足足﹜﹛排排﹜﹛蓝蓝﹜﹛足排﹜﹛足蓝﹜﹛排蓝﹜。以这9种配组方式制造9个抽屉,将这50个同学看作苹果50÷9 = 5 (5) 由抽屉原理2k=[m/n ]+1可得,至少有6人,他们所拿的球类是完全一致的。 6.某校有55个同学参加数学竞赛,已知将参赛人任意分成四组,则必有一组的女生多于2人,又知参赛者中任何10人中必有男生,则参赛男生的人生为__________人。 解:因为任意分成四组,必有一组的女生多于2人,所以女生至少有4×2+1=9(人);因为任意10人中必有男生,所以女生人数至多有9人。所以女生有9人,男生有55-9=46(人)

五年级奥数位值原理

位值原理 知识框架 当我们把物体同数相联系的过程中,会碰到的数越来越大,如果这种联系过程中,只用我们的手指头,那么到了“十”这个数,我们就无法数下去了,即使像古代墨西哥尤里卡坦的玛雅人把脚趾也用上,只不过能数二十.我们显然知道,数是可以无穷无尽地写下去的,因此,我们必须把数的概念从实物的世界中解放出来,抽象地研究如何表示它们,如何对它们进行运算.这就涉及到了记数,记数时,同一个数字由于所在位置的不同,表示的数值也不同.既是说,一个数字除了本身的值以外,还有一个“位置值”.例如,用符号555表示五百五十五时,这三个数字具有相同的数值五,但由于位置不同,因此具有不同的位置值.最右边的五表示五个一,最左边的五表示五个百,中间的五表示五个十.但是在奥数中位值问题就远远没有这么简单了,现在就将解位值的三大法宝给同学们.希望同学们在做题中认真体会. 1.位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同.也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”.例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字和数位结合起来表示数的原则,称为写数的位值原理. 2.位值原理的表达形式:以六位数为例:abcdef a×100000+b×10000+c×1000+d×100+e×10+f. 3.解位值一共有三大法宝: (1)最简单的应用解数字谜的方法列竖式 (2)利用十进制的展开形式,列等式解答 (3)把整个数字整体的考虑设为x,列方程解答 例题精讲 知识点一:位值原理的认识 【例 1】填空:

365= ×100+ ×10+ ×1 365=36×+5× =2×+3×+a×+b×=203 +× 【例 2】ab与ba的和被11除,商等于______与______的和。 【例 3】把一个两位数的个位数字与其十位数字交换后得到一个新数,它与原来数加起来的和恰好是121,这个两位数的数字和是多少? 【巩固】把一个两位数的十位与个位上的数字加以交换,得到一个新的两位数.如果原来的两位数和交换后的新的两位数的差是45,试求这样的两位数中最大的是多少? 【例 4】(1)用数字1、2、3各一个可以组成三位数,所有这样的三位数之和是多少?这个和是三位数的数字和的多少倍? (2)有三个不同的数字,用它们组成六个不同的三位数,如果这六个三位数的和是1554,那么这 三个数字分别是多少? 【巩固】从1-9这九个数字中取出3个,用这三个数字可以组成6个不同的三位数,若这六个三位数之和是2442,则这三个数字的和是多少?

小学六年级奥数 抽屉原理(含答案)

抽屉原理 知识要点 1.抽屉原理的一般表述 (1)假设有3个苹果放入2个抽屉中,必然有一个抽屉中至少有2个苹果。它的一般表述为: 第一抽屉原理:(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。 (2)若把3个苹果放入4个抽屉中,则必然有一个抽屉空着。它的一般表述为: 第二抽屉原理:(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。 2.构造抽屉的方法 常见的构造抽屉的方法有:数的分组、染色分类、图形的分割、剩余类等等。例1自制的一副玩具牌共计52张(含四种牌:红桃、红方、黑桃、黑梅,每种牌都有1点,2点,……13点牌各一张),洗好后背面朝上放。一次至少抽取张牌,才能保证其中必定有2张牌的点数和颜色都相同。如果要求一次抽出的牌中必定有3张牌的点数是相邻的(不计颜色),那么至少要取张牌。点拨对于第一问,最不利的情况是两种颜色都取了1~13点各一张,此时再抽一张,这张牌必与已抽取的某张牌的颜色与点数都相同。 点拨对于第二问,最不利的情况是:先抽取了1,2,4,5,7,8,10,11,13各4张,此时再取一张,这张牌的点数是3,6,9,12中的一张,在已抽取的牌中必有3张的点数相邻。 解(1)13×2+1=27(张) (2)9×4+1=37(张)

例2 证明:37人中,(1)至少有4人属相相同;(2)要保证有5人属相相同,但不保证有6人属相相同,那么人的总数应在什么范围内? 点拨可以把12个属相看做12个抽屉,根据第一抽屉原理即可解决。 解 (1)因为37÷12=3……1,所以,根据第一抽屉原理,至少有3+1=4(人)属相相同。 (2)要保证有5人的属相相同的最少人数为4×12+1=49(人) 不保证有6人属相相同的最多人数为5×12=60(人)所以,总人数应在49人到60人的范围内。 例3有一副扑克牌共54张,问:至少摸出多少张才能保证:(1)其中有4张花色相同?(2)四种花色都有? 点拨首先我们要弄清楚一副扑克牌有2张王牌,四种花色,每种有13张。(1)按最不利原则先取出2张为王牌,再取4张均不同花色,再连续取两次4张也均不同花色,这时必能保证每一花色都有3张,再取1张即可达到要求。(2)仍需按最不利原则去取牌,先是2张王牌,接着依次把三种花色的牌全部取出13×3,这时假设仍是没有四种花色,再取1张即可。 解 (1)2+4×3+1=15(张) (2)2+13×3+1=42(张) 例4 学校买来红、黄、蓝三种颜色的球,规定每位学生最多可以借两种不同颜色的球。那么至少要来几名学生借球,就能保证必有两名学生借的球的颜色完全相同? 点拨根据题中“最多可借两种不同颜色的球”,可知最多有以下6种情况:解借球有6种情况,看做6个抽屉, 所以至少要来7名学生借球,才能保证。 例5 从前面30个自然数中最少要取出几个数,才能保证取出的数中能找到两个

小学奥数~排列组合

奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法种数是52 5 63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列 数的一半,即5 51602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务, 第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110 872520C C C =种,选C .

广东省阳江市数学小学奥数系列8-2-1抽屉原理(一)

广东省阳江市数学小学奥数系列8-2-1抽屉原理(一) 姓名:________ 班级:________ 成绩:________ 亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧! 一、 (共34题;共175分) 1. (5分)有5050张数字卡片,其中1张上面写着数字“1”,2张上面写着数字“2”,3张上面写着数字“3”…,99张上面写着数字“99”,100张上面写着数字“100”.现在要从中任意取出若干张,为了确保抽出的卡片中至少有10张完全相同的数字,至少要抽出多少张卡片? 2. (5分)一个正方体有六个面,给每个面都涂上红色或白色,至少有三个面是同一颜色。为什么? 3. (5分)在一个矩形内任意放五点,其中任意三点不在一条直线上。证明:在以这五点为顶点的三角形中,至少有一个的面积小于矩形面积的四分之一。 4. (5分)有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 5. (5分)小明参加飞镖比赛,投了5镖,成绩是36环,小明至少有一镖不低于8环,对吗?为什么? 6. (5分)六(1)班有49名学生,数学高老师了解到期中考试该班英语成绩除3人外,均在86分以上后就说:“我可以断定,本班至少有4人成绩相同”。王老师说的对吗?为什么? 7. (5分) 9条直线的每一条都把一个正方形分成两个梯形,而且它们的面积之比为2∶3。证明:这9 条直线中至少有3 条通过同一个点。 8. (5分)从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34. 9. (5分)一些孩子在沙滩上玩耍,他们把石子堆成许多堆,其中有一个孩子发现从石子堆中任意选出六堆,其中至少有两堆石子数之差是5的倍数,你能说一说他的结论对吗?为什么? 10. (5分)在下面每个格子中任意写上“爸爸”或“妈妈”,至少有几列所写的字是完全一样的?

五年级数学奥数讲义-位值原理与数的进制(学生版)

“位值原理与数的进制” 学生姓名授课日期 教师姓名授课时长 本讲是数论知识体系中的两大基本问题,也是学好数论知识所必须要掌握 的知识要点。通过本讲的学习,要求学生理解并熟练应用位值原理的表示形式,掌握进制的表示方法、各进制间的互化以及二进制与实际问题的综合应用。并学会在其它进制中位值原理的应用。从而使一些与数论相关的问题简单化。 一、位值原理 位值原理的定义:同一个数字,由于它在所写的数里的位置不同,所表示的数值也不同。也就是说,每一个数字除了有自身的一个值外,还有一个“位置值”。例如“2”,写在个位上,就表示2个一,写在百位上,就表示2个百,这种数字 和数位结合起来表示数的原则,称为写数的位值原理。 二、数的进制 我们常用的进制为十进制,特点是“逢十进一”。在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。比如二进制,八进制,十六进制等。 二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。因此,二进制中只用两个数字0和1。二进制的计数单位分别是1、21、22、23、……, =1二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110) 2 ×25+0×24+0×23+1×22+1×21+0×20。 二进制的运算法则是“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。 注意:对于任意自然数n,我们有n0=1。 n进制:n进制的运算法则是“逢n进一,借一当n”,n进制的四则混合运算和十进制一样,先乘除,后加减;同级运算,先左后右;有括号时先计算括号

内的。 【试题来源】 【题目】某三位数abc和它的反序数cba的差被99除,商等于与的差;ab与ba 的差被9除,商等于与的差;ab与ba的和被11除,商等于与的和。 【试题来源】 【题目】如果ab×7= ,那么ab等于多少? 【试题来源】 【题目】从1~9九个数字中取出三个,用这三个数可组成六个不同的三位数。若这六个三位数之和是3330,则这六个三位数中最小的可能是几?最大的可能是几? 【试题来源】 【题目】用1,9,7三张数字卡片可以组成若干个不同的三位数,所有这些三位数的平均值是多少? 【试题来源】 【题目】a,b,c分别是0~9中不同的数码,用a,b,c共可组成六个三位数字,如果其中五个数字之和是2234,那么另一个数字是几?

小学奥数-抽屉原理(教师版)

抽屉原理 如果给你5盒饼干,让你把它们放到4个抽屉里,那么可以肯定有一个抽屉里至少有2盒饼干。如果把4封信投到3个邮箱中,那么可以肯定有一个邮箱中至少有2封信。如果把3本联练习册分给两位同学,那么可以肯定其中有一位同学至少分到2本练习册。这些简单内的例子就是数学中的“抽屉原理”。 抽屉原理1:将多于n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品不少于2件。 假定这n个抽屉中,每一个抽屉内的物品都不到2件,那么每一个抽屉中的物品或者是一件,或者没有。这样n个抽屉中所放物品的总数就不会超过n件。这与有多于n个物品的假设相矛盾。说明抽屉原理1成立。 抽屉原理2:将多于m×n件的物品任意放到n个抽屉中,那么至少有一个抽屉中的物品的件数不少于m+l。 假定这n个抽屉中,每一个抽屉中的物品都不到(m+l)件,即每个抽屉里的物品不多于m件,这样n个抽屉中可放物品的总数就不会超过m×n件。这与多于m×n件物品的假设相矛盾。说明原来的假设不成立。所以抽屉原理2成立。 运用抽屉原理解题的关键是选好“抽屉”,而构造“抽屉”的方法多种多样,会因题而异。运用原理1还是原理2要看题目的问题和哪一个更直观。抽屉原理2实际上是抽屉原理1的变形。 【例1】★某校六年级有学生367人,请问有没有两个学生的生日是同一天?为什么? 【解析】平年一年有365天,闰年一年有366天。把天数看做抽屉,共366个抽屉。把367个人分别放入366个抽屉中,至少在一个抽屉里有两个人,因此,肯定有两个学生的生日是同一天。 【小试牛刀】某校有370名1992年出生的学生,其中至少有2个学生的生日是同一天,为什么?【解析】1992年共有366天,把它看成是366个抽屉,把370个人放入366个抽屉中,至少有一个抽屉里有两个人,因此其中至少有2个学生的生日是同一天的。 【例2】★某班学生去买语文书、数学书、外语书。买书的情况是:有买一本的、二本的、也有三本的,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书最多买一本)? 【解析】首先考虑买书的几种可能性,买一本、二半、三本共有7种类型,把7种类型看成7个抽屉,去的人数看成元素。要保证至少有一个抽屉里有2人,那么去的人数应大于抽屉数。所以至少要去7+1=8(个)学生才能保证一定有两位同学买到相同的书。 买书的类型有: 买一本的:有语文、数学、外语3种。 买二本的:有语文和数学、语文和外语、数学和外语3种。 买三本的:有语文、数学和外语1种。 3+3+1=7(种)把7种类型看做7个抽屉,要保证一定有两位同学买到相同的书,至少要去8位学生。 【小试牛刀】某班学生去买语文书、数学书、外语书、美术书、自然书。买书的情况是:有买一本的、二本的、三本或四本的。,问至少要去几位学生才能保证一定有两位同学买到相同的书(每种书

(完整版)小学奥数排列

排列 在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关. 前提测评 1、在1~500的自然数中,不含数字0和1的数有多少个? 2、十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来? 例如某客轮航行于天津、青岛、大连三个城市之间.问:应准备有多少种不同船票? 为叙述方便,我们把研究对象(如天津、青岛、大连)看作元素,那么上面的问题就是在三个不同的元素中取出两个,按照一定的顺序排成一列的问题.我们把每一种排法叫做一个排列(如天津——青岛就是一个排列),把所有排列的个数叫做排列数.那么上面的问题就是求排列数的问题. 一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列. 由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.

例2有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号? 例3用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?例4幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法? 例5幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法? 例6有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人站成一排)

相关主题
文本预览
相关文档 最新文档