当前位置:文档之家› 蛋白质溶解度的测定方法

蛋白质溶解度的测定方法

蛋白质溶解度的测定方法

蛋白质溶解度的测定方法

一、适用范围:

本方法适用于豆粕生熟度的检测。

二、原理:

加热不同程度的豆粕,用0.2%的氢氧化钾溶解度不同,由此根据氢氧化钾溶解后的豆粕含氮量与原样中含氮量的比值即可判断出豆粕的生熟度。

三、试剂:

本方法除特殊注明外,试剂均为分析纯,水均为蒸馏水。

1 .氢氧化钾溶液:0.2% 相当于0.042mol/L,PH12.5。

2. 其它试剂为凯氏定氮所需的标准试剂。

3. 称取2.360gKOH于容量瓶中,加水溶解并稀释至1000ml。注意补充KOH试剂的纯

度。(KOH纯度为82%时应称取量为2.878g)

四、测定步骤:

1 .称取1.5g(精确至0.0001g)过60目筛的豆粕,置于250ml烧杯中,加入75ml0.2%的

KOH溶液,在磁力搅拌器上搅拌20分钟;

2. 之后,移入50ml溶液于离心管中,以2700转/分的速度离心10分钟;

3 .取15ml 上清液进行凯氏定氮,方法同粗蛋白质的测定;

4 .同时测定原样中粗蛋白质的含量。

五、测定结果的计算与分析:

1. 计算:

0.3g样品中粗蛋白质的含量

PS= *100

原样中粗蛋白质的含量

2、分析:

PS>85%, 过生;PS<70% ,过熟。

溶解度的测定

硝酸钾溶解度得测定(方法1:结晶析出法) 实验原理: 先设计好不同溶质与溶剂得量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时得温度,即所得溶液为该温度下得饱与溶液,计算该温度下得溶解度。实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品就是否齐全、完好。 二、硝酸钾得称取与溶解。 1、用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、2.0g、2.5g,称量过程详见分组实验三得步骤二。将称好得5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取得3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾得结晶。 1.自水浴中取出大试管,插入一支干净得温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计得读数。当刚开始有晶体析出时,立即记下此时得温度t1,并填入下表中。 2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤得操作,分别测定开始析出晶体时得温度t2、t3。将读数填入表格。 四、溶解度曲线得绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤得操作,并将晶体开始析出时得温度读数填人表格。

蛋白质的测定方法

蛋白质的测定方法 测定食物中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。 5.2按图装好定氮装置,于水蒸气发生瓶内装水至约2/3处,加甲基红指示液数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,加热煮沸水蒸气发生瓶内的水。 5.3向接收瓶内加入10ml ,1~2%硼酸溶液及混合指示液1滴,并使冷凝管的下端插入液面下,吸取10ml样品消化稀释液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使之流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将3~10ml饱和氢氧化钠溶液倒入小玻璃杯中,提起玻璃塞使其缓缓流入反应室,立即将玻璃塞盖紧,并加水于小玻璃杯中以防漏气。加紧螺旋夹,开始蒸馏。蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏2min,移动接收瓶,使冷凝管下端离开液面,然后用少量中性水冲洗冷凝管下端外部,再蒸馏1min取下接收瓶,以0.01或0.05mol/L盐酸标准溶液滴定至灰色或蓝紫色为终点。 同时吸取10ml试剂空白消化液按5.3操作。 6. 计算

影响蛋白质水合和溶解性的因素有哪些

1.影响蛋白质水合和溶解性的因素有哪些?这两方面的影响因素有何异同? 答:(1)蛋白质的水合性质(PropertiesHydration of Proteins) A.蛋白质水合性质:蛋白质分子中带电基团、主链肽基团、Asn、 Gln的酰胺基、Ser、Thr和非极性残基团与水分子相互结 合的性质。 B. 蛋白质水合能力:当干蛋白质粉与相对湿度为90-95%的水蒸汽 达到平衡时,每克蛋白质所结合的水的克数。 α=?C +0.4 ?P+0.2 ?N (α:水合能力,g水/g蛋白质;?C, ?P , ?N:带电的、极性和非极性的分数) C.影响蛋白质结合水的环境因素: 1.pH 当pH=pI时,蛋白质的水合能力最低 2.温度温度升高,氢键作用和离子基团的水合作用减弱,水合能力下降。 3.氨基酸组成极性氨基酸越多,水合能力越高 4,离子强度低浓度的盐能提高蛋白质的水合能力。 5.盐的种类 (2)蛋白质的溶解度(SolubilityofProteins) 影响蛋白质溶解性质的主要的相互作用: A 疏水相互作用能促进蛋白质—蛋白质相互作用,使蛋白质溶解度降低; B离子相互作用能促进蛋白质—水相互作用,使蛋白质溶解度增加。 1.pH 当pH高于或低于等电点时,蛋白质带净的负电荷或净的正电荷, 水分子能同这些电荷相互作用并起着稳定作用 U-形曲线,最低溶解度出现在蛋白 2.①“盐溶”(salted in)中性盐的离子在0.1-1M能提高蛋白质的溶 解度。 ②“盐析”(salted out)中性盐的离子大于1M,蛋白质的溶解 度降低,并可能导致蛋白质沉淀。 ③当离子强度<0.5时,离子中和蛋白质表面的电荷。 电荷掩蔽效应对蛋白质的溶解度的影响取决于蛋白质的表面性质。如果蛋白质含 有高比例的非极性区域,那么此电荷掩蔽效应使它的溶解度下降,反之, 溶解度提高。 当离子强度>1.0时,盐对蛋白质溶解度具有特殊的离子效应。 硫酸盐和氟化物(盐)逐渐降低蛋白质的溶解度。在相同的μ,各种离子对蛋 白质溶解度的相对影响(提高溶解度)的能力。Hofmeister系列 阴离子(提高蛋白质溶解度的能力): SO42-<F-

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度 的测定 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

氢氧化钾蛋白质溶解度的测定 1、原理 氢氧化钾蛋白质溶解度可以反映蛋白质变性的情况。不同的蛋白质品种,氢氧化钾蛋白质溶解度不同。蛋白质变性越大,氢氧化钾蛋白质溶解度越小。 用一定浓度的氢氧化钾溶液提取试样中的可溶性蛋白质,在催化剂作用下用浓硫酸将提取液中可溶性蛋白质的氮转化为硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用盐酸滴定测出试样中可溶性蛋白质含量;同时,测定原始试样中粗蛋白质含量,计算出试样的蛋白溶解度。 2、试剂 a)??氢氧化钾(分析纯),无水硫酸钾、五水硫酸铜、氢氧化钠、硼酸、甲基红、溴甲酚绿、硫酸铵; b)??浓硫酸、盐酸(分析纯)、95%乙醇、蒸馏水。 3、仪器和设备 a)??感量为 g分析天平; b)??磁力搅拌器; c)??离心机(带离心管),转速为2700r/min以上; d)??样品粉碎机; e)??60目分析筛; f)??电炉;

g)??100 mL或250 mL凯氏烧瓶; h)??凯氏蒸馏装置; i)??250 mL锥形瓶; j)??1000 mL容量瓶; k)??微量滴定管。 4、试剂的制备 a)??%氢氧化钾溶液 称取 g氢氧化钾,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 b)??混合催化剂 称取6 g硫酸钾和 g硫酸铜,磨碎混匀。 c)??氢氧化钠溶液 称取400 g氢氧化钠,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 d)??硼酸溶液 称取20 g硼酸,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 e)??盐酸标准溶液 量取 mL浓盐酸,注入1000 mL水中混匀,按GB 601-88要求进行标定即可。 f)??混合指示剂

中华人民共和国农业部部标准米质测定方法

中华人民共与国农业部部标准米质测定方法 2010-1-30 1适用范围 本标准适用于食用稻米品质得测定。 2引用标准 GB 2905谷类、豆类作物种子粗蛋白质测定法(半微量凯氏法) GB 3523 谷类、油料作物种子水分测定法 GB 4801 谷类籽粒赖氨酸测定法染料结合赖氨酸(DBL)法 GB 5495 粮食、油料检验稻谷出糙率检验法 GB 7648 水稻、玉米、谷子籽粒直链淀粉测定法 NY 122 优质食用稻米 3样品得准备 3、1稻谷在收获晒干后须存放三个月以上,待理化性状稳定后,方可进行分析。 3、2 加工得稻谷须扬净稻草、瘪粒,并除去砂石、泥块、铁屑等混杂物。稻谷品种纯度不得低于99、0%。 3、3 待测样品须放于干燥通风处或有空调得实验室内1周左右,使样品得水分含量为13%±1%,含水量得测定根据GB 3523。 4碾磨品质得测定 4、1 出糙率得测定 4.1.1 常样法 4.1.1、1 仪器设备 实验室用谷物脱壳机 4.1.1、2 测定方法 a、根据待测样品谷粒得厚度,调节脱壳机滚轮(或辊子)得间距(一般在0、50~ 1.00mm之间),使样品经二次处理后,基本上脱壳完全。 b、机器空转数圈,以清除机内残留得稻谷与米粒。

c、称取130.0g稻谷,倒入进样漏斗中,打开电源开关,调节进样闸口,使样品均匀进入机内脱壳。 d、经二次脱壳后,检出样品中残留得谷粒并称其糙米与谷粒得重量,精确到0.1g。 4.1.1、3 结果得表述 出糙率按公式(1)计算:?出糙率(%)={(糙米重(g)/〔试样谷重(g)-未脱壳谷重(g)〕}×100 (1) 重复测定一次,求出二次出糙率得平均值、前后二次测定结果得相对相差不应大于1%、4.1.2 小样法?按GB 5495方法测定、 ?4、2 精米率得测定 4.2.1 仪器设备 JMJ-100型精米机或其她同类型号得实验室精米机、?4、2、2 测定方法?4、2、2、1 称取100g糙米,精确到0.1g,放入精米机得碾米室内、 4、2、2、2 调节碾米室盖得压力至3kg左右,再调节定时器得碾米时间,使碾米精度达国家标准一等米得水平、 4、2、2、3 碾磨后得米样经手工除去糠块,再用1.5mm直径得筛子除去胚片与糠屑、?4、2、2、4 待米样冷却至室温后,称精米重,精确到0.1g、 4、2、3结果得表述 精米率按公式(2)计算:?精米率(%)=〔精米重(g)/糙米重(g)〕×出糙率…………………… (2)?重复测定一次,求出精米率平均值、二次测定结果得相对相差应小于1、0 %、 4、3 整精米率得测定 4、3、1 仪器设备 整米分离机或具不同圆孔直径得筛子一套、 4、3、2 测定方法?4、3、2、1 精米样品得制备 精米样品制备得方法基本上同4、2、2,但掌握碾米得精度为糙米去糠率得10%±0、5%、4、3、2、2 整精米样品得分离?借助于整米分离机或筛子,自以上精米样品中人工分离出整精米(整精米系指肉眼观察无破损得完整精米粒),称重,精确至0.1g、 4、3、3结果得表述 整精米率按公式(3)计算: 整精米率(%)=〔整精米重(g)/糙米重(g)〕×出糙率 (3) 重复测定一次,求出整精米率平均值、两次测定结果相对相差应不超过2、0%、 5 外观品质得测定 5、1 长宽比得测定 5、1、1 仪器设备?谷物轮廓仪,照相放大机或微粒子计、?5、1、2 测定方法?从整精米样品中随机取出整精米10粒,在谷物轮廓仪上读出米粒得长度与宽度,以毫米为单位,读数精确至0.1mm、精米得长度系指整精米两端间得最大距离;宽度系指米粒最宽处得距离、 5、1、3 结果得表述?求出长度与宽度得平均值,按公式(4)计算其长宽比:

实验6 电导法测定难溶盐的溶解度

实验10 电导法测定难溶盐的溶解度 一、实验目的 1. 掌握电导法测定难溶盐溶解度的原理和方法。 2. 学会电导率仪的使用方法。 二、基本原理 第二类导体导电能力的大小,常以电阻的倒数表示,即电导: (10.1) 式中G称为电导,单位是西门子S、 导体的电阻与其长度成正比,与其截面积成反比,即: (10.2) 是比例常数,称为电阻率或比电阻。根据电导与电阻的关系,则有: (10.3) k称为电导率或比电导,它相当于两个电极相距1m,截面积为导体的电导,其单位是。 对于电解质溶液,若浓度不同,则其电导亦不同。如取1mol电解质溶液来量度,即可在给定条件下就不同电解质来进行比较。1mol电解质全部置于相距为1m的两个电极之间,溶液的电导称之为摩尔电导,以Λ表示之。如溶液的浓度以C表示,则摩尔电导可以表示为: (10.4) 式中Λm的单位是;C的单位是。Λm的数值常通过溶液的电导率k,经(10.4)式计算得到。而k与电导G有下列关系,由(10.3)式可知: (10.5) 对于确定的电导池来说,是常数,称为电导池常数。电导池常数可通过测定已知电导率的电解质溶液的电导(或电阻)来确定。

溶液的电导常用惠斯顿电桥来测定,线路如图10.1所示。其中S为信号发生器;R1、R2和R3是三个可变电阻,R x为待测溶液的阻值;H为检流计,C1是与R1并联的一个可 变电容,用于平衡电导电极的电容。测定时,调节R1、R2、R3和C1,使检流计H没有电流通过。此时,说明B、D两点的电位相等,有下面的关系式成立: (10.6) Rx的倒数即为该溶液的电导。 本实验测定硫酸铅的溶解度。直接用电导率仪测定硫酸铅饱和溶液的电导率(K溶液)和配制溶液用水的电导率(K水)。因溶液极稀,必须从溶液的电导率(K溶液)中减去水的电导率(K水),即为: K硫酸铅=K溶液-K水(10.7) 根据10.4式,得到: (10.8) 式中:C是难溶盐的饱和溶液的浓度。由于溶液极稀,Λm可视为Λm∞。因此: (10.9) 硫酸铅的极限摩尔电导可以根据数值求得。因温度对溶液的电导有影响,本实验在恒温下测定。 电导测定不仅可以用来测定硫酸铅、硫酸钡、氯化银、碘酸银等难溶盐的溶解度,还可以测定弱电解质的电离度和电离常数,盐的水解度等。 三、仪器和试剂 仪器:恒温槽,电导率仪,电炉一个,锥形瓶两只,试管三支,电导电极。 试剂:二次蒸馏水配制 四、操作步骤

6种方法测定蛋白质含量

6种方法测定蛋白质含量 [ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小] 一、微量凯氏(kjeldahl )定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1) 2nh 3+h 2so 4——(nh 4)2so 4 (2) (nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret 法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg 蛋白质。干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。 此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度 ---参照GB/T 19541-2004 1适用范围:豆粕、菜籽粕、棉籽粕。 2 氢氧化钾蛋白质溶解度 大豆粕样品在规定的条件下,可溶于0.2%氢氧化钾溶液中的粗蛋白质含量占样品中总的粗蛋白质含量的质量百分数。 3氢氧化钾蛋白质溶解度的测定 3.1 方法原理 氢氧化钾蛋白质溶解度可以反映大豆粕产品加热过度的情况。不同加热程度的大豆粕,氢氧化钾蛋白质溶解度不同。先测定大豆粕样品在规定的条件下,可溶于氢氧化钾溶液中的粗蛋白质含量;再测定同一大豆粕样品中总的粗蛋白含量,计算出氢氧化钾蛋白质溶解度。 3.2 试剂 所用试剂均为分析纯,所用的水为按GB/T 6682中规定的三级水。 3.2.1 0.2%的氢氧化钾溶液:2.44g氢氧化钾(含量:≥82%)溶解于水中,稀释并定容至1L。 3.3 仪器设备 3.3.1实验室用样品粉碎机。 3.3.2样品筛:孔径0.25mm。 3.3.3分析天平:感量0.0001g。 3.3.4 磁力搅拌器。 3.3.5离心机:转速为2700 r/min以上。 3.3.6 TECATOR装置:消化管、消化系统、蒸馏系统。 3.4 样品的制备 取具有代表性的大豆粕样品,用四分法缩减分取200g左右,粉碎过0.25mm 孔径的样品筛,充分混匀,装入磨口瓶中备用。 3.5 测定步骤

称取大豆粕式样1.0g,精确到0.1mg,置于250mL高型烧杯中,加入50.00mL 氢氧化钾溶液,在磁力边搅拌器上搅拌20min,将溶液转移至离心管中,以2700 r/min离心10min,小心移取清液10.00ml,放入消化管中,加入6.4g混合催化剂和10mL浓硫酸,消化,蒸馏,测其粗蛋白,同时测定同一式样总的粗蛋白质含量。 3.6 结果计算 氢氧化钾蛋白质溶解度X,数值以质量分数表示,按式计算: X = W1 / W2 ×K × 100 公式中: W1 —大豆粕式样溶于氢氧化钾溶液中的粗蛋白质含量,%。 W2 —大豆粕式样总的粗蛋白质含量(以两次平行测定结果的算术平均值为测定结果),%。 K —稀释倍数。 计算记过表示到小数点后一位。 3.7 精密度 3.7.1重复性 在同一实验室,由同一操作人员完成的两个平行测定结果,相对偏差不大于2%;以两次平行测定结果的算术平均值为测定结果。 3.7.2 再现性 再不同实验室,由不同操作人员用不同的仪器设备完成的两个测定结果,相对偏差不大于4%。

氢氧化钾蛋白质溶解度的测定

氢氧化钾蛋白质溶解度的测定 1、原理 氢氧化钾蛋白质溶解度可以反映蛋白质变性的情况。不同的蛋白质品种,氢氧化钾蛋白质溶解度不同。蛋白质变性越大,氢氧化钾蛋白质溶解度越小。 用一定浓度的氢氧化钾溶液提取试样中的可溶性蛋白质,在催化剂作用下用浓硫酸将提取液中可溶性蛋白质的氮转化为硫酸铵。加入强碱进行蒸馏使氨逸出,用硼酸吸收后,再用盐酸滴定测出试样中可溶性蛋白质含量;同时,测定原始试样中粗蛋白质含量,计算出试样的蛋白溶解度。 2、试剂 a)??氢氧化钾(分析纯),无水硫酸钾、五水硫酸铜、氢氧化钠、硼酸、甲基红、溴甲酚绿、硫酸铵; b)??浓硫酸、盐酸(分析纯)、95%乙醇、蒸馏水。 3、仪器和设备 a)??感量为g分析天平; b)??磁力搅拌器; c)??离心机(带离心管),转速为2700r/min以上; d)??样品粉碎机; e)??60目分析筛; f)??电炉;

g)??100 mL或250 mL凯氏烧瓶; h)??凯氏蒸馏装置; i)??250 mL锥形瓶; j)??1000 mL容量瓶; k)??微量滴定管。 4、试剂的制备 a)??%氢氧化钾溶液 称取g氢氧化钾,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 b)??混合催化剂 称取6 g硫酸钾和g硫酸铜,磨碎混匀。 c)??氢氧化钠溶液 称取400 g氢氧化钠,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 d)??硼酸溶液 称取20 g硼酸,加水溶解后,转移至1000 mL容量瓶中,用水定容至刻度。 e)??盐酸标准溶液 量取mL浓盐酸,注入1000 mL水中混匀,按GB 601-88要求进行标定即可。 f)??混合指示剂 称取1 g甲基红和5 g溴甲酚绿,加入乙醇溶解后,转移至1000 mL

COD标准测定方法-国标GB11914-89化学需氧量的测定

COD 标准测定方法:国标 GB11914-89 化学需氧量的 测定
2011-7-20 8:45:00 来源:姜堰市银河仪器厂
1 应用范围 本标准规定了水中化学需氧量的测定方法。 本标准适用于各种类型的含 COD 值大于 30mg/L 的水样,对未经稀释的水样的测 定上限为 700 mg/L。超过水样稀释测定。 本标准不适用于含氯化物浓度大于 1000 mg/L(稀释后)的含盐水。 2 定义 在一定条件下,经重铬酸钾氧化处理时,水样中的溶解性物质和悬浮物所消耗的重 铬酸钾盐相对应的氧的质量浓度。 3 原理 在水样中加入已知量的重铬酸钾溶液,并在强酸介质下以银盐作催化剂,经沸腾回 流后,以试亚铁灵为指示剂,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾有西欧爱 好的硫酸亚铁铵的量换算成消耗氧的质量浓度。 在酸性重铬酸钾条件下,芳烃及吡啶难以被氧化,其氧化率较低。在硫酸因催化作 用下,直链脂肪族化合物可有效地被氧化。 4 试剂 除非另有说明,实验时所用试剂均为符合国家标准的分析纯试剂,试验用水均为蒸 馏水或同等纯度的水。 4.1 硫酸银(Ag2SO4),化学纯。 4.2 硫酸汞(Hg SO4),化学纯。 4.3 硫酸(H2SO4),ρ=1.84g/Ml。 4.4 硫酸银-硫酸试剂:向 1L 硫酸(4.3)中加入 10g 硫酸银(4.1),放置 1~2 天使 之溶解,并混匀,使用前小心摇动。 4.5 重铬酸钾标准溶液: 4.5.1 浓度为 C(1/6K2Cr2O7)=0.250mol/L 的重铬酸钾标准溶液:将 12.258g 在 105℃ 干燥 2h 后的重铬酸钾溶于水中,稀释至 1000mL。 4.5.2 浓度为 C(1/6K2Cr2O7)=0.0250mol/L 的重铬酸钾标准溶液:将 4.5.1 条的溶液 稀释 10 倍而成。 4.6 硫酸亚铁铵标准滴定溶液 4.6.1 浓度为 C〔(NH4)2Fe(SO4)2· 6H2O〕≈0.10mol/L 的硫酸亚铁铵标准滴定溶液:

食品中蛋白质的含量测定

蛋白质的测定方法 测定食品中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2 份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml 或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。

质量标准检测标准测试手段及验收方式

质量标准、检测标准、测试手段及验收方式 1、货物质量按招标文件要求执行,货物的价格,按《中标通知书》中的价格执行。 2、所提供的货物的名称、型号、规格、技术条件、供应范围及数量、交货时间、交货地点应符合谈判文件及有关承诺内容要求。 3、全部货物采用相应标准的保护措施进行包装,并具备防湿、防潮、防震、防锈、防装卸等保护措施;如果由于货物包装不良或采用不充分、不妥善的防护措施而造成的损失,供应商将承担由此产生的一切费用;在每一包装件中,有详细装箱清单,并在每件包装上标有引人注目的发货标记。 4、货物到采购人指定交货地点后,采购人对货物凭现状验收,在原装、原封、原标记完好无损情况下,采购人对货物的件数,外观进行初步验收。 5、验收货物发生短缺、损坏等问题时,采购人收到货物后10天内通知我公司,否则,视为采购人初步验收无误;我公司接到采购人通知后,在10天内答复处理,否则,视为我公司已默认采购人的通知。 6、我公司交货时,出具货物符合国家规定的合格证书,货物由我公司负责现场安装调试及人员操作培训,但不解除我公司在货物质量保证期的责任。 7、货物的质量保证期,按我公司在投标文件中的承诺内容执行。 8、因采购人原因造成货物损伤、损坏,我公司协助修复,费用由采购人承担。

9、货物由我公司负责运输,装运过程中发生的丢失、损坏等,由我公司自行承担其经济损失。 10、根据采购人要求,我公司及时派出售后服务人员,给予技术指导。对不合格的货物,属我公司问题的,由我公司及时无偿更换;属于采购人问题的,我公司积极协助解决,费用由采购人承担。 11、由于人力不可抗拒事故,中标供应交货迟延或不能交货时,我公司立即将事故原因通知采购人,并有采取一切必要措施从速交货责任。如果事故持续时间超过交货期限,采购人有权撤销合同,如不可抗拒影响采购人履约,则亦照此办理。

实训5 药物溶解度测定

实训5 药物溶解度测定 一、目的要求 1.了解药典对药物近似溶解度的规定。 2.理解药物结构特点(极性)与溶解性的关系。 3.了解CTC的形成对药物溶解度的影响及CTC在药剂学中的应用。 二、实验原理 药物的溶解度是指在一定的温度下,在一定体积的溶剂中药物形成饱和溶液时的浓度。溶解度的大小,表明一种药物在某一种溶剂中被分散的难易程度。药物溶解时,药物的分子结构不会改变,是一种物理性质。 溶剂一般分为三类:以水为代表的极性溶剂、以甲醇和乙醇为代表的亲水性有机溶剂和以苯、石油醚为代表的亲脂性有机溶剂。溶解的经验规则:相似相溶。 为了适应某种制剂的要求而将药物制成盐或加入助溶剂形成电子转移复合物(CTC),这是增加药物在水中溶解度的常用方法。 三、实验方法 (一)不同药物在水中的溶解度测定 1.“极易溶”药物的溶解:称取1.50克的药物于合适的试管中,加入纯化水1.0~1.5毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.“易溶”药物的溶解:称取1.0克的药物于合适的试管中,加入纯化水1.0~10毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 3.“溶解”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水1.0~3.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 4.“略溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水3.0~10.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 5.“微溶”药物的溶解:称取0.1克的药物于合适的试管中,加入纯化水10.0~100.0毫升,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 (注:以上实验是根据药典对药物溶解度定义设计的,药物在所加的溶剂范围内均可溶解,实验时原则上加入最小溶剂量即可,如果出现不溶的现象,则可能是药物的纯度差、药物的称量和溶剂的取量不准确等因素引起。将实验结果折算为标准溶解度。) (二)同一种药物在不同溶剂中的溶解度测定 1.取三支试管,一支加入0.01克的维生素C,加入乙醚10.0毫升,另两支均加入0.1克的维生素C,再分别加入10.0毫升乙醇和1.0毫升纯化水,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 2.取三支试管,一支加入0.1克的水杨酸,加入纯化水10.0毫升,另两支均加入0.1克的水杨酸,再分别加入1.0毫升乙醇和1.0毫升丙酮,室温下每隔5分钟振摇30秒,30分钟后观察溶解情况。记录溶剂用量。 思考题: 1.药物的极性与药物在水中的溶解性有什么关系? 2.什么是药物溶解度? 3.简述药典对药物近似溶解度的规定和溶解度的实验方法。 1

蛋白质定量检测方法

Bradford法蛋白定量(Bradford Protein Assay ) Bradford Assay is a rapid and accurate method commonly used to determine the total protein concentration of a sample. The assay is based on the observation that the absorbance maximum for an acidic solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when binding to protein occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the dye, causing a visible color change. Within the linear range of the assay (~5-25 mcg/mL), the more protein present, the more Coomassie binds. Reference Bradford, M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. (1976) 72, 248-254. 考马斯亮蓝染色法(Bradford法)测定蛋白质含量 原理 1976年Bradford建立了用考马斯亮蓝G250与蛋白质结合的原理,迅速、敏感的定量测定蛋白质的方法。染料与蛋白质结合后引起染料最大吸收的改变,从465nm变为595nm,光吸收增加。蛋白质-染料复合物具有高的消光系数,因此大大提高了蛋白质测定的灵敏度,最低检出量为1μg蛋白。染料与蛋白质的结合是很迅速的过程,大约需2min,结合物的颜色在1h内是稳定的。一些阳离子,如K+,Na+,Mg2+,(NH4)2SO4,乙醇等物质不干扰测定,而大量的去污剂如TritonX100,SDS等严重干扰测定,少量的去污剂可通过用适当的对照而消除。由于染色法简单迅速,干扰物质少,灵敏度高,现已广泛应用于蛋白质含量的测定。 操作 一、标准方法 取含10~100μg蛋白质溶液于小试管中,用双蒸水或缓冲液调体积到0.1mL,然后加入5mL蛋白试剂,充分振荡混合,2min后于595nm测定光吸收值。以0.1mL 双蒸水或缓冲液及5mL蛋白试剂作为空白对照。 二、微量蛋白分析法 取含1~10μg蛋白质溶液,用双蒸水调体积到0.8mL,加0.2mL蛋白试剂,充分振荡混合,2min后于595nm测定光吸收值,以0.8mL双蒸水及0.2mL蛋白试剂作为空白对照。用不同浓度的蛋白质溶液作标准曲线,以蛋白质浓度为横坐

实验三 蛋白质的两性反应和等电点的测定

实验三蛋白质的两性反应和等电点的测定 一、目的和要求 1.了解蛋白质的两性解离性质。 2.初步学会测定蛋白质等电点的方法。 二、原理 蛋白质由许多氨基酸组成,虽然绝大多数的氨基与羧基成肽键结合,但是总有一定数量自由的氨基与羧基,以及酚基等酸碱基团,因此蛋白质和氨基酸一样时两性电解质。调节溶液的酸碱度达到一定的氢离子浓度时,蛋白质分子所带的正电荷和负电荷相等,以兼性离子状态存在,在电场内该蛋白质分子既不向阴极移动,也不向阳极移动,这时溶液的PH值称为该蛋白质的等电点(PI)。当溶液的PH低于蛋白质等电点时,即在氢离子较多的条件下,蛋白质分子带正电荷成为阳离子;当溶液的PH高于蛋白质等电点时,即在氢氧根离子较多的条件下,蛋白质分子带负电荷成为阴离子。 在等电点时蛋白质溶解度最小,容易沉淀析出。 三、试剂和器材 1.试剂 0.5%酪蛋白溶液;酪蛋白醋酸钠溶液;0.04%溴甲酚绿指示剂;0.02N盐酸; 0.1N醋酸溶液;0.01N醋酸溶液;1N醋酸溶液;0.02N氢氧化钠溶液 2.器材 试管及试管架;滴管;吸量管(1、5ml) 四、操作方法 1.蛋白质的两性反应

(1)取1支试管,加0.5%酪蛋白溶液20滴和0.04%溴甲酚绿指示剂5-7滴,混匀。观察溶液呈观的颜色,并说明原因。 (2)用细滴管缓慢加入0.02N盐酸溶液,随滴随摇,直至有明显的大量沉淀发生,此时溶液的PH接近与酪蛋白的等电点。观察溶液颜色的变化。(3)继续滴入0.02N盐酸溶液,观察沉淀和溶液颜色的变化,并说明原因。(4)再滴入0.02N氢氧化钠溶液进行中和,观察是否出现沉淀,解释其原因。 继续滴入0.02N氢氧化钠溶液,为什么沉淀又会溶液?溶液的颜色如何 变化?说明了什么问题? 2.酪蛋白等电点的测定 (1)取9支粗细相近的干燥试管,编号后按下表的顺序准确地加入各种试剂。 加入每种试剂后应混合均匀。 (2)静置约20分钟,观察每支试管内溶液的混浊度,以—,+,++,+++,++++符号表示沉淀的多少。根据观察结果,指出哪一个PH是酪蛋白的 等电点?

检测标准和方法

各种水质检测方法 1、【pH值】水质pH值的测定玻璃电极法GB/T6920-1986 2、【溶解氧】水质溶解氧的测定电化学探头法GB/T11913-1989 碘量法《水和废水监测分析方法》(第四版)国家环保总局2002年 3、【臭和味】文字描述法《水和废水监测分析方法》(第四版)国家环保总局2002年 4、【侵蚀性二氧化碳】甲基橙指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 5.【酸度】酸度指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 6.【碱度(总碱度、重碳酸盐和碳酸盐)】酸碱指示剂滴定法《水和废水监测分析方法》(第四版)国家环保总局2002年 7.【色度】水质色度的测定GB/T11903-1989 8.【浊度】水质浊度的测定GB/T13200-1991 9.【悬浮物(SS)】水质悬浮物的测定重量法GB/T11901-1989 10.【总可滤残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年 11.【总残渣】重量法《水和废水监测分析方法》(第四版)国家环保总局2002年 12.【全盐量(溶解性固体)】水质全盐量的测定重量法HJ/T51-1999 13.【总硬度(钙和镁总量)】水质钙和镁总量的测定 EDTA滴定法GB/T7477-1987 14.【高锰酸盐指数】水质高锰酸盐指数的测定GB/T11892-1989 15.【化学需氧量(COD)】水质化学需氧量的测定:重铬酸盐法GB/T11914-1989 16.【生物需氧量】水质生物需氧量的测定稀释与接种法GB/T7488—1987 17.【氨氮】水质铵的测定纳氏试剂比色法GB/T7479-1987 水杨酸-次氯酸盐光度法《水和废水监测分析方法》(第四版)国家环保总局2002年 18.【硝酸盐氮】水质硝酸盐氮的测定酚二磺酸分光光度法》GB/T7480-1987 水质硝酸盐氮的测定紫外分光光度法》HJ/T346-2007 19.【亚硝酸盐氮】《水质亚硝酸盐氮的测定分光光度法》GB/T7493-1987 20.【六价铬】水质六价铬的测定二苯碳酸二肼分光光度法GB/T7467-1987 21.【总氮】水质总氮的测定碱性过硫酸钾消解紫外分光光度法》GB/T11894-1989 22.【总磷】水质总磷的测定钼酸铵分光光度法》GB/T11893-1989 23.【磷酸盐】钼酸铵分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 24.【硝基苯类】还原-偶氮光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年) 25.【苯胺类】水质苯胺类化合物的测定N-(1-萘基)乙二胺偶氮分光光度法GB/T11889-1989 26.【游离氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-1989 27.【总氯】水质游离氯和总氯的测定N,N-二乙基-1,4-苯二胺滴定法GB/T11897-1989 28.【氟化物】水质氟化物的测定离子选择电极法GB/T7484-1987 29.【氯化物】水质氯化物的测定硝酸银滴定法GB/T11896-19879 30.【硫酸盐】水质硫酸盐的测定重量法GB/T11899-89 铬酸钡分光光度法《水和废水监测分析方法》(第四版)国家环保总局(2002年)

溶解度的测定

硝酸钾溶解度的测定(方法1:结晶析出法)实验原理: 先设计好不同溶质和溶剂的量,称量、混合、加热、搅拌使其溶解,降温并用温度计分别测定其开始析出晶体时的温度,即所得溶液为该温度下的饱和溶液,计算该温度下的溶解度。 实验用品: 托盘天平(J0160,200g,0.2g),烧杯(J6124),大试管(J6104),玻璃棒(J6453),温度计(J6071,量程0~100℃),酒精灯(J6201),量筒(J6001,10ml),方座支架(J1102,带铁圈),石棉网(J6432),药匙(J6442),试管刷(J6471),硝酸钾(化学纯),蒸馏水。 实验步骤: 一、检查实验用品是否齐全、完好。 二、硝酸钾的称取和溶解。 1. 用托盘天平分别准确称取硝酸钾3.5g、1.5g、1.5g、 2.0g、 2.5g,称量过程详见分组实验三的步骤二。将称好的5份硝酸钾放在实验台上,并做标记。 2.在一支大试管中加入上面称取的3.5g硝酸钾。 3.用量筒准确量取10.0m1蒸馏水,加入大试管中。 4.在水浴中加热大试管,边加热边搅拌,至硝酸钾完全溶解(水浴温度不要太高,以刚好使硝酸钾溶解为宜,否则会使下一步结晶析出操作耗时过长) 三、硝酸钾的结晶。 1.自水浴中取出大试管,插入一支干净的温度计,用玻璃棒轻轻搅拌并摩擦试管壁,同时观察温度计的读数。当刚开始有晶体析出时,立即记下此时的温度t1,并填入下表中。

2.把试管再放入水浴中加热,使晶体全部溶解,然后重复两次上述实验步骤的操作,分别测定开始析出晶体时的温度t2、t3。将读数填入表格。 四、溶解度曲线的绘制。 1.依次向试管中再加入1.5g、1.5g、2.0g、2.5g硝酸钾(使试管中依次共有硝酸钾 5.0g、6.5g、8.5g、11.0g),每次加入硝酸钾后都重复溶解、结晶实验步骤的操作,并将晶体开始析出时的温度读数填人表格。 2.根据所得数据,以温度为横坐标,溶解度为纵坐标,绘制溶解度曲线图。 五、整理实验用品。 1.用试管刷清洗玻璃仪器。 2.整理实验用品,恢复实验前的摆放位置。 注意事项: 1.为了使测量结果准确,称取硝酸钾晶体的质量和量取倒入试管的蒸馏水的体积应尽量准确。 2.水浴加热时,烧杯里的水面不能低于试管里的液面。温度计应插在溶液的中部,使所示的温度具有代表性。 3.使试管里的液体升温时应采用水浴加热,而不能用酒精灯直接加热。

COD标准测定方法

溶解39g硫酸亚铁铵〔(NH4)2Fe(SO4)2·6H2O〕于水中,加入20ml硫酸(4.3),待其溶液冷却后稀释至1000ml。 4.6.2 每日临用前,必须用重铬酸钾标准溶液(4. 5.1)准确标定此溶液(4. 6.1)的浓 度。 取10.00 mL重铬酸钾标准溶液(4.5.1)置于锥形瓶中,用水稀释至约100mL,加入30 mL硫酸(4.3),混匀,冷却后,加3滴(约0.15m L)试亚铁灵指示剂(4.7),用硫酸亚铁铵(4.6.1)滴定溶液的颜色由黄色经蓝绿色变为红褐色,即为终点。记录下硫酸亚铁铵的消耗量(mL)。 4.6.3硫酸亚铁铵标准滴定溶液浓度的计算: 10.00*0.250 2.50 C〔(NH4)2Fe(SO4)2·6H2O〕= V V 式中:V——滴定时消耗硫酸亚铁铵溶液的毫升数。 4.6.4浓度为C〔(NH4)2Fe(SO4)2·6H2O〕≈0.010mol/L的硫酸亚铁铵标准滴定溶液: 将4.6.1条的溶液稀释10倍,用重铬酸钾标准溶液(4.5.2)标定,其滴定步骤及浓度计算分别与4.6.2及4.6.3类同。 4.7 邻苯二甲酸氢钾标准溶液,C(KCr6H5O4)=2.0824m mol/L:称取105℃时干燥2h的 邻苯二甲酸氢钾(HOOCC6H4COOK)0.4251g溶于水,并稀释至1000Ml,混匀。以重铬酸钾为氧化剂,将邻苯二甲酸氢钾完全氧化的COD值为1.176g氧/克(指1g邻苯二甲酸氢钾耗氧1.176g)故该标准溶液的理论COD值为500mg/L。 4.8 1,10-菲绕啉(1,10-phenathroline monohy drate)指示剂溶液:溶解0.7g七水 合硫酸亚铁(FeSO4·7H2O)于50mL的水中,加入1.5g1,10-菲绕啉,搅动至溶解,加水稀释至100mL。 4.9 防爆沸玻璃珠。 5 仪器 常用实验室仪器和下列仪器。 5.1回流装置:带有24号标准磨口的250mL锥形瓶的全玻璃回流装置。回流冷凝管 长度为300~500mm。若取样量在30mL以上,可采用带500mL锥形瓶的全玻璃回流装置。(3泡玻璃毛刺回流管,加上上部分球形回流管内冷却水和机内风机的双重作用,确保了样品的回流冷却) 5.2加热装置。(YHCOD-100型COD自动消解回流仪) 5.3 25mL或50mL酸式滴定管。 6 采样和样品 6.1采样 水样要采集于玻璃瓶中,应尽快分析。如不能立即分析时,应加入硫酸(4.3)至pH<2,置4℃下保存。但保存时间不多于5天。采集水样的体积不得少于100mL。 6.2 试料的准备 将试样充分摇匀,取出20.0mL作为试料。

相关主题
文本预览
相关文档 最新文档